# Parallel Tracking and Mapping for Small AR Workspaces

**Georg Klein** David Murray

## The Aim

- AR with a hand-held camera
- Visual Tracking provides registration
- Track without prior model of world
- Challenges:
  - Speed
  - Accuracy
  - Robustness
  - Interaction with real world

#### **PTAM**

Architecture optimized for dual cores



- Tracking thread runs in real-time (30Hz)
- Mapping thread is not real-time

## **Method Overview**

- Tracking thread:
  - Responsible estimation of camera pose and rendering augmented graphics
  - Must run at 30Hz
  - Make as robust and accurate as possible

- Mapping thread:
  - Responsible for providing the map
  - Can take lots of time per keyframe
  - Make as rich and accurate as possible

# **PTAM – Tracking Thread**



## PTAM – Mapping Thread



# **PTAM – Example Timings**

#### Tracking thread

| Total                 | 19.2 ms |  |
|-----------------------|---------|--|
| Key frame preparation | 2.2 ms  |  |
| Feature Projection    | 3.5 ms  |  |
| Patch search          | 9.8 ms  |  |
| Iterative pose update | 3.7 ms  |  |

#### Mapping thread

| Key frames               | 2-49   | 50-99  | 100-149 |
|--------------------------|--------|--------|---------|
| Local Bundle Adjustment  | 170 ms | 270 ms | 440 ms  |
| Global Bundle Adjustment | 380 ms | 1.7 s  | 6.9 s   |

### **PTAM Video**

https://www.youtube.com/watch?v=Y9HMn6bd-v8