Today’s Agenda

• Human abilities – Vision
• Human abilities – Cognition
Reminder: First Group Project Deliverable

Each group should submit a written report of “Topic definition and understanding of the problem” including:

- An introduction of the topic
- A discussion about the system/interface's purpose and requirements
 - Who are the users
 - What are the system’s major functions
 - What are the environmental conditions and constraints
- A project management plan with a Gantt Chart

Each team only needs to submit a single report

Due in Blackboard 11:59 pm EST, Sunday, Sep. 19
Reading Assignments

• Interaction Design Chapters 2, 3
• Understanding your users Chapters 1 & 2
About the Visual System

• Brightness adaptation - subjective brightness
• Brightness discrimination
 • Brightness discrimination at different intensity levels
• Perceived intensity is not a simple function of the actual intensity
• Illusory contours
• Figure & Ground
What Do We Do with All of This Visual Information?

Perception of a scene involves multiple levels of perceptual analysis.

- "Bottom up processing"
 - Data-driven
 - Sensation reaches brain, and then brain makes sense of it
- "Top down processing"
 - Cognitive functions informs our sensation
 - E.g., walking to refrigerator in middle of night
Visual Search
Visual Search

Targets vs distractors

• Average search time = \(\frac{N \times I}{2} \)

 • \(N \) = number of items
 • \(I \) = how much time you spend on each item

• Reduce search time:
 • Reduce \(N \)
 • Make all targets/distractors similar
 • Reduce \(I \)
 • Make each item clear
Visual Search

Parallel search vs. Serial search
Parallel Search

Find green “N”

- Search all items at once (search “at a glance”)
- Pop-out effect
- Fast
- Effortless
- Few errors
- # of distractors does not matter

What type of processing?
Bottom up!
Serial Search

Find yellow “X”
- Search every item
- Slow
- Effortful
- Error prone!
- # of distractors matters
Reducing Search Time

- Reduce search time:
 - Reduce N
 - Reduce I
- What if you can’t do that?
- Capitalize on bottom-up strategies?
 - Make target easy to locate (pop-out)
- Capitalize on top-down strategies?
 - Build on what people are familiar with
Read Flow (Related to Visual Search)
Eye Movements

Pursuit movements
• Tracking an object across the visual field
 • i.e. following the path of the mouse

Saccades
• Abrupt, short, discrete movements
 • i.e. reading
 • Used a lot as a measurement in HCI!
Saccades-Reading

Pursuit movements are almost completely automatic and generally require physically moving a stimulus. In contrast to saccades, pursuit movements are smoothly executed and are comparatively slow. Generally, they are used to track an object moving in a stationary environment; hence target velocity rather than target location is the appropriate stimulus.

Small inter-word spacing requires smaller saccades and longer fixations.
Saccades-Reading

Pursuit movements are almost completely automatic and generally require physically moving stimulus. In contrast to saccades, pursuit movements are smoothly executed and are comparatively slow. Generally, they are used to track an object moving in a stationary environment; hence target velocity rather than target location is the appropriate stimulus.

Read-Flow principle:

- Action items (buttons, links) should support the flow of the user in the same way as reading occurs.
- The last action should be the most-likely action to avoid backtracking.

- Left = back, stop, quit, cancel, previous
- Right = next, continue, submit
Read Flow
Some Visual Guidelines

Finally, I will leave you with some general design guidelines on human visual capabilities...
Some Visual Guidelines

1. Large font is good, so is contrast
2. Don’t use too many graphics
 • distracting and bad for screen readers
3. Something is important?
 • make it “pop” (bottom up processing) to reduce visual search
4. Simple text – easier to read and understand
5. “Color match” when you can (consistency)
Some Visual Guidelines

6. Never blur pictures
 • bad for low vision

7. Blue is hard to read
 • less blue cones in fovea

8. Group similar items

9. Use logical visual order – helps with read flow

10. Think about foreground and ground
So, Watson, you like to read, learn, hypothesize and recommend

Cartoon courtesy of Jean Paul Jacob, IBM Research Emeritus & IBMer on Campus, UC Berkeley

9/12/2014 (c) IBM 2014
Cognition

Norman’s two general modes: (ID 3.2)

• Experiential cognition
 • Perceive, act, and react
 • Effortless
 • Requires a certain level of expertise and engagement
 • E.g., driving, reading, conversation
• Reflective cognition and slow thinking
1. Information from sensory system is perceived
2. Information is processed and transformed
3. Information is responded to
Cognition

Norman’s two general modes: (ID 3.2)

• Experiential cognition

• Reflective cognition and slow thinking involving
 • Mental effort
 • Attention
 • Judgement
 • Decision making
 • New ideas and creativity, e.g., designing, learning, and writing a paper/book
Human Information Processing - Attention

- Mental effort
- Selecting sensory channels for further processing
Selective Attention

Does NOT guarantee perception

- Awareness test
 - http://www.youtube.com/watch?v=Ahg6qcgoay4
 - https://www.youtube.com/watch?v=ubNF9QNEQLA
- The “Door” study
 - http://www.youtube.com/watch?v=FWSxSQsspiQ
Quiz #2

Quiz # 2 is available in Blackboard.
Due date: 3:35pm EST, Wednesday, Sep. 15, 2021

Open book and open notes
Time to work in your groups!

Before you start...
Figure out who is taking notes.

1. Identify 3 project ideas
2. Identify for each project idea, 5 questions you may have
3. Create a Gantt Chart (I understand it is going to be vague – you can always update it)