Visual-Inertial Navigation Systems: An Introduction

Patrick Geneva University of Delaware May 31, 2021

Outline

- Introduction
- Visual-Inertial Estimators
- Essential Building Blocks
- Open Sourced Systems, Datasets, and Evaluation
- Discussion of Future Directions
- Conclusion

Motivation

- Robotics present challenging environments for realizing estimation, perception, and SLAM!
- Visual-inertial navigation systems (VINS) are crucial and well suited for many applications

Micro Aerial Vehicles

Human Pose Tracking

Extraterrestrial Robots

Autonomous Driving

Wearables and Health Tracking

AR / VR Experiences

Warehouse Robotics

Nano Aerial Vehicles

Significance of VINS

- Improving the *computational efficiency, robustness,* and *accuracy* are challenging open research problems
- Improvements directly impact all applications which leverage VINS
- Directly allow for:
 - 1. Low-cost: sensors, compute platforms, and robots
 - 2. Reduced computational energy (longer missions)
 - 3. Better robustness and accuracy opens gateway for more demanding scenarios

Outline - Estimation Methodology

- Multi-State Constraint Kalman Filter (MSCKF)
- Batch Least Squares (BLS) with Pre-integration
- Incremental Optimization (square-root information form)

- <u>Given:</u> Bearings $z_{k-4:k}$ and inertial readings $u_{k-4:k}$
- <u>Goal</u>: Estimate inertial states and features $\mathbf{x}_k = \begin{bmatrix} \mathbf{x}_I^\top & \mathbf{x}_C^\top & \mathbf{x}_f^\top \end{bmatrix}^\top$

$$\mathbf{x}_{I} = \begin{bmatrix} I_{k} \bar{q}^{\top} & {}^{G} \mathbf{p}_{I_{k}}^{\top} & {}^{G} \mathbf{v}_{I_{k}}^{\top} & \mathbf{b}_{\omega_{k}}^{\top} & \mathbf{b}_{a_{k}}^{\top} \end{bmatrix}^{\top}$$
$$\mathbf{x}_{C} = \begin{bmatrix} I_{k-1} \bar{q}^{\top} & {}^{G} \mathbf{p}_{I_{k-1}}^{\top} & \cdots & {}^{I_{k-4}} \bar{q}^{\top} & {}^{G} \mathbf{p}_{I_{k-4}}^{\top} \end{bmatrix}^{\top}$$
$$\mathbf{x}_{f} = \begin{bmatrix} {}^{G} \mathbf{p}_{f}^{\top} \end{bmatrix}^{\top}$$

Models: Inertial Kinematics

IMU Measurement Model: • Gyroscope: $\omega_m = \omega + \mathbf{b}_{\omega} + \mathbf{n}_{\omega}$ • Accelerometer: $\mathbf{a}_m = \mathbf{a} + {}^I_G \mathbf{R}^G \mathbf{g} + \mathbf{b}_a + \mathbf{n}_a$ $\{G\}$

 \bar{q} : quaternion \mathbf{R} : rotation matrix \mathbf{p} : position \mathbf{v} : velocity $\boldsymbol{\omega}$: angular velocity \mathbf{a} : linear acceleration $\mathbf{b}_{\boldsymbol{\omega}}$: gyro. bias \mathbf{b}_{a} : accel. bias \mathbf{g} : global gravity $\mathbf{n}_{\boldsymbol{\omega}}$: gyro white noise $\mathbf{n}_{w\omega}$: gyro random walk \mathbf{n}_{a} : accel white noise \mathbf{n}_{wa} : accel random walk

Models: Inertial Kinematics

Models: Inertial Kinematics

• Distort to "raw" uv from the "ideal" image plane uv

 $\mathbf{z}_m = \mathbf{h}_d(\mathbf{z}_n, \; oldsymbol{\zeta}) + \mathbf{n}_{pix}$

distort \mathbf{z}_n to \mathbf{z} in the raw image

- Distort to "raw" uv from the "ideal" image plane uv $\mathbf{z}_m = \mathbf{h}_d(\mathbf{z}_n, \boldsymbol{\zeta}) + \mathbf{n}_{pix}$
- Project onto the "ideal" image plane

$$\mathbf{z}_n = \mathbf{h}_p({}^C \mathbf{p}_f) = \begin{bmatrix} {}^C x_f / {}^C z_f \\ {}^C y_f / {}^C z_f \end{bmatrix}$$

distort \mathbf{z}_n to \mathbf{z} in the raw image

- Distort to "raw" uv from the "ideal" image plane uv $\mathbf{z}_m = \mathbf{h}_d(\mathbf{z}_n, \boldsymbol{\zeta}) + \mathbf{n}_{pix}$
- Project onto the "ideal" image plane

$$\mathbf{z}_n = \mathbf{h}_p({}^C \mathbf{p}_f) = \begin{bmatrix} {}^C x_f / {}^C z_f \\ {}^C y_f / {}^C z_f \end{bmatrix}$$

