Improved Techniques for Grid Mapping with Rao-Blackwellized PFs

Grisetti et al.

Introduction

Murphy et al. introduced Rao-Blackwellized PFs for SLAM

The main problem of RBPFs

- # of particles to build an accurate map
- Particle Depletion

To fix those issues

To fix those issues

To increase the performance of RBPF:

- Proposal distribution considers accuracy of the sensors

Less estimation error leads to less particles

- An adaptive resampling to prevent particle depletion

Do the resampling whenever is needed

But what is RBPFs?

Rao-Blackwellized Particle Filters

To estimate $p(x_{1:t}, m | z_{1:t}, u_{1:t-1})$ in which

- *m* is map
- $x_{1:t} = x_1 + x_2 + \dots + x_t$ is robot's trajectory
- $z_{1:t} = z_1 + z_2 + \dots + z_t$ is the observation
- $u_{1:t-1} = u_1 + u_2 + \dots + u_{t-1}$ is the odometry measurement

Rao-Blackwellized Particle Filters(Cntd)

By using factorization:

$$p(x_{1:t}, m | z_{1:t}, u_{1:t-1}) = p(m | x_{1:t}, z_{1:t}).p(x_{1:t} | z_{1:t}, u_{1:t-1})$$

- The first part, $p(m | x_{1:t}, z_{1:t})$ is nothing but mapping with known poses
- The posterior $p(x_{1:t} | z_{1:t}, u_{1:t-1})$ is estimated by applying PF.

What kind of PF is that?

Sampling Importance Resampling(SIR)

Each particle has a potential trajectory of the robot.

As well as, an environment map of its own.

A RBSIR algorithm incrementally uses odom & sensor measurements for mapping.

1-Sampling

Obtaining the next generation $\{x_t^{(i)}\}$ from $\{x_{t-1}^{(i)}\}$ by sampling form

proposal distribution π

 π is usually a probabilistic odometry motion model

2- Importance Weighting

Importance Sampling Principle:

$$w_t^{(i)} = p(x_{1:t}^{(i)} | z_{1:t}, u_{1:t-1}) / \pi(x_{1:t}^{(i)} | z_{1:t}, u_{1:t-1})$$

Proposal distribution π is in general not equal to target distribution

We can do it in a recursive way(by some assumption for efficiency)

$$w_{t}^{(i)} = w_{t-1}^{(i)} p(z_{t} \mid m_{t-1}^{(i)}, x_{t}^{(i)}) \cdot p(x_{t}^{(i)} \mid x_{t-1}^{(i)}, u_{t-1}) / \pi(x_{t} \mid x_{1:t-1}^{(i)}, z_{1:t}, u_{1:t-1})$$

3- Resampling

Proportional to importance weight

With replacement

4-Map Estimation

The map estimate for each particle

$$p(m^{(i)} | x_{1:t}^{(i)}, z_{1:t})$$

is computed based on its trajectory $x_{1:t}^{(i)}$ and the history of observations $z_{1:t}$

Improved Proposal Distribution

Local approximation of the posterior $p(x_t | m_{t-1}^{(i)}, x_{t-1}^{(i)}, z_t, u_{t-1})$ around the maximum likelihood function.

- 1. Using a scan-matcher to determine the meaningful area
- 2. K Sample in the meaningful area
- 3. Evaluated based on target distribution
- 4. $\mu_t^{(i)} \& \sum_t^{(i)}$ are determined for K sample points

$$egin{array}{rcl} \mu_t^{(i)} &=& rac{1}{\eta^{(i)}} \cdot \sum_{j=1}^K x_j \cdot p(z_t \mid m_{t-1}^{(i)}, x_j) \ & dots p(x_j \mid x_{t-1}^{(i)}, u_{t-1}) \ & \Sigma_t^{(i)} &=& rac{1}{\eta^{(i)}} \cdot \sum_{j=1}^K p(z_t \mid m_{t-1}^{(i)}, x_j) \ & dots p(x_j \mid x_{t-1}^{(i)}, u_{t-1}) \ & dots (x_j - \mu_t^{(i)}) (x_j - \mu_t^{(i)})^T \end{array}$$

