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Motivation

• Robotics present challenging 
environments for realizing
estimation, perception, and 
SLAM!

• Visual-inertial navigation systems 
(VINS) are crucial and well suited
for many applications
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Wearables and Health Tracking

Nano Aerial Vehicles

Autonomous DrivingExtraterrestrial Robots 

Warehouse RoboticsMicro Aerial Vehicles

AR / VR Experiences

Human Pose Tracking



Significance of VINS

• Improving the computational efficiency, 
robustness, and accuracy are 
challenging open research problems

• Improvements directly impact all 
applications which leverage VINS

• Directly allow for:

1. Low-cost: sensors, compute platforms, 
and robots

2. Reduced computational energy (longer 
missions)

3. Better robustness and accuracy opens 
gateway for more demanding scenarios
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Outline - Estimation Methodology

• Multi-State Constraint Kalman Filter (MSCKF)

• Batch Least Squares (BLS) with Pre-integration

• Incremental Optimization (square-root information form)
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Problem: Visual-Inertial Estimation
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Problem: Visual-Inertial Estimation

• Given: Bearings             and inertial 
readings 

• Goal: Estimate inertial states and 
features
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IMU Measurement Model:
• Gyroscope:

• Accelerometer:

Models: Inertial Kinematics
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: quaternion 
: rotation matrix
: position
: velocity
: angular velocity
: linear acceleration
: gyro. bias
: accel. bias
: global gravity
: gyro white noise
: gyro random walk
: accel white noise
: accel random walk
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Continuous-Time
State Evolution Model

: quaternion 
: rotation matrix
: position
: velocity
: angular velocity
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: gyro. bias
: accel. bias
: global gravity
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State Evolution Model:

Discrete State 
Evolution Model



Models: Camera Measurements
• Distort to “raw” uv from the 

“ideal” image plane uv

distort      to    in the raw image
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[1] Geneva, Patrick, et al. "OpenVINS: A research platform for visual-inertial estimation." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.



Models: Camera Measurements

• Project onto the “ideal” 
image plane

• Distort to “raw” uv from the 
“ideal” image plane uv

distort      to    in the raw image
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frame 

G to I transformation

• Project onto the “ideal” 
image plane

• Distort to “raw” uv from the 
“ideal” image plane uv

distort      to    in the raw image

8
[1] Geneva, Patrick, et al. "OpenVINS: A research platform for visual-inertial estimation." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.



Models: Camera Measurements

• From global        to camera 
frame 

G to I transformation

• Project onto the “ideal” 
image plane

• Distort to “raw” uv from the 
“ideal” image plane uv

distort      to    in the raw image

8

Fully combined feature measurement function:

[1] Geneva, Patrick, et al. "OpenVINS: A research platform for visual-inertial estimation." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.



Background - Extended Kalman Filter (EKF)
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Background - Extended Kalman Filter (EKF)
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propagation state observation
prior control input / state evolution

Propagation

Standard EKF Update

where:

state:

covariance:

Update

Linearization:



Multi-State Constraint Kalman Filter (MSCKF)

• The MSCKF allows for updating features without inserting their 
estimates into the state vector

• Reduced complexity increases computational efficiency

10

[1] Mourikis, Anastasios I., and Stergios I. Roumeliotis. "A multi-state constraint Kalman filter for vision-aided inertial navigation." Proceedings 2007 IEEE International Conference on Robotics and Automation. IEEE, 2007.
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MSCKF Measurement Update

• Measurement equations
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MSCKF Measurement Update

• Measurement equations

• Linearized measurement equation

• Project onto       left nullspace
 Equivalent to marginalization

• Perform standard EKF update!
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nullspace 
projection

Nullspace projection causes derivative in 
respect to the feature to go to zero! 



MSCKF – Estimation Flowchart: Recap

• MSCKF is an efficient method 
for light-weight sensor fusion

• Two step process: Inertial 
propagation and measurement 
update

12
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MSCKF – Estimation Flowchart: Recap

• MSCKF is an efficient method 
for light-weight sensor fusion

• Two step process: Inertial 
propagation and measurement 
update
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PropagateIMU

Track Sparse 
Features

Nullspace 
Projection

EKF
Update

Camera

Step 1 Step 2

SLAM 
Feats

MSCKF 
Feats

SLAM
Can also continuously estimate 
“SLAM” features kept in state



Problem: Factor Graph Perspective
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• Robotic Trajectory:



Problem: Factor Graph Perspective
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Converted 
to Factor 

Graph• Factor Graph Form:

• Robotic Trajectory:



Batch Least Squares (BLS) Estimation

14

observation

Inertial Cost Feature / Bearing Cost

control input / state evolution

Prior Cost

[1] Grisetti, Giorgio, et al. "g2o: A general framework for (hyper) graph optimization." Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. 2011.
[2] Dellaert, Frank. Factor graphs and GTSAM: A hands-on introduction. Georgia Institute of Technology, 2012.