• From global ${}^{G}\mathbf{p}_{f}$ to camera frame ${}^{C}\mathbf{p}_{f}$

$${}^{C}\mathbf{p}_{f} = \mathbf{h}_{t}({}^{G}\mathbf{p}_{f}, {}^{I}_{G}\mathbf{R}, {}^{G}\mathbf{p}_{I}, {}^{C}_{I}\mathbf{R}, {}^{C}\mathbf{p}_{I})$$
$$= {}^{C}_{I}\mathbf{R}_{G}^{I}\mathbf{R}({}^{G}\mathbf{p}_{f} - {}^{G}\mathbf{p}_{I}) + {}^{C}\mathbf{p}_{I}$$
$$\overset{\frown}{\mathbf{G}} \text{ to I transformation}$$

- Distort to "raw" uv from the "ideal" image plane uv $\mathbf{z}_m = \mathbf{h}_d(\mathbf{z}_n, \boldsymbol{\zeta}) + \mathbf{n}_{pix}$
- Project onto the "ideal" image plane

$$\mathbf{z}_n = \mathbf{h}_p({}^C \mathbf{p}_f) = \begin{bmatrix} {}^C x_f / {}^C z_f \\ {}^C y_f / {}^C z_f \end{bmatrix}$$

• From global ${}^{G}\mathbf{p}_{f}$ to camera frame ${}^{C}\mathbf{p}_{f}$

$${}^{C}\mathbf{p}_{f} = \mathbf{h}_{t}({}^{G}\mathbf{p}_{f}, {}^{I}_{G}\mathbf{R}, {}^{G}\mathbf{p}_{I}, {}^{C}_{I}\mathbf{R}, {}^{C}\mathbf{p}_{I})$$
$$= {}^{C}_{I}\mathbf{R}_{G}^{I}\mathbf{R}({}^{G}\mathbf{p}_{f} - {}^{G}\mathbf{p}_{I}) + {}^{C}\mathbf{p}_{I}$$
$$\overset{\smile}{\smile}$$
G to I transformation

Propagation

Linearization:

$$egin{aligned} \mathbf{z}_m &= \mathbf{h}(\hat{\mathbf{x}}_k^\ominus) + \mathbf{H}_k ilde{\mathbf{x}} + \mathbf{n} \ \mathbf{r}_k &= \mathbf{H}_k ilde{\mathbf{x}} + \mathbf{n} \ \mathbf{n} &\sim \mathcal{N}(\mathbf{0}, \mathbf{R}_k) \end{aligned}$$

Multi-State Constraint Kalman Filter (MSCKF)

- The MSCKF allows for updating features without inserting their estimates into the state vector $\mathbf{x}_k = \begin{bmatrix} \mathbf{x}_I^\top & \mathbf{x}_C^\top \end{bmatrix}^\top$
- Reduced complexity increases computational efficiency

Multi-State Constraint Kalman Filter (MSCKF)

- The MSCKF allows for updating features without inserting their estimates into the state vector $\mathbf{x}_k = \begin{bmatrix} \mathbf{x}_I^\top & \mathbf{x}_C^\top \end{bmatrix}^\top$
- Reduced complexity increases computational efficiency

• Measurement equations

$$\mathbf{z}_1 = \mathbf{h}(\mathbf{x}_k, {}^G \mathbf{p}_{f1}) + \mathbf{n}_{pix}$$
$$\mathbf{z}_2 = \mathbf{h}(\mathbf{x}_k, {}^G \mathbf{p}_{f1}) + \mathbf{n}_{pix}$$

- Measurement equations
 - $\mathbf{z}_1 = \mathbf{h}(\mathbf{x}_k, {}^G \mathbf{p}_{f1}) + \mathbf{n}_{pix}$ $\mathbf{z}_2 = \mathbf{h}(\mathbf{x}_k, {}^G \mathbf{p}_{f1}) + \mathbf{n}_{pix}$
- Linearized measurement equation

- Measurement equations
 - $\mathbf{z}_1 = \mathbf{h}(\mathbf{x}_k, {}^G \mathbf{p}_{f1}) + \mathbf{n}_{pix}$ $\mathbf{z}_2 = \mathbf{h}(\mathbf{x}_k, {}^G \mathbf{p}_{f1}) + \mathbf{n}_{pix}$
- Linearized measurement equation

- Project onto \mathbf{H}_f left nullspace \mathbf{Q}_n
 - Equivalent to marginalization

$$\mathbf{Q_n}^{\top} \tilde{\mathbf{z}}_{1:2} = \mathbf{Q_n}^{\top} \mathbf{H}_x \tilde{\mathbf{x}}_k + \mathbf{Q_n}^{\top} \mathbf{H}_f{}^G \tilde{\mathbf{p}}_{f_1} + \mathbf{Q_n}^{\top} \mathbf{n}_{pix}$$
$$\mathbf{Q_n}^{\top} \tilde{\mathbf{z}}_{1:2} = \mathbf{Q_n}^{\top} \mathbf{H}_x \tilde{\mathbf{x}}_k + \mathbf{Q_n}^{\top} \mathbf{n}_{pix}$$

