Today’s Calendar

Intensity Transformation

Histogram processing
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FIGURE 2.41
Images exhibiting
(a) low contrast,
(b) medium
contrast, and

(c) high contrast.




Stochastic Image-Sequence Processing

Using probability and random-process tools

Each pixel is arandom event - each image frame is a random
event, related to time

Probability plays a central role in modern image processing
and computer vision



Summary

In this course, we will discuss all the concepts in details.



Now,

Intensity Transformation and Spatial Filtering

Reading: Chapter 3.



Spatial Domain

Origin N

Y

Image f

3 X 3 neighborhood of (x, y)

Spatial domain

FIGURE 3.1

A3 X3
neighborhood
about a point
(x,y)in an image
in the spatial
domain. The
neighborhood is
moved from pixel
to pixel in the
image to generate
an output image.

g(x.y)=T [f(x.y)]
-> spatial filter



1x1 Neighborhood - Intensity Transformation
- Image Enhancement
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Some Basic Intensity Transformation
Functions

 Thresholding — Logistic function
 Log transformation
 Power-law (Gamma correction)

* Piecewise-linear transformation

« Histogram processing



Some Basic Intensity Transformation
Functions

Image Negative: s=L-1-r
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FIGURE 3.4

(a) Original digital
mammogram.

(b) Negative
image obtained
using the negative
transformation

in Eq.(3.2-1).
(Courtesy of G.E.
Medical Systems.)



Basic Intensity Transformation Functions

FIGURE 3.3 Some
L—1 | basic intensity
transformation
. functions. All
Negative curves were
scaled to fit in the
range shown.
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Log/Inverse Log Transformation Functions
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FIGURE 3.3 Some
basic intensity
transformation
functions. All
curves were
scaled to fit in the
range shown.
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Input intensity level, r

Log function:
s=clog(l+r) r=0

Stretch low intensity levels
Compress high intensity levels

Inverse log function:

s =clog™(r)

Stretch high intensity levels
Compress low intensity levels



Log Transformations:

s=c log(1+n)

ab

FIGURE 3.5

(a) Fourier
spectrum.

(b) Result of
applying the log
transformation in
Eq.(3.2-2) with
c=1



Power-Law (Gamma) Transformations
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FIGURE 3.6 Plots
of the equation

s = cr’ for
various values of
¥ (c = linall
cases). All curves
were scaled to fit
in the range
shown.

S=cCr’

» More versatile than log

transformation

» Performed by a lookup

table



Power-Law (Gamma) Transformations

Monitors have an intensity-
to-voltage response with a
power function

— ~1/2.5
S =T /
ab
cd
Original image | Gamma Original image as viewed FIGURE 3.7
correction annIynitoR (a) Intensity ramp

image. (b) Image
as viewed on a
simulated monitor
with a gamma of
2.5.(c) Gamma-
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare
(d) and (a).

Gamma-corrected image Gamma-corrected image as
viewed on the same monitor



Image Enhancement Using Gamma Correction




Power-Law (Gamma) Transformations for
Contrast Manipulation
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© |l

wuress  VWashed-out appearance caused
<o by a small gamma val
resonance

image (MRI) of a y a S a ga a Va ue
fractured human

spine.

(b)—(d) Results of

applying the

transformation in

Eq. (3.2-3) with

¢ =1and

y = 0.6,04,and

0.3, respectively.

(Original image

courtesy of Dr.

David R. Pickens,

Department of

Radiology and

Radiological

Sciences,

Vanderbilt

University

Medical Center.)




Power-Law (Gamma) Transformations for
Contrast Manipulation
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FIGURE 3.9

(a) Aerial image.
(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with
¢=1land

y = 3.0, 4.0, and
5.0, respectively.
(Original image
for this example
courtesy of
NASA.)

Washed-out appearance
was reduced by a large
gamma value




Piecewise-Linear Transformation Functions:
Contrast Stretching

Output intensity level, s
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FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A
low-contrast image.
(¢) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)



Piecewise-Linear Transformation
Intensity-Level Slicing

Functions:

ab

FIGURE 3.11 (a) This
transformation
highlights intensity
range [A, B] and
reduces all other
intensities to a lower
level. (b) This
transformation
highlights range

[A, B] and preserves
all other intensity
levels.




An Example of Intensity-Level Slicing

abc

FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig.
3.11(a), with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of
using the transformation in Fig. 3.11(b), with the selected area set to black, so that grays in the area of the

blood vessels and kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of
Michigan Medical School.)



