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Introducation
Fast Appearance-Based Mapping (FAB-MAP)

• Problem: Recognizing locations based on their appearance.

• Solution: Learning a generative model for the appearance to
achieve:

1. Compute the similarity of two observations.

2. Compute the probability that the two observations originate from

the same location.

• Superiorities:

1. Address perceptual aliasing (less false positives)

2. Improve inference reasoning (less false negatives)

3. Accommodate new locations

4. Linear-time complexity
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Chow Liu Tree
Approximating High Dimensional Discrete Distributions

• The Chow Liu algorithm approximates a discrete distribution

P(Z ) by the closest tree-structured Bayesian network Q(Z )opt ,

in the sense of minimizing the Kullback-Leibler divergence.

• For a distribution over n variables, a mutual information graph G
is the complete graph with n nodes and n(n−1)

2 edges, where

each edge (zi , zj) has weight equal to the mutual information

I (zi , zj) between variable i and j :

I (zi , zj) =
∑

zi∈Ω,zj∈Ω
p(zi , zj) log

p(zi , zj)

p(zi )p(zj)
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Chow Liu Tree
Advantages & Illustration

• The maximum-weight spanning tree of the mutual information

graph G will have the same structure as Q(Z )opt .

• The Chow Liu algorithm guarantees the optimal approximation,

and requires only first order conditional probabilities.

4 / 28



Probabilistic Navigation using Appearance
Overview

• The world is modeled as a set of discrete locations, each location

being described by a distribution over “appearance words”.

• Incoming sensory data is converted into a bag-of-words

representation.

• For each location Li , we ask how likely it is that the observation

comes from Li ’s distribution.

• Find the probability that the observation comes from a location

not in the map, and update the map if a location found.
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Probabilistic Navigation using Appearance
Representing Appearance

• “bag-of-words” representation for raw sensor data

1. A scene is represented as a collection of attributes (words) chosen

from a set (vocabulary) of size |v |.
• Observation Zk of local scene appearance at time k :

1. Zk = {z1, · · · , z|v |}
2. zi is a binary variable indicating the presence/absence of the ith

word of the vocabulary.

6 / 28



Probabilistic Navigation using Appearance
Representing Locations

• Map of environment at time k is a collection of nk discrete and

disjoint locations Lk = {L1, · · · , Lnk}.
• Hidden variable ei : an event that an object which generates

observations of type zi exists.

• Location Li ’s model: a set {p(e1 = 1|Li ), · · · , p(e|v | = 1|Li )},
where each ei is generated independently by the location.

• Detector D:

D :

p(zi = 1|ei = 0), false positive probability

p(zi = 0|ei = 1), false negative probability
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Probabilistic Navigation using Appearance
Representing Locations: illustration

• Factoring p(Z |Li ) into two parts:

1. (Learn online) A simple model that ei only depends on Li .

2. (Learn offline) A complex model that captures the correlations

between detections of appearance words p(zi |Zk).
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Probabilistic Navigation using Appearance
Estimating Location via Recursive Bayes

• Calculating p(Li |Zk):

p(Li |Zk) =
p(Zk |Li ,Zk−1)p(Li |Zk−1)

p(Zk |Zk−1)

1. Zk : the set of all observations up to time k

2. p(Li |Zk−1): prior belief about our location

3. p(Zk |Li ,Zk−1): observation likelihood, equal to p(Zk |Li )
4. p(Zk |Zk−1): normalization term

9 / 28



Probabilistic Navigation using Appearance
Observation Likelihood

• Naive Bayes assumption:

p(Zk |Li ) ≈ p(zn|Li ) · · · p(z2|Li )p(z1|Li ),

and

p(zj |Li ) =
∑

s∈{0,1}

p(zj |ej = s, Li )p(ej = s|Li)

=
∑

s∈{0,1}

p(zj |ej = s)p(ej = s|Li)

10 / 28



Probabilistic Navigation using Appearance
Observation Likelihood

• Chow Liu assumption:

p(Zk |Li ) ≈ p(zr |Li )
|v |∏
q=2

p(zq|zpq , Li ),

where zr is the root of the tree, and zpq is the parent of zq in the

tree. With further expansion,

p(zq|zpq ,Li ) =
∑

sea∈{0,1}

p(zq|eq = seq , zpq)p(eq = seq |Li ),

p(zq|eq, zpq) ≈
(
1 +

α

β

)−1

,
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Probabilistic Navigation using Appearance
Observation Likelihood

where

α = p(zq = szq)p(zq = s̄zq |eq = seq)p(zq = s̄zq |zp = szp),

β = p(zq = s̄zq)p(zq = szq |eq = seq)p(zq = szq |zp = szp),

Now, α and β are expressed entirely in terms of quantities that can

be estimated from training data.
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Probabilistic Navigation using Appearance
Discovery of New Places

• To deal with the possibility that a new observation comes from a

previously unknown location, calculation of p(Zk |Zk−1) is

required.

• Dividing the world into two sets: mapped places M, and

unmapped places M̄, then

p(Zk |Zk−1) ≈
∑
m∈M

p(Zk |Lm)p(Lm|Zk−1)

+ p(Lnew |Zk−1)
ns∑
u=1

p(Zk |Lu)
ns

where ns is the number of samples, and p(Lnew |Zk−1) is the

prior probability of being at a new place.
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Probabilistic Navigation using Appearance
Location Prior & Smoothing

• With sequentially collected observations, if the robot is at place

i at time t, it has equal probability of being at one of the places

{i − 1, i , i + 1} at time t + 1; otherwise assume uniform prior.

• Smoothing the likelihood estimation:

p(Zk |Li ) → σp(Zk |Li ) +
1− σ

nk
,

where nk is the number of places in the map, σ is the smoothing

parameter (0.99 in experiments).
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Probabilistic Navigation using Appearance
Updating Place Models

• When a new place is created, its appearance model is initialized

so that all words exist with marginal probability p(ei = 1)

derived from the training data.

• Given an observation that relates to the new place, each

component of the appearance model can be updated by

p(ei = 1|Lj ,Zk) =
p(Zk |ei = 1, Lj)p(ei = 1|Lj ,Zk−1)

p(Zk |Lj)
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Probabilistic Navigation using Appearance
Input Parameters

• Detector model, p(zi = 1|ei = 0) and p(zi = 0|ei = 1).

• Smoothing parameter σ.

• Prior probability that a topological link with an unknown

endpoint leads to a new place.
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Evaluation
Building the Vocabulary Model

• Use the SURF detector/description to extract region of interest

from images, and map the 128D descriptors visual words.

• Construct Chow Liu tree.

1. Each node in the graph corresponds to a visual word.

2. Compute the maximum-weight spanning tree of the graph.

3. 2800 images from 28km of urban streets environment.

4. 11k visual words in the constructed Chow Liu tree.
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Sample Vocabulary
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Sample Chow Liu Tree
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Appear-based Matching (City Centre dataset)
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Appear-based Matching (New College dataset)
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Precision Recall

• At 100% precision, the system achieves 48% recall on the New

College dataset, and 37% on the City Center dataset.

• Typically 37% recall rate is sufficient to detect almost all loop

closure.
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Samples from Results: similar scenes, different locations
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Samples from Results: different scenes, same location
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Comparison of Different Approximations
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Chow Liu Approximation vs. Naive Bayes
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False Positives Possibility & Discussion
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