- Measurement equations
 - $\begin{aligned} \mathbf{z}_1 &= \mathbf{h}(\mathbf{x}_k, {}^{G}\mathbf{p}_{f1}) + \mathbf{n}_{pix} \\ \mathbf{z}_2 &= \mathbf{h}(\mathbf{x}_k, {}^{G}\mathbf{p}_{f1}) + \mathbf{n}_{pix} \end{aligned}$
- Linearized measurement equation

- Project onto \mathbf{H}_f left nullspace \mathbf{Q}_n
 - Equivalent to marginalization

- Measurement equations
 - $\mathbf{z}_1 = \mathbf{h}(\mathbf{x}_k, {}^G \mathbf{p}_{f1}) + \mathbf{n}_{pix}$ $\mathbf{z}_2 = \mathbf{h}(\mathbf{x}_k, {}^G \mathbf{p}_{f1}) + \mathbf{n}_{pix}$
- Linearized measurement equation

- Project onto \mathbf{H}_f left nullspace \mathbf{Q}_n
 - Equivalent to marginalization

- Nullspace projection causes derivative in respect to the feature to go to zero!
- Perform standard EKF update!

MSCKF – Estimation Flowchart: Recap

- MSCKF is an efficient method for light-weight sensor fusion
- Two step process: Inertial propagation and measurement update

MSCKF – Estimation Flowchart: Recap

 $\{I_k\}$

 $\{I_{k-1}\}$

- MSCKF is an efficient method for light-weight sensor fusion
- Two step process: Inertial propagation and measurement update

 $\{I_{k-2}\}$

 $\{I_{k-3}\}$

Can also continuously estimate "SLAM" features kept in state

Problem: Factor Graph Perspective

• Robotic Trajectory:

Problem: Factor Graph Perspective

• Robotic Trajectory:

Batch Least Squares (BLS) Estimation

Batch Least Squares (BLS) Estimation

Optimization Formulation:

[1] Grisetti, Giorgio, et al. "g2o: A general framework for (hyper) graph optimization." Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. 2011.
 [2] Dellaert, Frank. Factor graphs and GTSAM: A hands-on introduction. Georgia Institute of Technology, 2012.

BLS – Efficient Estimators

Challenge:

- Standard BLS is cubic in terms of the state size O(n³)
- Application to *real-time* robotic systems requires modifications

Solutions:

- Sliding window optimization (fixed-lag smoothers)
- BLS with graph reduction (sparsification)
- Incremental optimization

BLS – Marginalization

- Many different practical methods to enable efficient BLS
- Key Considerations:
 - What states to marginalize?
 - When to marginalize?
- Examples:
 - Keyframing of poses
 - Dropping of features
 - Duplication of measurements
 - Non-linear factor recovery
 - Fully dense marginal factor

BLS – Inertial Pre-integration

- Naive use of inertial measurement model requires re-integration of C_{imu}
- Decouple integration and state variables (through approximations) to remove need to re-integrate when states re-linearize during optimization

[1] Forster, Christian, et al. "On-manifold preintegration theory for fast and accurate visual-inertial navigation." IEEE Transactions on Robotics (2015): 1-18.
 [2] Eckenhoff, Kevin, Patrick Geneva, and Guoquan Huang. "Closed-form preintegration methods for graph-based visual-inertial navigation." The International Journal of Robotics Research 38.5 (2019): 563-586.

BLS – Estimation Flowchart: Recap

- Factor graphs can provide a unified design language for sensor fusion algorithms
- Allows for higher level abstraction away from linear algebra representation

Incremental Optimization using Sqrt-Info

- Key ideas:
 - Use Cholesky factorization of Hessian (information)
 - Can formulate equivalent optimization problem using square-root matrix
- Advantages of square-root form:
 - Better system numerical properties (smaller condition number) can enable use of single-precision arithmetic
 - Optimal state ordering can allow for efficient Givens QR (e.g. iSAM)

Standard BLS solutionSquare-root information
through QR decompositionReformulate original BLS in square-
root form (equivalent)
$$\mathbf{argmin} ||\mathbf{H}(\mathbf{x} - \hat{\mathbf{x}}) - \mathbf{r}||^2$$
(1) $\mathbf{H} = \mathbf{Q}\mathbf{U}$ $\mathbf{H} = \mathbf{Q}\mathbf{U}$ \mathbf{x} $\mathbf{U}^{\top}\mathbf{U}\Delta\mathbf{x} = \mathbf{U}^{\top}\mathbf{Q}^{\top}\mathbf{r}$ \mathbf{M} $\mathbf{H} = \mathbf{Q}\mathbf{U}$ $\mathbf{U}^{\top}\mathbf{U}\Delta\mathbf{x} = \mathbf{U}^{\top}\mathbf{Q}^{\top}\mathbf{r}$ $\mathbf{U}^{\top}\mathbf{U}\Delta\mathbf{x} = \mathbf{U}^{\top}\mathbf{Q}^{\top}\mathbf{r}$ \mathbf{M} $\mathbf{U}^{\top}\mathbf{U}\Delta\mathbf{x} = \mathbf{U}^{\top}\mathbf{Q}^{\top}\mathbf{r}$ \mathbf{M} $\mathbf{U}^{\top}\mathbf{U}\Delta\mathbf{x} = \mathbf{U}^{\top}\mathbf{Q}^{\top}\mathbf{r}$ $\mathbf{U}\Delta\mathbf{x} = \mathbf{Q}^{\top}\mathbf{r}$ $\mathbf{U}^{\top}\mathbf{U}\Delta\mathbf{x} = \mathbf{Q}^{\top}\mathbf{r}$ \mathbf{U}