Batch Least Squares (BLS) Estimation
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observation

Inertial Cost Feature / Bearing Cost

control input / state evolution

Prior Cost

[1] Grisetti, Giorgio, et al. "g2o: A general framework for (hyper) graph optimization." Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China. 2011.
[2] Dellaert, Frank. Factor graphs and GTSAM: A hands-on introduction. Georgia Institute of Technology, 2012.

Optimization Formulation:

Can use Gauss-
Newton algorithm



Solutions:
 Sliding window optimization 

(fixed-lag smoothers)

 BLS with graph reduction 
(sparsification)

 Incremental optimization

BLS – Efficient Estimators

Challenge:
 Standard BLS is cubic in terms of the state size O(n3)

 Application to real-time robotic systems requires modifications
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States we wish to marginalize to 
reduce state size & save compute.

States are now 
related through prior.

[1] Leutenegger, Stefan, et al. "Keyframe-based visual–inertial odometry using nonlinear optimization." The International Journal of Robotics Research 34.3 (2015): 314-334.
[2] Kaess, Michael, et al. "iSAM2: Incremental smoothing and mapping using the Bayes tree." The International Journal of Robotics Research 31.2 (2012): 216-235.
[3] Hsiung, Jerry, et al. "Information sparsification in visual-inertial odometry." 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.



BLS – Marginalization

• Many different practical methods to enable efficient BLS

• Key Considerations:
 What states to marginalize?

 When to marginalize?

• Examples:
 Keyframing of poses

 Dropping of features

 Duplication of measurements

 Non-linear factor recovery

 Fully dense marginal factor

16[photo] Leutenegger, Stefan, et al. "Keyframe-based visual–inertial odometry using nonlinear optimization." The International Journal of Robotics Research 34.3 (2015): 314-334.
[2] Nerurkar, Esha D., Kejian J. Wu, and Stergios I. Roumeliotis. "C-KLAM: Constrained keyframe-based localization and mapping." 2014 IEEE international conference on robotics and automation (ICRA). IEEE, 2014.



BLS – Inertial Pre-integration

• Naive use of inertial measurement model requires re-integration of

• Decouple integration and state variables (through approximations) to 
remove need to re-integrate when states re-linearize during optimization

17[1] Forster, Christian, et al. "On-manifold preintegration theory for fast and accurate visual-inertial navigation." IEEE Transactions on Robotics (2015): 1-18.
[2] Eckenhoff, Kevin, Patrick Geneva, and Guoquan Huang. "Closed-form preintegration methods for graph-based visual–inertial navigation." The International Journal of Robotics Research 38.5 (2019): 563-586.

Not a function of current state 
(after bias linear approx)! 



BLS – Estimation Flowchart: Recap

• Factor graphs can provide 
a unified design 
language for sensor 
fusion algorithms

• Allows for higher level 
abstraction away from 
linear algebra 
representation

18

PreintegrateIMU

Track Sparse 
Features

Reprojection

Factor Graph

Camera

Step 1: Append Factors
Step 2: Optimize
Step 3: Marginalize

Optimization
Solver

Marginalize



Incremental Optimization using Sqrt-Info

• Key ideas:
 Use Cholesky factorization of Hessian (information)
 Can formulate equivalent optimization problem using square-root matrix 

• Advantages of square-root form:
 Better system numerical properties (smaller condition number) can enable use of 

single-precision arithmetic
 Optimal state ordering can allow for efficient Givens QR (e.g. iSAM)

19

[1] Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via square root information smoothing." The International Journal of Robotics Research 25.12 (2006): 1181-1203.
[2] Maybeck, Peter S. Stochastic models, estimation, and control, vol 1. Academic press, 1982.
[3] Kaess, Michael, Ananth Ranganathan, and Frank Dellaert. "iSAM: Incremental smoothing and mapping." IEEE Transactions on Robotics 24.6 (2008): 1365-1378.
[4] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.

Square-root information 
through QR decomposition

Reformulate original BLS in square-
root form (equivalent)

Standard BLS solution 



Incremental Optimization – An Example
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[1] Dellaert, Frank, and Michael Kaess. "Square Root SAM: Simultaneous localization and mapping via square root information smoothing." The International Journal of Robotics Research 25.12 (2006): 1181-1203.
[2] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.
[3] Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press, 2013.

