
Announcement

Homework 3 has been posted.

Due Wednesday, Nov. 9

Project 2

 vec4 light_position(1.0, 1.0, 1.0, 0.0);

 vec4 light_ambient(0.1, 0.1, 0.1, 1.0);

 vec4 light_diffuse(1.0, 1.0, 1.0, 1.0);

 vec4 light_specular(1.0, 1.0, 1.0, 1.0);

 vec4 material_ambient(0.5, 0.0, 0.0, 1.0);

 vec4 material_diffuse(0.5, 0.0, 0.0, 1.0);

 vec4 material_specular(0.5, 0.0, 0.0, 1.0);

 float material_shininess = 100;

 vec4 light_position(-1.0, 1.0, 1.0, 0.0);

Project 2: Varying Light Position

 vec4 light_position(1.0, 1.0, 1.0, 0.0);

How to Choose Light Position

• Ambient term is a constant

• Diffuse term 𝐈𝑑 = 𝐤𝑑(l · n)𝐋𝑑

• Specular term 𝐈𝑠 = 𝑘𝑠𝐿𝑠 max 𝐧 · 𝐡 𝛽, 0

Should be positive

Should be positive

 float material_shininess = 10;

Project 2: Varying Material Shininess

 float material_shininess = 100;

LookAt Function

mat4 mv = LookAt(vec4 eye, vec4 at, vec4 up);

Usually, “at” is the center of the object
vec4 at(0.0, 0.0, 0.0, 1.0);

Assuming the viewer is upright
vec4 up(0.0, 1.0, 0.0, 0.0);

You need to choose “eye” appropriately

Project 2: Varying Eye

E. Angel and D. Shreiner

Perspective()

Perspective(fovy, aspect, near, far) often
provides a better interface

• Fovy is the angle between the
top and the bottom planes

• aspect = w/h of projection
plane – the window of display

projection plane

Topics

From vertices to fragments

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Filling in the Frame Buffer

Fill at end of pipeline: coloring a point with the inside
color if it is inside the polygon

• Convex Polygons only
• Nonconvex polygons assumed to have been tessellated
• Shades (colors) have been computed for vertices

(Gouraud shading)
• Scanline fill
• Flood fill

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison

Scanline Fill: Using Interpolation

span

C1

C3

C2

C5

C4
scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
Interpolate points between C4 and C5 along span

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scan Line Fill

Can also fill by maintaining a data structure of
all intersections of polygons with scan lines

• Sort by scan line
• Fill each span

vertex order generated
 by vertex list desired order

E. Angel and D. Shreiner: Interactive
Computer Graphics 6E © Addison

Data Structure

Insertion sort is applied on the x-coordinates for each scanline

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Flood Fill

Starting with an unfilled polygon, whose edges are rasterized
into the buffer, fill the polygon with inside color (BLACK)

Fill can be done recursively if we know a seed point located
inside. Color the neighbors to (BLACK) if they are not edges.

flood_fill(int x, int y) {
 if(read_pixel(x,y)= = WHITE) {
 write_pixel(x,y,BLACK);
 flood_fill(x-1, y);
 flood_fill(x+1, y);
 flood_fill(x, y+1);
 flood_fill(x, y-1);
} }

Back-Face Removal (Culling)

Only render front-facing polygons

Reduce the work by hidden surface removal

Face is visible iff −𝜋
2
≤ 𝜃 ≤ 𝜋

2

equivalently

cos θ ≥ 0 or 𝐯 • 𝐧 ≥ 0

θ

Easy to compute

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

Back-Face Removal (Culling)

θ

• After transformation (projection
normalization), the view is orthographic

v = (0 0 1 0)T

• The coordinates are normalized device
coordinates

• If the plane of face has form
𝑎𝑎 + 𝑏𝑏 + 𝑐𝑐 + 𝑑 = 0

Need only test the sign of c
Why?

In OpenGL we can simply enable culling but may not work
correctly if we have nonconvex objects

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

𝐧 =
𝑎
𝑏
𝑐
0

, 𝑑 = 𝑃0 ∙ 𝐧

Hidden Surface Removal

Object-space algorithms:
• Consider the relationships between objects
• Reduce number of polygons
• Works better for a smaller number of objects

Image-space algorithms:
• Ray casting
• Works at fragment/pixel level
• Most popular

Hidden Surface Removal

Object-space approach: use pairwise testing between
polygons (objects)

Worst case complexity O(n2) for n polygons

partially obscuring can draw independently

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Painter’s Algorithm

Render polygons a back to front order so that polygons
behind others are simply painted over

B behind A as seen by viewer Fill B then A

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Back-to-front rendering
A depth sorting is needed!

Depth Sort

Requires ordering of polygons first
• Object-oriented hidden-surface removal
• O(n log n) calculation for ordering
• Not every polygon is either in front or behind all other

polygons

Order polygons and deal with

easy cases first, harder later

Polygons sorted by
distance from COP

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Easy Cases

Case 1: A lies behind all other polygons
• Minimum depth of A is larger than maximum

depth of the others
• Render A first

Case 2: Polygons overlap in z but not in either x
or y

• Can render independently

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Hard Cases: Overlap in All Directions

Case 3: Two polygons overlap
All vertices of one polygon are on one side of the other

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Hard Cases: Overlap in All Directions

cyclic overlap penetration

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Three or more polygons overlap

Need to divide at least one of the polygons to several
parts and find the depth order of the new polygons

Visibility Testing

In many realtime applications, such as games, we want to
eliminate as many objects as possible within the
application

• Reduce burden on pipeline
• Reduce traffic on bus

Partition space with Binary Spatial Partition (BSP) Tree

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Simple Example

consider 6 parallel polygons

top view

The plane of A separates B and C from D, E and F

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

BSP Tree

Can continue recursively
• Plane of C separates B from A
• Plane of D separates E and F