[1] Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via square root information smoothing." The International Journal of Robotics Research 25.12 (2006): 1181-1203.

[2] Maybeck, Peter S. Stochastic models, estimation, and control, vol 1. Academic press, 1982.

[3] Kaess, Michael, Ananth Ranganathan, and Frank Dellaert. "iSAM: Incremental smoothing and mapping." IEEE Transactions on Robotics 24.6 (2008): 1365-1378.

[4] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.

Incremental Optimization – An Example

TJ

Prior Cost $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{n} \quad \longrightarrow \quad \mathcal{C}_{prior} = ||\mathbf{U}(\mathbf{x} - \hat{\mathbf{x}})||^2$

• All information stored in sqrt information form $\mathbf{P}^{-1} = \mathbf{U}^{\top}\mathbf{U}$

[1] Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via square root information smoothing." The International Journal of Robotics Research 25.12 (2006): 1181-1203.
 [2] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.
 [3] Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press, 2013.

Incremental Optimization – An Example

Prior Cost $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{n} \longrightarrow \mathcal{C}_{prior} = ||\mathbf{U}(\mathbf{x} - \hat{\mathbf{x}})||^2$

• All information stored in sqrt information form $\mathbf{P}^{-1} = \mathbf{U}^{\top}\mathbf{U}$

Inertial & Feature Cost

New Factors:

- Will ruin upper triangle structure
- Re-triangulate using QR
- Appends new information to sqrt matrix!
- State re-ordering allows for efficient QR

[1] Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via square root information smoothing." The International Journal of Robotics Research 25.12 (2006): 1181-1203.
 [2] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.
 [3] Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press, 2013.

Incremental Optimization – An Example

Prior Cost $\mathbf{x} = \hat{\mathbf{x}} + \mathbf{n} \quad \Longrightarrow \quad \mathcal{C}_{prior} = ||\mathbf{U}(\mathbf{x} - \hat{\mathbf{x}})||^2$

• All information stored in sqrt information form $\mathbf{P}^{-1} = \mathbf{U}^{\top}\mathbf{U}$

Inertial & Feature Cost

New Factors:

- Will ruin upper triangle structure
- Re-triangulate using QR
- Appends new information to sqrt matrix!
- State re-ordering allows for efficient QR

Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via square root information smoothing." The International Journal of Robotics Research 25.12 (2006): 1181-1203.
 Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.
 Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press, 2013.

Estimation Methodology Equivalences

EKF ⇔ MAP Optimization w/ one Gauss-Newton Iteration EKF ⇔ Extended Inverse (Information) Filter (EIF) EKF ⇔ Square-Root EKF (SW-EKF) MSCKF (nullspace) ⇔ BLS with Feature Marginalization (schur)

<u>Takeaway:</u> Equivalent up to linearization errors in theory. Choice is based on end application use (e.g., computational efficiency and accuracy levels required).

[1] Bell, Bradley M., and Frederick W. Cathey. "The iterated Kalman filter update as a Gauss-Newton method." IEEE Transactions on Automatic Control 38.2 (1993): 294-297.

[2] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.

[3] Yang, Yulin, James Maley, and Guoquan Huang. "Null-space-based marginalization: Analysis and algorithm." 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017.

Outline – Essential Building Blocks

- Feature Tracking and Matching
- Observability
- Filter Consistency
- Degenerate Motion
- Initialization
- Calibration
- Robustness
- Long-Term Navigation

Feature Tracking and Matching

- Indirect methods
 - Geometric points or lines
 - Track temporally using KLT or descriptors
 - RANSAC for outlier rejection
- Direct methods
 - Intensity based cost function
 - Still rely on gradient information, but more robust in low-texture environments
 - How to project features into future frames?

[2] Rublee, Ethan, et al. "ORB: An efficient alternative to SIFT or SURF." 2011 International conference on computer vision. leee, 2011.

[3] Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press, 2013.

[4] Bloesch, Michael, et al. "Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback." The International Journal of Robotics Research 36.10 (2017): 1053-1072.