Prior Cost

• All information stored in sqrt 
information form
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Inertial & Feature Cost
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information form

New Factors:
 Will ruin upper triangle structure
 Re-triangulate using QR
 Appends new information to sqrt matrix!
 State re-ordering allows for efficient QR
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Estimation Methodology Equivalences

EKF ⇔MAP Optimization w/ one Gauss-Newton Iteration

EKF ⇔ Extended Inverse (Information) Filter (EIF)

EKF ⇔ Square-Root EKF (SW-EKF)

MSCKF (nullspace) ⇔ BLS with Feature Marginalization (schur)

21
[1] Bell, Bradley M., and Frederick W. Cathey. "The iterated Kalman filter update as a Gauss-Newton method." IEEE Transactions on Automatic Control 38.2 (1993): 294-297.
[2] Wu, Kejian, et al. "A Square Root Inverse Filter for Efficient Vision-aided Inertial Navigation on Mobile Devices." Robotics: Science and Systems. Vol. 2. 2015.
[3] Yang, Yulin, James Maley, and Guoquan Huang. "Null-space-based marginalization: Analysis and algorithm." 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017.

Takeaway:

Equivalent up to linearization errors in theory. Choice 
is based on end application use (e.g., computational 
efficiency and accuracy levels required).



Outline – Essential Building Blocks

• Feature Tracking and Matching

• Observability

• Filter Consistency

• Degenerate Motion

• Initialization

• Calibration

• Robustness

• Long-Term Navigation
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Feature Tracking and Matching

• Indirect methods
 Geometric points or lines
 Track temporally using KLT or 

descriptors
 RANSAC for outlier rejection

• Direct methods
 Intensity based cost function
 Still rely on gradient 

information, but more robust 
in low-texture environments

 How to project features into 
future frames?

23

[1] Lucas, Bruce D., and Takeo Kanade. "An iterative image registration technique with an application to stereo vision." 1981.
[2] Rublee, Ethan, et al. "ORB: An efficient alternative to SIFT or SURF." 2011 International conference on computer vision. Ieee, 2011.
[3] Golub, Gene H., and Charles F. Van Loan. Matrix computations. Vol. 3. JHU press, 2013.
[4] Bloesch, Michael, et al. "Iterated extended Kalman filter based visual-inertial odometry using direct photometric feedback." The International Journal of Robotics Research 36.10 (2017): 1053-1072.



Observability

• Determine if we are able to 
fully recover the state given 
sensor measurements

 Compute by stacking all 
Jacobians and state transitions

 If nullspace exists then it is the 
unobs. direction

24

Conical 4 unobs. directions for VINS: 
Yaw (left), Translation (right)

• Why we care about observability:
 Determines minimal information to 

recover states

 Enables design of consistent
estimators (e.g., FEJ, OC-EKF, etc.)

 Identify degenerate motions

[1] Yang, Yulin, and Guoquan Huang. "Observability analysis of aided ins with heterogeneous features of points, lines, and planes." IEEE Transactions on Robotics 35.6 (2019): 1399-1418.



Estimator Consistency

• Estimation error should be zero 
mean and estimate covariance
should be larger than or equal to the 
true covariance

• Preventing information gain in 
unobservable directions is key to 
improving consistency

• Existing Algorithms:
 Robot-centric
 First-Estimate Jacobians
 OC-EKF
 Invariant filters

25

[1] Castellanos, José A., José Neira, and Juan D. Tardós. "Limits to the consistency of EKF-based SLAM." IFAC Proceedings Volumes 37.8 (2004): 716-721.
[2] Huang, Guoquan P., Anastasios I. Mourikis, and Stergios I. Roumeliotis. "Observability-based rules for designing consistent EKF SLAM estimators." The International Journal of Robotics Research 29.5 (2010): 502-528.
[3] Wu, Kanzhi, et al. "An invariant-EKF VINS algorithm for improving consistency." 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2017.
[4] Bar-Shalom, Yaakov, X. Rong Li, and Thiagalingam Kirubarajan. Estimation with applications to tracking and navigation: theory algorithms and software. John Wiley & Sons, 2004.
[photo] Hesch, Joel A., et al. "Camera-IMU-based localization: Observability analysis and consistency improvement." The International Journal of Robotics Research 33.1 (2014): 182-201.

All preserve 
original VINS 

unobs. dir.
Inconsistency cause estimator errors, thus 
we minimize inconsistencies!