Can put this information in a BSP tree
• Use for visibility and occlusion testing

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Image Space Approach

Look at each projector (nm for an 𝑛 × 𝑚 frame buffer) and find
the closest among k polygons to COP

• Complexity O(nmk)

• Ray tracing

• z-buffer

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

z-Buffer Algorithm

Use a buffer called the z or depth buffer to store the depth of
the closest object at each pixel found so far

As we render each polygon, compare the depth of each
pixel to depth in z buffer

If less, place shade of pixel in color buffer and update z
buffer

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scan-Line Algorithm

Can combine shading and hidden surface removal
through scan line algorithm

scan line i: no need for depth
information, can only be in no
or one polygon

scan line j: need depth
information only when in
more than one polygon

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scan-Line Algorithm

A polygon is on a plane 𝑎𝑥 + 𝑏𝑏 + 𝑐𝑐 + 𝑑 = 0.

Two points on the plane with
∆𝑥 = 𝑥2 − 𝑥1
∆𝑦 = 𝑦2 − 𝑦1
∆𝑧 = 𝑧2 − 𝑧1

Then the plane equation becomes
𝑎∆𝑥 + 𝑏∆𝑦 + 𝑐∆𝑧 = 0

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Scan-Line Algorithm

As we move across a scan line, the depth changes satisfy
𝑎∆𝑥 + 𝑏∆𝑦 + 𝑐∆𝑧 = 0

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Along scan line, in screen space
∆x = 1
∆y = 0
 ∆z = - ∆x
 c

a

Implementation

Need a data structure to store
• Flag for each polygon (inside/outside)
• Incremental structure for scan lines that stores which edges

are encountered
• Parameters for planes

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Aliasing

Ideal rasterized line should be 1 pixel wide

Choosing best y for each x (or visa versa) produces
aliased raster lines

ideal actual An ideal point covers
multiple pixels

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Antialiasing by Area Averaging

Shade each pixel by the percentage of the area covered by
the ideal line

aliased antialiased

magnified

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Polygon Aliasing

Aliasing problems can be serious for polygons
• Jaggedness of edges
• Small polygons neglected
• Color of pixel is determined by the polygon
closest to the COP

Composing the color based on the weighted
 average color of all the polygons

All three polygons should contribute to color

Reading Assignment

Chapter 6.13 of Angel & Shreiner

Chapter 7 of Shreiner et al

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Buffers

Introduce additional OpenGL buffers

Learn to read from buffers

Learn to use blending

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Buffer

Define a buffer by its spatial resolution (n x m) and its
depth (or precision) k, the number of bits/pixel

pixel

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Frame Buffer
64 bits for front and back buffers

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

OpenGL Buffers

Color buffers can be displayed
• Front
• Back
• Stereo

Depth

Stencil
• Holds masks (per-pixel integers) to control rendering

Most RGBA buffers 8 bits per component

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Writing in Buffers
Conceptually, we can consider all of memory as a large
two-dimensional array of pixels

In practice, we read and write rectangular blocks of pixels
• Bit block transfer (bitblt) operations

The frame buffer is part of this memory

frame buffer
(destination)

writing into frame buffer

source memory

Writing in Buffers

Write an nxm source block with

write_block(source, n, m, x, y, destination, u, v);

Lower-left corner
of source block

Lower-left corner of
destination block

E. Angel and D. Shreiner: Interactive Computer
Graphics 6E © Addison-Wesley 2012

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Writing Model
s: source bit

d: destination bit

Read destination pixel before writing source

= 𝑓(𝑑, 𝑠)

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bit Writing Modes

Source and destination bits are combined bitwise

16 possible functions (one per column in table)

0 and 15: clear mode; 3 and 7: write mode

replace OR XOR

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

Bit Writing Modes

Background color: white

Foreground color: black

replace OR

E. Angel and D. Shreiner: Interactive Computer Graphics 6E © Addison-Wesley 2012

XOR (Exclusive OR) Mode

Property of XOR: return the original value if apply XOR twice
𝑑 = (𝑑⨁𝑠)⨁𝑠

XOR is especially useful for swapping blocks of memory such
as menus that are stored off screen (backing store)

If S represents screen and M represents a menu, the
sequence

 S ← S ⊕ M

 M ← S ⊕ M

 S ← S ⊕ M

swaps S and M

For example, S=1010, M=1100
S=S ⊕ M=0110
M=S ⊕ M=1010
S=S ⊕ M=1100

	Announcement
	Project 2
	Project 2: Varying Light Position
	How to Choose Light Position
	Project 2: Varying Material Shininess
	LookAt Function
	Project 2: Varying Eye
	Perspective()
	Topics
	Filling in the Frame Buffer
	Scanline Fill: Using Interpolation
	Scan Line Fill
	Data Structure
	Flood Fill
	Back-Face Removal (Culling)
	Back-Face Removal (Culling)
	Hidden Surface Removal
	Hidden Surface Removal
	Painter’s Algorithm
	Depth Sort
	Easy Cases
	Hard Cases: Overlap in All Directions
	Hard Cases: Overlap in All Directions
	Visibility Testing
	Simple Example
	BSP Tree
	Image Space Approach
	z-Buffer Algorithm
	Scan-Line Algorithm
	Scan-Line Algorithm
	Scan-Line Algorithm
	Implementation
	Aliasing
	Antialiasing by Area Averaging
	Polygon Aliasing
	Reading Assignment
	Buffers
	Buffer
	OpenGL Frame Buffer
	OpenGL Buffers
	Writing in Buffers
	Writing in Buffers
	Writing Model
	Bit Writing Modes
	Bit Writing Modes
	XOR (Exclusive OR) Mode