Observability

 Determine if we are able to fully recover the state given sensor measurements

$$\mathbf{M} = \begin{bmatrix} \mathbf{M}_1 \\ \mathbf{M}_2 \\ \vdots \\ \mathbf{M}_k \end{bmatrix} = \begin{bmatrix} \mathbf{H}_1 \\ \mathbf{H}_2 \boldsymbol{\Phi}_{(2,1)} \\ \vdots \\ \mathbf{H}_k \boldsymbol{\Phi}_{(k,1)} \end{bmatrix}$$

- Compute by stacking all Jacobians and state transitions
- If nullspace exists then it is the unobs. direction MN [?] = 0

- Why we care about observability:
 - Determines minimal information to recover states
 - Enables design of consistent estimators (e.g., FEJ, OC-EKF, etc.)
 - Identify degenerate motions

Conical 4 unobs. directions for VINS: Yaw (left), Translation (right)

Estimator Consistency

- Estimation error should be zero mean and estimate covariance should be larger than or equal to the true covariance
- Preventing information gain in unobservable directions is key to improving consistency
- Existing Algorithms:
 - Robot-centric
 - First-Estimate Jacobians
 - OC-EKF
 - Invariant filters

All preserve original VINS unobs. dir.

 $e_{nees} = (\mathbf{x} - \hat{\mathbf{x}})^{\top} \mathbf{P}^{-1} (\mathbf{x} - \hat{\mathbf{x}})$

we minimize inconsistencies!

[1] Castellanos, José A., José Neira, and Juan D. Tardós. "Limits to the consistency of EKF-based SLAM." IFAC Proceedings Volumes 37.8 (2004): 716-721.

[2] Huang, Guoquan P., Anastasios I. Mourikis, and Stergios I. Roumeliotis. "Observability-based rules for designing consistent EKF SLAM estimators." The International Journal of Robotics Research 29.5 (2010): 502-528.

[3] Wu, Kanzhi, et al. "An invariant-EKF VINS algorithm for improving consistency." 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017.

[4] Bar-Shalom, Yaakov, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons, 2004.

[photo] Hesch, Joel A., et al. "Camera-IMU-based localization: Observability analysis and consistency improvement." The International Journal of Robotics Research 33.1 (2014): 182-201.

Degeneracy

- Situations which cause additional unobservable directions in VINS (4DoF canonical)
- Identify degeneracies through inspection of observability matrix
 - System Likely to cause VINS to fail
 - Calibration Can possibly degrade performance
- Degeneracies weaken system robustness
- Degeneracies can test estimator consistency since there should be no information gained

System Degeneracies

Motion	Sensor	Unobservable
1. Pure translation	General	Orientation ${}^{I}_{G}\mathbf{R}$
2. Constant acceleration	Mono cam	System scale
3. Pure rotation	Mono cam	Feature scale
4. Toward the feature	Mono cam	Feature scale

No information is gained in unobservable directions (constant variance)

[1] Yang, Yulin, et al. "Degenerate motion analysis for aided ins with online spatial and temporal sensor calibration." IEEE Robotics and Automation Letters 4.2 (2019): 2070-2077.

[2] Yang, Yulin, et al. "Online IMU Intrinsic Calibration: Is It Necessary?." Proc. of the Robotics: Science and Systems, Corvallis, Oregon (2020): 716-20.

State Initialization

- Initialization is the task of determining the initial system state
- VINS has 4DoF unobservable, thus need to initialize the other 11DoF
- Initialization Challenges:
 - Want to initialize as fast and robustly as possible
 - Shorter time makes recovering the initial states more difficult or unobs.
 - Longer times introduce error due to time offsets, inertial noise, along with increased computation

$$\mathbf{x}_{I_0} = \begin{bmatrix} I_0 \bar{q}^\top & {}^{G} \mathbf{p}_{I_0}^\top & {}^{G} \mathbf{v}_{I_0}^\top & \mathbf{b}_{\omega_0}^\top & \mathbf{b}_{a_0}^\top \end{bmatrix}^\top$$

Global yaw and position unobservable (thus can be chosen arbitrarily)

[2] Dong-Si, Tue-Cuong, and Anastasios I. Mourikis. "Estimator initialization in vision-aided inertial navigation with unknown camera-IMU calibration." 2012 IROS. IEEE, 2012.

[3] Campos, Carlos, José MM Montiel, and Juan D. Tardós. "Inertial-Only Optimization for Visual-Inertial Initialization." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.

^[1] Martinelli, Agostino. "Closed-form solution of visual-inertial structure from motion." International journal of computer vision 106.2 (2014): 138-152.