NEES is large since covariance is overconfident



Degeneracy 

• Situations which cause additional 
unobservable directions in VINS 
(4DoF canonical)

• Identify degeneracies through 
inspection of observability matrix
 System – Likely to cause VINS to fail
 Calibration – Can possibly degrade 

performance

• Degeneracies weaken system 
robustness

• Degeneracies can test estimator 
consistency since there should be 
no information gained

26

System Degeneracies

Calibration Degeneracies

No information is gained in unobservable 
directions (constant variance)

[1] Yang, Yulin, et al. "Degenerate motion analysis for aided ins with online spatial and temporal sensor calibration." IEEE Robotics and Automation Letters 4.2 (2019): 2070-2077.
[2] Yang, Yulin, et al. "Online IMU Intrinsic Calibration: Is It Necessary?." Proc. of the Robotics: Science and Systems, Corvallis, Oregon (2020): 716-20.



State Initialization

• Initialization is the task of 
determining the initial system state

• VINS has 4DoF unobservable, thus 
need to initialize the other 11DoF

• Initialization Challenges:
 Want to initialize as fast and robustly

as possible
 Shorter time makes recovering the 

initial states more difficult or unobs.
 Longer times introduce error due to 

time offsets, inertial noise, along with 
increased computation

27

Global yaw and position unobservable 
(thus can be chosen arbitrarily)

Example SFM Procedure:
1. Collect a window of measurements
2. Perform traditional visual SFM to get up-

to-scale camera trajectory
3. With pre-integrated inertial readings 

recover gravity and state velocities
4. Refine estimates with non-linear 

optimization to get final state estimates

[1] Martinelli, Agostino. "Closed-form solution of visual-inertial structure from motion." International journal of computer vision 106.2 (2014): 138-152.
[2] Dong-Si, Tue-Cuong, and Anastasios I. Mourikis. "Estimator initialization in vision-aided inertial navigation with unknown camera-IMU calibration." 2012 IROS. IEEE, 2012.
[3] Campos, Carlos, José MM Montiel, and Juan D. Tardós. "Inertial-Only Optimization for Visual-Inertial Initialization." 2020 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2020.



Calibration

• Can be performed offline prior to 
estimation, online during, or both

• Offline calibration:
• Highly accurate
• Can control sensor motion
• Might not always be possible

• Online calibration:
• Crucial for practical deployments

handling of poor initial values
• Handling time-varying calibration 

parameters
• Improves estimation robustness

28

Camera Clock

IMU Clock

Example Parameters
Camera-inertial spatial-temporal

Camera intrinsic (focal, center, dist)
Inertial intrinsic (scale, skew)



Robustness and Resiliency

• Challenges:
1. Hard failures – no measurement 

information (sensor drop)
2. Soft failures – data becomes corrupt

(invalidated measurement model)

• Examples:
 Unmeasurable external forces (e.g., 

moving platform)
 Dynamic environments
 Sensor variations (e.g., exposure, 

temperature)

• Can address through leveraging multi-
sensor fusion

29
[1] Eckenhoff, Kevin, Patrick Geneva, and Guoquan Huang. "MIMC-VINS: A versatile and resilient multi-IMU multi-camera visual-inertial 
navigation system." IEEE Transactions on Robotics (2021).



Long-Term Navigation

• Can incorporate loop-closure directly 
or split the problem into two parts:
 Frontend (Localization): Fast, drifts with 

time, short-term accuracy matters

 Backend (Mapping): Slow, loop-closure, 
global consistency matters

• Challenges:
 Incremental vs full batch pose graph

 Optimal selection problem to reduce 
complexity and memory usage

 Robust loop-closure detection and 
constraints

30[1] Qin, Tong, Peiliang Li, and Shaojie Shen. "Vins-mono: A robust and versatile monocular visual-inertial state estimator." IEEE Transactions on Robotics 34.4 (2018): 1004-1020.
[2] Geneva, Patrick, Kevin Eckenhoff, and Guoquan Huang. "A linear-complexity EKF for visual-inertial navigation with loop closures." 2019 International Conference on Robotics and Automation (ICRA). IEEE, 2019.

Addition of loop-closures can limit odometry drift



Outline - Available Open Sourced Systems

• Open Source Estimators

• Dataset Benchmarks

• Metrics and Evaluation

31



Visual-Inertial Research: Embracing Open Source

• Wide range of systems available for visual-inertial research

• Our group’s: OpenVINS which is a feature complete filter system for 
use on resource constrained platforms and as an odometry frontend

32



OpenVINS 

• An open platform for VINS research
(OpenVINS) which achieves state-of-
the-art performance

• On manifold sliding window Kalman 
filter with modular type system for 
state management (gtsam inspired)

• Detailed documentation and 
derivations to support researchers 
using the codebase: 
https://docs.openvins.com/

33

https://github.com/rpng/open_vins

[1] Geneva, P., Eckenhoff, K., Lee, W., Yang, Y. and Huang, G., 2020, November. OpenVINS: A research platform for visual-inertial estimation. In 
Proc. of the IEEE International Conference on Robotics and Automation, Paris, France.