Improved Proposal

Using this proposal distribution weights can be computed as:

$$\begin{split} w_t^{(i)} &= w_{t-1}^{(i)} \cdot p(z_t \mid m_{t-1}^{(i)}, x_{t-1}^{(i)}, u_{t-1}) \\ &= w_{t-1}^{(i)} \cdot \int p(z_t \mid m_{t-1}^{(i)}, x') \cdot p(x' \mid x_{t-1}^{(i)}, u_{t-1}) \ dx \\ &\simeq w_{t-1}^{(i)} \cdot \sum_{j=1}^K p(z_t \mid m_{t-1}^{(i)}, x_j) \cdot p(x_j \mid x_{t-1}^{(i)}, u_{t-1}) \end{split}$$

Particle distribution typically observed during mapping

Adaptive Resampling

Effective Sample Size

$$N_{\text{eff}} = \frac{1}{\sum_{i=1}^{N} \left(\tilde{w}^{(i)}\right)^2},$$

 N_{eff} can be regarded as a measure of the dispersion of importance weights. Each time N_{eff} drops below the threshold N/2 resampling is needed. **Require:**

 S_{t-1} , the sample set of the previous time step

 z_t , the most recent laser scan

 u_{t-1} , the most recent odometry measurement **Ensure:**

 S_t , the new sample set

$$egin{aligned} \mathcal{S}_t &= \{\} \ extbf{for all } s_{t-1}^{(i)} \in \mathcal{S}_{t-1} extbf{ do} \ &< x_{t-1}^{(i)}, w_{t-1}^{(i)}, m_{t-1}^{(i)} > = s_{t-1}^{(i)} \end{aligned}$$

$$\begin{array}{l} \text{if } \hat{x}_{t}^{(i)} = \text{failure then} \\ x_{t}^{(i)} \sim p(x_{t} \mid x_{t-1}^{(i)}, u_{t-1}) \\ w_{t}^{(i)} = w_{t-1}^{(i)} \cdot p(z_{t} \mid m_{t-1}^{(i)}, x_{t}^{(i)} \\ \text{else} \end{array}$$

// sample around the mode for $k = 1, \dots, K$ do $x_k \sim \{x_j \mid |x_j - \hat{x}^{(i)}| < \Delta\}$ end for

// compute Gaussian proposal
$$\mu_t^{(i)} = (0,0,0)^T$$

 $\eta^{(i)} = 0$

 $\begin{array}{l} \text{for all } x_j \in \{x_1, \dots, x_K\} \text{ do} \\ \mu_t^{(i)} = \mu_t^{(i)} + x_j \cdot p(z_t \mid m_{t-1}^{(i)}, x_j) \cdot p(x_t \mid x_{t-1}^{(i)}, u_{t-1}) \\ \eta^{(i)} = \eta^{(i)} + p(z_t \mid m_{t-1}^{(i)}, x_j) \cdot p(x_t \mid x_{t-1}^{(i)}, u_{t-1}) \\ \text{end for} \\ \mu_t^{(i)} = \mu_t^{(i)} / \eta^{(i)} \\ \Sigma_t^{(i)} = \mathbf{0} \\ \text{for all } x_j \in \{x_1, \dots, x_K\} \text{ do} \\ \Sigma_t^{(i)} = \Sigma_t^{(i)} + (x_j - \mu^{(i)})(x_j - \mu^{(i)})^T \cdot \\ p(z_t \mid m_{t-1}^{(i)}, x_j) \cdot p(x_j \mid x_{t-1}^{(i)}, u_{t-1}) \\ \text{end for} \\ \Sigma_t^{(i)} = \Sigma_t^{(i)} / \eta^{(i)} \\ \mathcal{I}'_{sample \ new \ pose} \\ x_t^{(i)} \sim \mathcal{N}(\mu_t^{(i)}, \Sigma_t^{(i)}) \end{array}$

// update importance weights $w_t^{(i)} = w_{t-1}^{(i)} \cdot \eta^{(i)}$ end if

$$N_{ ext{eff}} = rac{1}{\sum_{i=1}^{N} (ilde{w}^{(i)})^2}$$

if $N_{ ext{eff}} < T$ then
 $\mathcal{S}_t = ext{resample}(\mathcal{S}_t)$
end if

Complexity

Operation	Complexity
Computation of the proposal distribution	O(N)
Update of the grid map	O(N)
Computation of the weights	O(N)
Test if resampling is required	O(N)
Resampling	O(NM)

Different types of robots used(ActivMedia Pioneer 2 AT, Pioneer 2 DX-8, iRobot B21r)

The Intel Research Lab

The Freiburg Campus

The MIT Killian Court

Comparison to a prior work

References

G. Grisetti, C. Stachniss, and W. Burgard. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters, Robotics, IEEE Transactions on, 2007.

Thanks for listening!