Calibration

- Can be performed **offline** prior to estimation, **online** during, or both
- Offline calibration:
 - Highly *accurate*
 - Can control sensor motion
 - Might not always be possible
- Online calibration:
 - Crucial for *practical deployments* handling of poor initial values
 - Handling time-varying calibration parameters
 - Improves estimation robustness

Robustness and Resiliency

- Challenges:
 - 1. Hard failures no measurement information (sensor drop)
 - 2. Soft failures data becomes **corrupt** (invalidated measurement model)
- Examples:
 - Unmeasurable external forces (e.g., moving platform)
 - Dynamic environments
 - Sensor variations (e.g., exposure, temperature)
- Can address through leveraging multisensor fusion

- 3 Stereo Rolling-Shutter Cameras (only left of each used) - 640x480 ELP-960P2CAM-V90-VC
 - 30 Hz sensing rate
- 2 Inertial Measurement Units
 - XSENS MT-100 400 Hz
 - Microstrain 3DM-GX-25 500 Hz

Long-Term Navigation

- Can incorporate loop-closure directly or split the problem into two parts:
 - Frontend (Localization): Fast, drifts with time, short-term accuracy matters
 - Backend (Mapping): Slow, loop-closure, global consistency matters
- Challenges:
 - Incremental vs full batch pose graph
 - Optimal selection problem to reduce complexity and memory usage
 - Robust loop-closure detection and constraints

Addition of loop-closures can limit odometry drift **1**

Outline - Available Open Sourced Systems

- Open Source Estimators
- Dataset Benchmarks
- Metrics and Evaluation

Visual-Inertial Research: Embracing Open Source

System	Mono?	Stereo?	EKF?	Indirect?	Calib. Spatial?	Calib. Intrinsics?	Calib. Time?
OpenVINS	 Image: A set of the set of the	 Image: A set of the set of the	✓	 Image: A set of the set of the	✓	✓	✓
S-MSCKF	-	1	✓	 Image: A second s	✓	-	-
R-VIO	✓	-	✓	✓	-	-	-
Rovioli	✓	-	✓	-	✓	-	-
XIVO	✓	-	✓	✓	✓	✓	1
VINS-Fusion	✓	1	-	✓	✓	-	1
OKVIS	✓	1	-	✓	✓	-	-
Basalt	-	1	-	✓	-	-	-
ICE-BA	-	1	-	1	-	-	-
Kimera-VIO	✓	1	-	✓	-	-	-
ORB-SLAM3	✓	✓	-	 Image: A second s	-	-	-

- Wide range of systems available for visual-inertial research
- <u>Our group's</u>: OpenVINS which is a *feature complete filter system* for use on resource constrained platforms and as an odometry frontend

OpenVINS

- An open platform for VINS research (OpenVINS) which achieves state-ofthe-art performance
- On manifold sliding window Kalman filter with modular *type system* for state management (gtsam inspired)
- Detailed documentation and derivations to support researchers using the codebase: https://docs.openvins.com/

📮 rpng / open_vins							
<> Code (!) Issues	1 🕅 Pull requests 0 💿 Actions 🕕 Security						
An open source platfo	orm for visual-inertial navigation research. http						
visual-inertial-odometry	slam msckf sensor-calibration ekf-localization						
- o- 225 commits	3 branches 🗇 0 packages 🛇 2 releases						
Branch: master 🗸 Nev	Branch: master - New pull request						
👼 goldbattle fixed - ros	svisualizer not being included in shared library on build						
docs	updated readme and links to scripts in docs						
ov_core	updated documentation						
ov_data	updated uzh-fpv groundtruths with the new time a						
ov_eval	updated documentation						
ov_msckf	fixed - rosvisualizer not being included in shared li						
.gitignore	Added - Continuous preintegration classes with all						
CMakeLists.txt	more descriptive namespace documentation						
Doxyfile	fixed small bug where if mono single depth didn't						
Doxyfile-mcss	Breaking - Moved types to new namespace, added						
	added gplv3 license file						
ReadMe.md	updated readme and links to scripts in docs						

https://github.com/rpng/open_vins

- Sliding window visual-inertial MSCKF
- Modular covariance type system
- Comprehensive documentation and derivations
- Extendable visual-inertial simulator
 - On manifold SE(3) b-spline
 - Arbitrary number of cameras
 - Arbitrary sensor rate
 - Automatic feature generation
- Five different feature representations
- Environmental SLAM feature
 - OpenCV ARUCO tag SLAM features
 - Sparse feature SLAM features
- Calibration of sensor intrinsics and extrinsics
 - Camera to IMU transform
 - Camera to IMU time offset
 - Camera intrinsics
- Visual tracking support
 - Monocular / Stereo / Binocular cameras
 - KLT or descriptor based

- First-Estimate Jacobians for consistent estimation
- Static IMU initialization
- Zero velocity detection and updates
- Out of the box dataset evaluation on:
 - EurocMav
 - TUM-VI
 - UZH-FPV Drone Racing
 - KAIST Urban Driving
- Extensive evaluation suite:
 - ATE, RPE, NEES, RMSE
 - Timing evaluation and plotting
- Codebase extensions:
 - ov_secondary Secondary pose graph with loop-closure
 - ov_maplab Multi-session mapping and offline optimization
 - vicon2gt Groundtruth gen. for VIO dataset evaluation