OpenVINS – Key Features

• Sliding window visual-inertial MSCKF

• Modular covariance type system

• Comprehensive documentation and derivations

• Extendable visual-inertial simulator
• On manifold SE(3) b-spline
• Arbitrary number of cameras
• Arbitrary sensor rate
• Automatic feature generation

• Five different feature representations

• Environmental SLAM feature
• OpenCV ARUCO tag SLAM features
• Sparse feature SLAM features

• Calibration of sensor intrinsics and extrinsics
• Camera to IMU transform
• Camera to IMU time offset
• Camera intrinsics

• Visual tracking support
• Monocular / Stereo / Binocular cameras
• KLT or descriptor based

• First-Estimate Jacobians for consistent estimation

• Static IMU initialization

• Zero velocity detection and updates

• Out of the box dataset evaluation on:
• EurocMav
• TUM-VI
• UZH-FPV Drone Racing
• KAIST Urban Driving

• Extensive evaluation suite:
• ATE, RPE, NEES, RMSE
• Timing evaluation and plotting

• Codebase extensions:
• ov_secondary – Secondary pose graph with loop-closure
• ov_maplab – Multi-session mapping and offline optimization
• vicon2gt – Groundtruth gen. for VIO dataset evaluation

34
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Lots of great features directly “out-of-the-box” 
to enable research and practical deployment!



Wide Range of VINS Datasets



Wide Range of VINS Datasets

!



Metrics for Evaluation

• Quality of groundtruth remains 
challenging in realworld datasets

• High quality metrics allow for fair 
comparison of different algorithms

• Open Source Toolboxes:

 evo - https://github.com/MichaelGrupp/evo

 rpg_trajectory_evaluation -
https://github.com/uzh-rpg/rpg_trajectory_evaluation

 ov_eval - https://github.com/rpng/open_vins

36

• Absolute Trajectory Error (ATE)

• Relative Pose Error (RPE) [recommended]

• Normalized Estimation Error Squared (NEES)

[1] Zhang and Scaramuzza. "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

Relative pose for 
trajectory segments



Metrics for Evaluation

• Quality of groundtruth remains 
challenging in realworld datasets

• High quality metrics allow for fair 
comparison of different algorithms

• Open Source Toolboxes:

 evo - https://github.com/MichaelGrupp/evo

 rpg_trajectory_evaluation -
https://github.com/uzh-rpg/rpg_trajectory_evaluation

 ov_eval - https://github.com/rpng/open_vins
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• Absolute Trajectory Error (ATE)

• Relative Pose Error (RPE) [recommended]

• Normalized Estimation Error Squared (NEES)

[1] Zhang and Scaramuzza. "A tutorial on quantitative trajectory evaluation for visual (-inertial) odometry." International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018.

Fast evaluation tool with additional recording 
and timing utilities!

Relative pose for 
trajectory segments



Outline – Conclusion

• Future Directions

• Conclusion
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Where Next?

• Practicality: Many challenges to widely deploying VINS 
(e.g. known calib etc.)

• Robustness: Moving environment, long-term seasons, 
sensor variances

• Semantic Understanding: Object-wise and uncertain 
network classifications

• Computational: Real-time robotic systems (low-cost IoT
devices, latency, etc.)

• Aided-INS: Incorporating additional sensors (e.g. event, 
thermal, etc.)

• Cooperative: Multi-robot systems (measurement 
selection, distributed, scalability, etc.)

• Dynamics: Integrate robot dynamics

38[1] Huang, Guoquan. "Visual-inertial navigation: A concise review." 2019 international conference on robotics and automation (ICRA). IEEE, 2019.
[photo] Dong, Jingming, Xiaohan Fei, and Stefano Soatto. "Visual-inertial-semantic scene representation for 3D object detection." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.

Higher level environmental understanding 
in both geometric and semantic way



Summary & Thanks!
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• This presentation:
• Introduced background on 

traditional VINS estimators
• Discussed challenges in designing 

VINS algorithms
• Presented summary of current 

open-sourced codebases, datasets, 
and evaluation tools

• Contact information:
• Patrick Geneva (@goldbattle github)
• pgeneva@udel.edu
• https://pgeneva.com/

Please checkout OpenVINS!

https://github.com/rpng/open_vins

https://docs.openvins.com/


