Today’s Agenda

« Spatial image filtering
e Linear filters
—Ilmage Smoothing
—Image sharpening
* Nonlinear filter

« Fourier transform



Smoothing Spatial Filter - Low Pass Filters
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* Noise deduction
* reduction of “irrelevant details”

* edge blurred



Smoothing Spatial Filter
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Smoothing Spatial Filter

2D Gaussian filter (X, Y) = e 2°




Comparison using Different Smoothing
Filters - Different Kernels

Average Gaussian



Comparison using Different Smoothing
Filters: Different Size
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Letter size: 10, 12, 14, 16, 18, 20,24 .
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increments of 2 points; the large letter at the top is 60 points. The vertical bars are 5 pixels

wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25

pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy ‘ TER R

rectangles are of size 30 x 120 pixels.

Bar: 5x100 with a spacing of 20

FIGURE 3.33 (a) Original image, of size 500 x 500 pixels (b)—(f) Results of smoothing
with square averaging filter masks of sizes m = 3,5,9, 15, and 35, respectively. The black
squares at the top are of sizes 3,5,9, 15,25, 35, 45, and 35 pixels, respectively; their borders
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
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Image Smoothing and Thresholding
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FIGURE 3.34 (a) Image of size 528 X 485 pixels from the Hubble Space Telescope. (b) Image filtered with a
15 X 15 averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)



Sharpening Spatial Filters

Sharpening — highlight the transitions in intensity by differentiation

L]

Smoothing — blur the transitions by summation




Sharpening Spatial Filters

Sharpening — highlight the transitions in intensity
by differentiation

* Electric printing

* Medical imaging

* Industrial inspection

Compared to smoothing — blur the transitions by
summation



Perceived Intensity is Not a Simple Function
of the Actual Intensity (1)

a
b

C

FIGURE 2.7
[Mlustration of the
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Sharpening Spatial Filters

Original image

glx,y)=f(x,y) +c*e(x,y)

Sharpened image Magnifying factor  Edge map

We will briefly introduce edge detection here and will have
a more comprehensive discussion when we discuss
Image segmentation.



Spatial Filters for Edge Detection
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FIGURE 3.36
Illustration of the
first and second
derivatives of a
1-D digital
function
representing a
section of a
horizontal
intensity profile
from an image. In
(a) and (c) data
points are joined
by dashed lines as
a visualization aid.



First-order VS Second-order Derivative for
Edge Detection

* First-order derivative produces thick edge along
the direction of transition

« Second-order derivative produces thinner edges



Gradient for Image Sharpening

Direction of change g 1 [
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Gradient for Image Sharpening

Sum of the coefficients is 0 — a | » | =
the response of a constant
region is O
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Edge detectors: -
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FIGURE 3.41

A 3 X 3 region of
an image (the zs
are intensity
values).

(b)—(c) Roberts
cross gradient
operators.
(d)—(e) Sobel
operators. All the
mask coefficients
sum to zero, as
expected of a
derivative
operator.

e Sobel - smooth _




Laplacian for Image Sharpening
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Image sharpening with Laplacian
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FIGURE 3.37

(a) Filter mask used
to implement

Eq. (3.6-6).

(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal terms.

(c) and (d) Two
other implementa-
tions of the
Laplacian found
frequently in
practice.



Image Sharpening

Scale the Laplacian by
shifting the intensity
range to [0, L-1]
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FIGURE 3.38

(a) Blurred image
of the North Pole
of the moon.

(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (¢) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)



Image Sharpening by Unsharp Masking and

Highboost Filtering

1. Blur the original
image

2. Subtract the blurred
image from the
original to get the
mask

3. Add the mask to the
original

Original signal

P ~
Blurred signal
&

Unsharp mask

A\

S

Sharpened signal

b
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d

FIGURE 3.39 1-D
illustration of the
mechanics of
unsharp masking,
(a) Original
signal. (b) Blurred
signal with
original shown
dashed for refere-
nce. (c¢) Unsharp
mask. (d) Sharp-
ened signal,
obtained by
adding (c) to (a).



Image Sharpening by Unsharp Masking and
Highboost Filtering

g(x,y) = f(xy)+k*(f(x,y)-f(xy)) k=0

When k > 1, it becomes a highboost filtering.

Example: when k =1

0 0 0] (/[0 0 O] ¢[1 1 1]\ ¢[-1 -1 -1
0 1 o|+|[0 1 of-5|t 1 1f]=5|-1 17 -1
o0 0 of \o o o 1 1 1 -1 -1 -1

Sum of the coefficients is 1
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FIGURE 3.40
(a) Original
image.

(b) Result of
blurring with a
Gaussian filter.