- Sliding window visual-inertial MSCKF
- Modular covariance type system
- Comprehensive documentation and derivations
- Extendable visual-inertial simulator
 - On manifold SE(3) b-spline
 - Arbitrary number of cameras
 - Arbitrary sensor rate
 - Automatic feature generation
- Five different feature representations
- Environmental SLAM feature
 - OpenCV ARUCO tag SLAM features
 - Sparse feature SLAM features
- Calibration of sensor intrinsics and extrinsics
 - Camera to IMU transform
 - Camera to IMU time offset
 - Camera intrinsics
- Visual tracking support
 - Monocular / Stereo / Binocular cameras
 - KLT or descriptor based

- First-Estimate Jacobians for consistent estimation
- Static IMU initialization
- Zero velocity detection and updates
- Out of the box dataset evaluation on:
 - EurocMav
 - TUM-VI
 - UZH-FPV Drone Racing
 - KAIST Urban Driving
- Extensive evaluation suite:
 - ATE, RPE, NEES, RMSE
 - Timing evaluation and plotting
- Codebase extensions:
 - ov_secondary Secondary pose graph with loop-closure
 - ov_maplab Multi-session mapping and offline optimization
 - vicon2gt Groundtruth gen. for VIO dataset evaluation

- Sliding window visual-inertial MSCKF
- Modular covariance type system
- Comprehensive documentation and derivations
- Extendable visual-inertial simulator
 - On manifold SE(3) b-spline
 - Arbitrary number of cameras
 - Arbitrary sensor rate
 - Automatic feature generation
- Five different feature representations
- Environmental SLAM feature
 - OpenCV ARUCO tag SLAM features
 - Sparse feature SLAM features
- Calibration of sensor intrinsics and extrinsics
 - Camera to IMU transform
 - Camera to IMU time offset
 - Camera intrinsics
- Visual tracking support
 - Monocular / Stereo / Binocular cameras
 - KLT or descriptor based

- First-Estimate Jacobians for consistent estimation
- Static IMU initialization
- Zero velocity detection and updates
- Out of the box dataset evaluation on:
 - EurocMav
 - TUM-VI
 - UZH-FPV Drone Racing
 - KAIST Urban Driving
- Extensive evaluation suite:
 - ATE, RPE, NEES, RMSE
 - Timing evaluation and plotting
- Codebase extensions:
 - ov_secondary Secondary pose graph with loop-closure
 - ov_maplab Multi-session mapping and offline optimization
 - vicon2gt Groundtruth gen. for VIO dataset evaluation

- Sliding window visual-inertial MSCKF
- Modular covariance type system
- Comprehensive documentation and derivations
- Extendable visual-inertial simulator
 - On manifold SE(3) b-spline
 - Arbitrary number of cameras
 - Arbitrary sensor rate
 - Automatic feature generation
- Five different feature representations
- Environmental SLAM feature
 - OpenCV ARUCO tag SLAM features
 - Sparse feature SLAM features
- Calibration of sensor intrinsics and extrinsics
 - Camera to IMU transform
 - Camera to IMU time offset
 - Camera intrinsics
- Visual tracking support
 - Monocular / Stereo / Binocular cameras
 - KLT or descriptor based

- First-Estimate Jacobians for consistent estimation
- Static IMU initialization
- Zero velocity detection and updates Out of the box dataset evaluation on: **EurocMav** TUM-VI **UZH-FPV** Drone Racing **KAIST Urban Driving Extensive evaluation suite:** ATE, RPE, NEES, RMSE Timing evaluation and plotting **Codebase extensions:** ov_secondary – Secondary pose graph with loop-closure ov maplab – Multi-session mapping and offline optimization vicon2gt – Groundtruth gen. for VIO dataset evaluation Lots of great features directly "out-of-the-box" to enable research and practical deployment!

Wide Range of VINS Datasets

Dataset	Year	Enviroment	${f Groundtruth}$	Sync?	Other Sensors	Platform
EuRoC MAV	2016	Indoor Structured	6D Vicon 3D Laser Tracker	Yes	-	UAV
NCLT	2016	Large-scale Outdoor Structured	RTK+SLAM	No	LiDAR Ladybug Wheel Encoders	Rover
TUM VI	2018	Indoor / Outdoor Structured	Partial 6D Vicon	Yes	-	Handheld
TUM VI RS	2019	Indoor Structured	6D Vicon	Yes	Rolling and Global Shutter	Handheld
UZH-FPV Drone	2019	Indoor / Outdoor	3D Laser Tracker	No	Event Camera	UAV
KAIST Urban	2019	Large-scale Outdoor Structured	RTK+SLAM	Yes	LiDAR Wheel Encoders FOG	Car
Blackbird	2020	Simulated Indoor Structured	6D Vicon	Yes	Motor Tachometers Depth Segmentation	UAV
Newer College Datset	2020	Outdoor Structured	ICP to Prior Map	No	${f LiDAR}\ {f Depth}$	Handheld
MADMAX	2021	Outdoor Mars Enviroment	5D RTK	Yes	${f LiDAR}\ {f Depth}$	Rover
NTU VIRAL	2021	Outdoor Structured	3D Laser Tracker	No	${ m LiDAR}\ { m UWB}$	UAV

