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Introducation
Fast Appearance-Based Mapping (FAB-MAP)

e Problem: Recognizing locations based on their appearance.

e Solution: Learning a generative model for the appearance to
achieve:

1.
2.

Compute the similarity of two observations.
Compute the probability that the two observations originate from
the same location.

e Superiorities:

1.

Address perceptual aliasing (less false positives)

2. Improve inference reasoning (less false negatives)
3.
4. Linear-time complexity

Accommodate new locations
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Chow Liu Tree

Approximating High Dimensional Discrete Distributions

e The Chow Liu algorithm approximates a discrete distribution
P(Z) by the closest tree-structured Bayesian network Q(Z)opt,
in the sense of minimizing the Kullback-Leibler divergence.

e For a distribution over n variables, a mutual information graph G

is the complete graph with n nodes and @ edges, where

each edge (z;, z;) has weight equal to the mutual information
I(z;, zj) between variable i and j:

lanz)= Y plaiz)log PEB)

22,260 P(Zi)P(Zj)
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Chow Liu Tree

Advantages & lllustration

e The maximum-weight spanning tree of the mutual information
graph G will have the same structure as Q(Z)opt-

e The Chow Liu algorithm guarantees the optimal approximation,
and requires only first order conditional probabilities.

® ®

Figure 1: (a) Graphical model of the underlying distribution P(Z). Mutual information between
variables is shown by the thickness of the edge. (b) Naive Bayes approximation. (¢) Chow Liu tree.
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Probabilistic Navigation using Appearance

Overview

e The world is modeled as a set of discrete locations, each location
being described by a distribution over “appearance words" .

e Incoming sensory data is converted into a bag-of-words
representation.

e For each location L;, we ask how likely it is that the observation
comes from L;'s distribution.

e Find the probability that the observation comes from a location
not in the map, and update the map if a location found.
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Probabilistic Navigation using Appearance

Representing Appearance

e “bag-of-words” representation for raw sensor data

1. A scene is represented as a collection of attributes (words) chosen
from a set (vocabulary) of size |v/|.

e Observation Z of local scene appearance at time k:

1. Zk = {21, tee ,Z|V‘}
2. z; is a binary variable indicating the presence/absence of the ith
word of the vocabulary.
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Probabilistic Navigation using Appearance

Representing Locations

e Map of environment at time k is a collection of ny discrete and
disjoint locations £X = {Ly,--- , L, }.

e Hidden variable ¢;: an event that an object which generates
observations of type z; exists.

e Location L;'s model: a set {p(e1 = 1[L;), -, p(e;,| = 1[L;)},
where each ¢; is generated independently by the location.

e Detector D:

p(zi = 1|e; = 0), false positive probability

D:
p(zi = 0|e; = 1), false negative probability
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Probabilistic Navigation using Appearance

Representing Locations: illustration

e Factoring p(Z|L;) into two parts:

1. (Learn online) A simple model that €; only depends on L;.
2. (Learn offline) A complex model that captures the correlations
between detections of appearance words p(z;|Z).

I

-

Tigure 2 Factor graph of our generative model. Observed variables are shaded, latent variables
unshaded. The environment generates locations L;. Locations independently generate words ¢;
Words generate observations z, which are interdependent.
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Probabilistic Navigation using Appearance

Estimating Location via Recursive Bayes

e Calculating p(L;|Z%):

p(Zk|Li, Z51)p(Li| 2571)

A2 = =G

Zk: the set of all observations up to time k

p(L;|Z*~1): prior belief about our location

p(Zk|L;, Z¥=1): observation likelihood, equal to p(Zk|L;)
p(Zx|Z%¥71): normalization term

sl .
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Probabilistic Navigation using Appearance
Observation Likelihood

e Naive Bayes assumption:

p(Zk|Li) = p(zn|Li) - - - p(22|Li)p(z1|Li),

and

p(z|Li) = > plzlej = s, Li)p(ej = s|Li)
se{0,1}

= 3" plzle = s)p(e = s|Li)

s€{0,1}
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Probabilistic Navigation using Appearance
Observation Likelihood

e Chow Liu assumption:

|v|

p(Zk|Li) =~ p(z|L) H P(Zq|qu7 L;),
q=2

where z, is the root of the tree, and z,, is the parent of z, in the
tree. With further expansion,

p(zq|zpq,L,-) = Z p(zq]eq = Seq’qu)p(eq = Sec,’Li)a
Seae{ovl}

~1
a
p(zqleq; 2p,) =~ (1 + 5) ;
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Probabilistic Navigation using Appearance
Observation Likelihood

where
& = p(Zq = qu)p(Zq = qu’eq = Seq)p(zq = 5;q|zp = Szp),

B = p(zqg = 5z,)P(2q = Sz,|€q = Seq)P(2q = Sz,12p = S2,),

Now, o and (8 are expressed entirely in terms of quantities that can
be estimated from training data.
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Probabilistic Navigation using Appearance

Discovery of New Places

e To deal with the possibility that a new observation comes from a
previously unknown location, calculation of p(Zx|Z*71) is
required.

e Dividing the world into two sets: mapped places M, and
unmapped places M, then

P(ZZ5 )~ S p(ZilLm)p(Ln 2571
meM

n
_ 2 Zi|Ly,
+P(Lnew‘Zk 1)2 P( :| )

u=1 s

where ng is the number of samples, and p(Lpew|Z%71) is the
prior probability of being at a new place.
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Probabilistic Navigation using Appearance

Location Prior & Smoothing

e With sequentially collected observations, if the robot is at place
i at time t, it has equal probability of being at one of the places

{i—1,i,i+ 1} at time t 4 1; otherwise assume uniform prior.

e Smoothing the likelihood estimation:

l1—-0
p(Zk|Li) — op(Zk|Li) + P

where ny is the number of places in the map, o is the smoothing
parameter (0.99 in experiments).
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Probabilistic Navigation using Appearance
Updating Place Models

e When a new place is created, its appearance model is initialized
so that all words exist with marginal probability p(e; = 1)
derived from the training data.

e Given an observation that relates to the new place, each
component of the appearance model can be updated by

p(Zilei = 1, Lj)p(ei = 1|L;, Z571)
p(Zk|Lj)

plei = 1|L;, 2) =

15/28



Probabilistic Navigation using Appearance

Input Parameters

e Detector model, p(z; = 1|e; = 0) and p(z; = 0|e; = 1).
e Smoothing parameter o.

e Prior probability that a topological link with an unknown

endpoint leads to a new place.
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Evaluation
Building the Vocabulary Model

e Use the SURF detector/description to extract region of interest

from images, and map the 128D descriptors visual words.

e Construct Chow Liu tree.

1.
2. Compute the maximum-weight spanning tree of the graph.
3.

4. 11k visual words in the constructed Chow Liu tree.

Each node in the graph corresponds to a visual word.

2800 images from 28km of urban streets environment.
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Sample Vocabulary

Figure 3: A sample word in the vocabulary, showing typical image patches and an example of the interest points
Interest points quantized to this word typically correspond to the top-left corner of windows

in context
correlated word in the vocabulary is shown in Figure 4.

Figure 4: A sample word in the vocabulary, showing typical image patches and an example of the interest points in
context. Interest points quantized to this word typically correspond to the cross-piece of windows. The most correlated

word in the vocabulary is shown in Figure 3.
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Sample Chow Liu Tree

Figure 5: Visnalization af a seclion the Ghow Lin tree compuiei for our urban vocabulary. Fach word in the Lree is
Tepresented by a typical example. Clackwise from top, the words correspond o the cros picces of window pancs, righ
bt corners of window panes and top-left corners of
window panes. Under the Chow Lin model the joint probability of abserving these words together is 1,778 times higher
than under he a Naive Bayes assumption.

coruers of window stils, top-right cormers of window panes, bottom-
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Appear-based Matching (City Centre dataset)

Vehicle Trajectory @
Loop Closure Detection

Figure 6: Appearance-based matching results for the City Centre dataset overlaid on an aerial photograph. The robot
travels twice around & loop with total path length 2km, collecting 2,474 images. Positions (from hand-corrected GPS) at
¥ p>099
of having come from the same location (on the basis of appearance alone) are marked in red and joined with a line.