(c) Unsharp

] mask. (d) Result
Unsharp masking k=1 D | P_X E of using unsharp
masking.
(e) Result of
Highboost filitering k=4.5 D I P_X E

Unsharp mask

using highboost
filtering.




Gradient for Image Sharpening -- Example

Original Sobel gradient
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An application in industrial defect detection.



Combining Spatial Enhancement Methods
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FIGURE 3.43

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a). (c) Sharpened
image obtained by

adding (a) and (b).

(d) Sobel gradient
of (a).
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FIGURE 3.43
(Continued)
(e) Sobel image
smoothed with a
5 X 5 averaging
filter. () Mask
image formed by
the product of (c)
and (e).
(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a power-
law transformation
to (g). Compare
(g) and (h) with
(a). (Original
image courtesy of
G.E. Medical
Systems.)




Combining Spatial Enhancement Methods

FIGURE 3.43

(a) Image of
whole body bone
scan.

(b) Laplacian of
(a). (c) Sharpened
image obtained by

adding (a) and (b).

(d) Sobel gradient
of (a).
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FIGURE 3.43
(Continued)

(e) Sobel image
smoothed with a
5 X 5 averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).

(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a power-
law transformation
to (g). Compare
(g) and (h) with
(a). (Original
image courtesy of
G.E. Medical
Systems.)
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FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a 3 X 3 averaging mask. (c) Noise reduction with a 3 X 3 median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)
Order-statistic filtering — rank the pixel values in the filter window and
assign the center pixel according to the property of the filter
* Median

 Min/max



Reading Assignments

Chapter 3.8 on using fuzzy techniques for intensity
transformation and spatial filtering

We are not going to cover it in the class

Next class, we will start Chapter 4: Filtering in the Frequency
Domain



Why We Need Fourier Transform

* Filtering in frequency domain

Image smoothing Edge Image sharpening

« Efficient computation for convolution



Preliminary Concepts

Complex number  C =R + || ] = \/—T 3 C
Conjugate C*=R— |l 6
Polar coordinate representation C*
C=C|(cos@+ jsinH)
|C|:\/R2+I2, 6 = arctan(l/R)
Euler’s formula ej‘g = COS @ + jsin 6 C :| C | ejg

Re



Concept of Fourier Series And Transforms

WWWWWWWWWWMWWY Fourier series: any periodic

NYVYYUVY function can be represented by a
SN\ discrete weighted sum of sines

and cosines

FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.



Concept of Fourier Series And Transforms

Fourier transform: an arbitrary function with finite duration
(non-periodic function) can be expressed by a weighted
Integrals of sines and cosines

Fourier transform is more general!



Fourier Series

f(t) is acontinuous function with period T, we have

)= 3¢
/024

Coefficient

21N fais 21N .
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Discrete frequency

Where
_J2z=nt

—j f(t)e T dt, n=0,+1 +2,..
T/2

Video OlerHﬁps://en.wiki|oedia.orq/wiki/Fourier transform#/me
dia/File:Fourier transform time and frequency do
mains (small).qif



https://en.wikipedia.org/wiki/Fourier_transform#/media/File:Fourier_transform_time_and_frequency_domains_(small).gif
https://en.wikipedia.org/wiki/Fourier_transform#/media/File:Fourier_transform_time_and_frequency_domains_(small).gif
https://en.wikipedia.org/wiki/Fourier_transform#/media/File:Fourier_transform_time_and_frequency_domains_(small).gif

Fourier Transform in 1D

f(t) is an arbitrary non-periodic function and
can be represented by

fO)=], Fue du

Coefficient Continuous frequency

where

F(u) = j_i f (t)e 127t



Fourier Transform in 1D

f(t) is an arbitrary non-periodic function and

can be represented by
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Fourier Transform in 1D

ﬁatial domain = Frequency domain

F(u) = f; f (t)e 12dt

Frequency domain - Spatial domain

K fO)=] F(ue™ du

~

Forward transform

Inverse transform

/

Fourier transform pair



Basic Properties of FT

Linearity h(t) = af (t) + bg(t) < H (1) = aF (1) +bG(u)

Translation h(t)= f(t—t,) & H(u) =e "™ F(u)
Translation in spatial domain = Rotation in frequency domain
Modulation h(t) =e*™" f (t) <> H (1) = F (u— 1)

Rotation in spatial domain - Translation in frequency domain



Basic Properties of FT

Scaling h(t): f(at)<—> H(,u)=%|:(§)

Conjugation h(t) = f *(t) & H(u) = F*(-u)

SYMMELY £ (1) > F(u) = F(t) <> f(~p)



FT of Simple Functions
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FT of a Rectangle Function

Rectangle function = Sinc function

(o) F(g) |F(w)
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FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to
infinity in both directions.
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