Wide Range of VINS Datasets

Dataset	Year	Enviroment	${f Groundtruth}$	Sync?	Other Sensors	Platform
EuRoC MAV	2016	Indoor Structured	6D Vicon 3D Laser Tracker	Yes	-	UAV
NCLT	2016	Large-scale Outdoor Structured	RTK+SLAM	No	LiDAR Ladybug Wheel Encoders	Rover
TUM VI	2018	Indoor / Outdoor Structured	Partial 6D Vicon	Yes	-	Handheld
TUM VI RS	2019	Indoor Structured	6D Vicon	Yes	Rolling and Global Shutter	Handheld
UZH-FPV Drone	2019	Indoor / Outdoor	3D Laser Tracker	No	Event Camera	UAV
KAIST Urban	2019	Large-scale Outdoor Structured	RTK+SLAM	Yes	LiDAR Wheel Encoders FOG	Car
Blackbird	2020	Simulated Indoor Structured	6D Vicon	Yes	Motor Tachometers Depth Segmentation	UAV
Newer College Datset	2020	Outdoor Structured	ICP to Prior Map	No	${f LiDAR}\ {f Depth}$	Handheld
MADMAX	2021	Outdoor Mars Enviroment	5D RTK	Yes	${f LiDAR}\ {f Depth}$	Rover
NTU VIRAL	2021	Outdoor Structured	3D Laser Tracker	No	$\begin{array}{c} \text{LiDAR} \\ \text{UWB} \end{array}$	UAV

Metrics for Evaluation

- Quality of groundtruth remains challenging in realworld datasets
- High quality metrics allow for **fair comparison** of different algorithms
- Open Source Toolboxes:
 - evo https://github.com/MichaelGrupp/evo
 - rpg_trajectory_evaluation https://github.com/uzh-rpg/rpg_trajectory_evaluation
 - **OV_EVAl** https://github.com/rpng/open_vins

Absolute Trajectory Error (ATE)

$$e_{ATE} = \frac{1}{N} \sum_{i=1}^{N} \sqrt{\frac{1}{K} \sum_{k=1}^{K} ||\mathbf{x}_{k,i} - \hat{\mathbf{x}}_{k,i}^{+}||_{2}^{2}}$$

Relative Pose Error (RPE) [recommended]

• Normalized Estimation Error Squared (NEES)

$$e_{nees,k} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{k,i} - \hat{\mathbf{x}}_{k,i})^{\top} \mathbf{P}_{k,i}^{-1} (\mathbf{x}_{k,i} - \hat{\mathbf{x}}_{k,i})$$

Metrics for Evaluation

- Quality of groundtruth remains challenging in realworld datasets
- High quality metrics allow for **fair comparison** of different algorithms
- Open Source Toolboxes:
 - evo https://github.com/MichaelGrupp/evo
 - rpg_trajectory_evaluation https://github.com/uzh-rpg/rpg_trajectory_evaluation
 OV_eval - https://github.com/rpng/open_vins
 Fast evaluation tool with additional recording and timing utilities!

Absolute Trajectory Error (ATE)

$$e_{ATE} = \frac{1}{N} \sum_{i=1}^{N} \sqrt{\frac{1}{K} \sum_{k=1}^{K} ||\mathbf{x}_{k,i} - \hat{\mathbf{x}}_{k,i}^{+}||_{2}^{2}}$$

Relative Pose Error (RPE) [recommended]

• Normalized Estimation Error Squared (NEES)

$$e_{nees,k} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_{k,i} - \hat{\mathbf{x}}_{k,i})^{\top} \mathbf{P}_{k,i}^{-1} (\mathbf{x}_{k,i} - \hat{\mathbf{x}}_{k,i})$$

Outline – Conclusion

- Future Directions
- Conclusion

Where Next?

- <u>Practicality:</u> Many challenges to widely deploying VINS (e.g. known calib etc.)
- **<u>Robustness</u>**: Moving environment, long-term seasons, sensor variances
- <u>Semantic Understanding</u>: Object-wise and uncertain network classifications
- <u>Computational</u>: Real-time robotic systems (low-cost IoT devices, latency, etc.)
- <u>Aided-INS</u>: Incorporating additional sensors (e.g. event, thermal, etc.)
- **<u>Cooperative</u>**: Multi-robot systems (measurement selection, distributed, scalability, etc.)
- **Dynamics:** Integrate robot dynamics

Summary & Thanks!

- This presentation:
 - Introduced background on traditional VINS estimators
 - Discussed challenges in designing VINS algorithms
 - Presented summary of current open-sourced codebases, datasets, and evaluation tools
- Contact information:
 - Patrick Geneva (@goldbattle github)
 - pgeneva@udel.edu
 - https://pgeneva.com/

Please checkout OpenVINS! https://github.com/rpng/open_vins https://docs.openvins.com/