which the robot collected an image are marked with a yellow dot. ‘Two images that were assigned a probabil

There axe no incorrect matches that meet this probability threshold. This result is best viewed as a video (Extension 2).
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Appear-based Matching (New College dataset)

Vehicle Trajectory @
Loop Closure Detection

Figure 7: Appearance-based matching results for the New College dataset overlaid on an aerial photograph. The robot
traverses a complex trajectory of 1.9km with multiple loop closures. 2,146 images were collected. Positions (from hand-
corrected GPS) at which the robot collected an image are marked with a yellow dot. Two images that were assigned a
probability p > 0.9 of having come from the same location (on the basis of appearance alone) are marked in red and
Jjoined with a line. There are no incorrect matches that meet this probability threshold. This result is best viewed as a

video (Extension 1).
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Precision Recall

e At 100% precision, the system achieves 48% recall on the New
College dataset, and 37% on the City Center dataset.

e Typically 37% recall rate is sufficient to detect almost all loop
closure.
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Figure 8: Precision-Recall curves for the City Centre and New College datasets. Notice the scale.
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Samples from Results: similar scenes, different locations

-
TSemi
o

(b) p=3x10-9 (c) p=0.74

Figure 9: Some examples of remarkably similar-looking images from different parts of the workspace that were correctly
assigned low probability of having come from the same place. The result is possible because most of the probability
mass is captured by locations in the sampling set — effectively the system has learned that images like these are common.
Of course, had these examples been genuine loop closures they might also have received low probability. We would
argue that this is correct behaviour, modulo the fact that the probabilities in (a) and (b) are too low. The very low
probabilities in (a) and (b) are due to the fact that good matches for the query images are found in the sampling set,
capturing almost all the probability mass. This is less likely in the case of a true but ambiguous loop closure. Words
common to both images are shown in green, others in red. (Common words are shown in blue in (b) for better contrast).
The probability that the two images come from the same place is indicated between the pairs.
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Samples from Results: different scenes, same location

(a) p=0.999997

Figure 10: Some examples of images that were assigned high probability of having come from the same place, despite
scene change. Words common to both images are shown in green, others in red. The probability that the two images
come from the same place is indicated between the pairs.
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Comparison of Different Approximations

Algorithm Recall - New College | Recall - City Centre Run Time
Mean Field, Naive Bayes 34% 16% 0.6ms/place
Mean Field, Chow Liu 35% 31% I.1ms/place
Monte Carlo, Naive Bayes 0% 31% 0.6ms/place + 1.71 secs sampling
Monte Carlo, Chow Liu 18% 37% 1.1ms/place + 3.15 secs sampling

Table 1: Comparison of the four different approximations. The recall rates quoted are at 100% precision. The time to
process a new observation is given as a function of the number of places already in the map, plus a fixed cost to perform

the sampling. Timing results are for a 3GHZ Pentium IV,

Naive Bayes, Mean Field
Chow Liu, Mean Field
Naive Bayes, Monte Carlo
055 | Chow Liu, Monte Carlo
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Figure 11: Precision-Recall curves for the four variant algorithms on the New College datasets. Notice the scale.

Relative performance on the City Centre dataset is comparable.
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Chow Liu Approximation vs. Naive Bayes

Figure 12: Some examples of situations where the Chow Liu approximation outperforms Naive Bayes. In (a), a change
in lighting means that the feature detector does not fire on the windows of the building. In (b), the people are no longer

present. In (c), the foreground text and the scaffolding in the top right are not present in the second image. In each of
these cases, the missing features are known to be correlated by the Chow Liu approximation, hence the more accurate
probability. Words common to both images are shown in green, others in red. The probability that the two images come

from the same place (according to both the Chow Liu and Naive Bayes models) is indicated between the pairs.
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False Positives Possibility & Discussion

Figure 13: Some images from different locations incorrectly assigned high probability of having come from the same
place. In (a), the training set contains no examples of railings, so the matched features are not known to be correlated
In (b), we encounter the same truck again in a different part of the workspace. Errors of this type are particularly
challenging. Notice that while both images are assigned high probability of a match, a typical true loop closure is
assigned much higher probability. Neither of these image pairs met our p = 0.99 data association threshold.
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