Piecewise-Linear Transformation Functions:
Bit-Plane Slicing

One 8-bit byte 7 Bit plane 8
/ (most significant)
e
p

|
‘; | Bit plane 1
pZa (least significant)
i
!
FIGURE 3.13
Bit-plane

representation of
an 8-bit image.



An Example
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FIGURE 3.14 (a) An 8-bit gray-scale image of size 500 X 1192 pixels. (b) through (i) Bit planes 1 through 8,
with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.



Use for Image Compression
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FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8,
7,6, and 5. Compare (c) with Fig. 3.14(a).

Less bit planes are sufficient to obtain an acceptable details, while
require half of the storage



Histogram Processing

Dark:

Light:

Low
contrast:

High

contrast:

I T I
Histogram of dark image

T Histogram

| 1 |
Histogram of light image k — k

1 Normalized histogram

- p(r.)=n/MN

T T T
Histogram of high-contrast image k _ 0

FIGURE 3.16 Four basic image types: dark, light, low contrast, high
contrast, and their corresponding histograms.
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Transformation Function

s=T(r) 0<r<L-1
A valid transformation function must satisfy two conditions:

(a) T (r) is monotonically increasing, I.e., T(r,) > T(r,) If r, >,
(b)0O<T(r)<L-1 The same range as input
(@') T (r) is strictly monotonic:one-to -one mapping r = T'(S)



Intensity Transformation Function

s=T(r) 0<r<L-1

A valid transformation function must satisfy two conditions:
(a) T (r) is monotonically increasing, 1.e., T(r,) > T(r,) iIf r, > 1,

(b)0<T(r)<L-1

(@') T (r) is strictly monotonic: one - to - one mapping r = T'(s)

T(r) T(r)
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FIGURE 3.17

(a) Monotonically
increasing
function, showing
how multiple
values can map to
a single value.

(b) Strictly
monotonically
increasing
function. This is a
one-to-one
mapping, both
ways.



Histogram Processing

If T(r) is continuous and differentiable over the range of r, then

p.(5) = pr(r)%

Probability density function of intensity value



Histogram Equalization

A special transformation function

s=T(r) = (L—1)[jor pr(yv)dvq

AV 4
Cumulative distribution function of r

Is it a valid transformation function?

Yes.

(a) T (r) is monotonically increasing, i.e., T(r,) > T(r,) if r, > 1,
(b)0<T(r)<L-1



Histogram Equalization

s=Tr)=(L-1) jorpr(w)dw
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— p. (s) — —L .
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FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in
Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF,
independently of the form of the PDF of the 7’s.



Histogram Equalization

p,(s) = p,(r)

%‘ s=T(r)=(L-D)[ p, (w)dw

‘ ps(s) — T .

1
L-1



An Example

2r

p,(r) =1 (L-1)°
0 otherwise

O<r<(L-1)

2

L—-1

-S=(L—10jmn(Wﬁhv=-~=
0



Histogram Equalization - Discrete Case

p,(r.)=n/MNk=012,.,L-1

5 =T(R)=(L-DXp(r) =——=>n,

L -1

MN

Iy n; p.(ry) = n,/MN
ro =0 790 0.19
rn =1 1023 0.25
rn=72 850 0.21
ry =3 656 0.16
ry =4 329 0.08
rs =5 245 0.06
re = 6 122 0.03
rs =17 81 0.02

TABLE 3.1
Intensity
distribution and
histogram values
for a 3-bit,

64 X 64 digital
image.
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Histogram Equalization - Discrete Case

1y ny p:ry) = m/MN TABLE 3.1
Intensity
rg =10 790 0.19 distri 7,
istribution and
n=1 10%3 0-25 histogram values
=2 530 021 for a 3-bit
=3 656 0.16 64 X 64 digital
ry =4 329 0.08 image =
rs=5 245 0.06 =
re = 6 122 0.03
r, =1 81 0.02
Pr(re) Sk Ps(Sk)
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FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (¢) Equalized histogram.

Histogram equalization is not guaranteed to result in a uniform histogram.



Examples

FIGURE 3.21
Transformation

functions for
histogram
equalization.

1l I 255 Transformations

(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig.3.20 using
Eq.(3.3-8).

192

128

64

FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.



A Continuous Example

2r
O0<r<(L-1
p,(r)=1(L-1)° (L=1)
0 otherwise
[ 372
0<z<(L-1
p,(2) =9 (L-2)° (L=1)
0 otherwise

.

Compute z?
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