Recall: Floyd’s Algorithm: All pairs shortest paths

In a weighted graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, $D^{(1)}$, … using an initial subset of the vertices as intermediaries.

![Graph diagram]

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>∞</td>
<td>3</td>
<td>∞</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>3</td>
<td>∞</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>∞</td>
<td>∞</td>
<td>0</td>
</tr>
</tbody>
</table>

$Weight$ $matrix$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>10</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>16</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

$Distance$ $matrix$
Similar to Warshall's Algorithm

\(d_{ij}^{(k)} \) in \(D^{(k)} \) is equal to the length of shortest path among all paths from the \(i \)th vertex to \(j \)th vertex with each intermediate vertex, if any, numbered not higher than \(k \)

\[
d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} \quad \text{for } k \geq 1, d_{ij}^{(0)} = w_{ij}
\]
Pseudocode of Floyd’s Algorithm

The next matrix in sequence can be written over its predecessor

```
ALGORITHM Floyd(W[1..n,1..n])
    D ← W
    for k ← 1 to n do
        for i ← 1 to n do
            for j ← 1 to n do
                D[i, j] ← min{D[i, j], D[i, k] + D[k, j]}
    return D
```
Chapter 9: Greedy algorithms

Change-making problem
- Coin-system in US: 25(quarter), 10 (dime), 5(nickel), 1(penny)
- If you need to give a change of 48 cents using coins,
 - 48 cents = 1 quarter + 2 dimes + 3 pennies
 - This is a greedy algorithm: reduce the amount in the fastest way

The greedy approach constructs a solution through a sequence of steps until a complete solution is reached, On each step, the choice made must be
- *Feasible*: Satisfy the problem’s constraints
- *locally optimal*: the best choice
- *Irrevocable*: Once made, it cannot be changed later
Minimum Spanning Tree (MST)

Motivation: Planning the layout of cables or water pipes with the minimum length to cover all houses in a community

→ a tree structure (a connected acyclic graph)

Spanning tree of a connected graph G

- A connected acyclic subgraph of G that includes all of G’s vertices.
- At least one spanning tree exists for G.

Minimum Spanning Tree of a weighted, connected graph G:

- A spanning tree of G of minimum total weight.
Prim’s MST algorithm

Start with tree consisting of one vertex

“Grow” tree one vertex/edge at a time to produce MST
 • Construct a series of expanding subtrees \(T_1, T_2, \ldots \)

Greedy step: at each stage construct \(T_{i+1} \) from \(T_i \); add an edge with minimum weight connecting a vertex in tree \((T_i) \) to one not yet in tree

For all vertices that are not yet in the tree, we have two groups
 • Fringe nodes: has an edge to at least one node in current tree \(T_i \)
 • unseen nodes: no edge to any node in \(T_i \)

A priority queue is used
 • The node with highest priority will be select
 • The priority queue will be updated every time when a new vertex is added

Algorithm stops when all vertices are included
ALGORITHM \(Prim(G) \)

//Prim’s algorithm for constructing a minimum spanning tree
//Input: A weighted connected graph \(G = (V, E) \)
//Output: \(E_T \), the set of edges composing a minimum spanning tree of \(G \)

\(V_T \leftarrow \{v_0\} \) //the set of tree vertices can be initialized with any vertex

\(E_T \leftarrow \emptyset \)

\textbf{for } i \leftarrow 1 \textbf{ to } |V| - 1 \textbf{ do}

\hspace{1em} \text{find a minimum-weight edge } e^* = (v^*, u^*) \text{ among all the edges } (v, u)

\hspace{1em} \text{such that } v \text{ is in } V_T \text{ and } u \text{ is in } V - V_T

\hspace{1em} V_T \leftarrow V_T \cup \{u^*\}

\hspace{1em} E_T \leftarrow E_T \cup \{e^*\}

\textbf{return } E_T
An Example:

Finding the MST of the following graph using Prim’s algorithm
Step 1:

Start from empty tree T, pick one vertex, $a(-,-)$ and add it to T

Priority queue: $b(a,3)$, $f(a,5)$, $e(a,6)$, $c(-,\infty)$, $d(-,\infty)$
Step 2:

Add the minimum-weight fringe edge \(b(a,3) \) into \(T \)

Priority queue: \(c(b,1), f(b,4), e(a,6), d(-,\infty) \)
Step 3:

Add the minimum-weight fringe edge $c(b,1)$ into T

Priority queue: $f(b,4), d(c,6), e(a,6)$
Step 4:

Add the minimum-weight fringe edge $f(b,4)$ into T

Priority queue: $e(f,2), d(f,5)$
Step 5:

Add the minimum-weight fringe edge $e(f,2)$ into T

Priority queue: $d(f,5)$
Step 6:

Add the minimum-weight fringe edge $d(f,5)$ into T

No remaining vertices and the algorithm is done!
An Example

<table>
<thead>
<tr>
<th>Tree vertices</th>
<th>Priority queue for the fringe vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>a((-, -))</td>
<td>b(a,3), d(a,4), c(a,5), e((-, \infty)), f((-, \infty)), g((-, \infty)), h((-, \infty)), i((-, \infty)), j((-, \infty)), k((-, \infty)), l((-, \infty))</td>
</tr>
<tr>
<td>b(a,3)</td>
<td>e(b,3), d(a,4), c(a,5), f(b,6), g((-, \infty)), h((-, \infty)), i((-, \infty)), j((-, \infty)), k((-, \infty)), l((-, \infty))</td>
</tr>
<tr>
<td>e(b,3)</td>
<td>d(e,1), f(e,2), i(e,4), c(a,5), g((-, \infty)), h((-, \infty)), j((-, \infty)), k((-, \infty)), l((-, \infty))</td>
</tr>
<tr>
<td>d(e,1)</td>
<td>c(d,2), f(e,2), i(e,4), h(d,5), g((-, \infty)), j((-, \infty)), k((-, \infty)), l((-, \infty))</td>
</tr>
<tr>
<td>c(d,2)</td>
<td>f(e,2), g(c,4), i(e,4), h(d,5), j((-, \infty)), k((-, \infty)), l((-, \infty))</td>
</tr>
<tr>
<td>f(e,2)</td>
<td>g(c,4), i(e,4), h(d,5), j(f,5), k((-, \infty)), l((-, \infty))</td>
</tr>
<tr>
<td>g(c,4)</td>
<td>h(g,3), i(e,4), j(f,5), k(g,6), l((-, \infty))</td>
</tr>
<tr>
<td>h(g,3)</td>
<td>i(e,4), j(f,5), k(g,6), l((-, \infty))</td>
</tr>
<tr>
<td>i(e,4)</td>
<td>j(i,3), l(i,5), k(g,6)</td>
</tr>
<tr>
<td>j(i,3)</td>
<td>l(i,5), k(g,6)</td>
</tr>
<tr>
<td>l(i,5)</td>
<td>k(g,6)</td>
</tr>
<tr>
<td>k(g,6)</td>
<td></td>
</tr>
</tbody>
</table>
An Example

The MST consists of the edges ab, be, ed, dc, ef, cg, gh, ei, ij, il, and gk
Lemma: Let T_{i-1} be part of the minimum spanning tree T, which contains a subset of the vertices of $G(X)$. Let edge e be the smallest-weight edge connecting X (tree T_{i-1}) to $G - X$ (remaining vertices). Then e (minimum-weight fringe edge) is part of the MST

Proof: Using contradiction, suppose $e = (u, v)$ is not part of MST. Then there is another edge $e' = (u', v')$ between X and $G - X$ and belongs to MST. Replace e' by e will result in a spanning tree with smaller total weight than MST. Contradiction!
Notes on Prim’s algorithm

To locate the minimum-weight fringe edge, we can use the heap structure. But here we use the min-heap, where the root has a key smaller than both children.

- Construct the min-heap -- $O(|V|)$
- Delete the min -- $O(\log |V|)$, it can be performed $|V|-1$ times
- Verify minimum weight from any remaining vertex to the tree -- this may be performed $|E|$ times. Each verification may result in a key priority change in the heap, which takes $O(\log |V|)$.
- Therefore, the total complexity is $O[|V|+(|V|-1+|E|)\log |V|]=O(|E| \log |V|)$
MinHeap and Prim’s Algorithm

\(b(a, 3), f(a, 5), e(a, 6), c(-\infty), d(-\infty) \)

\(c(b, 1), f(b, 4), e(a, 6), d(-\infty) \)

\(f(b, 4), d(c, 6), e(a, 6) \)
Dijkstra’s Algorithm – Single-Source Shortest Paths

Single-source short paths problem – find the shortest path starting from a given vertex to any other vertex

Example: hub airports for airplane planning

Using greedy strategy to find the single-source shortest paths

• In Floyd’s algorithm, we find the all-pair shortest paths, which may not be necessary in many applications
• Certainly, all-pair shortest paths contain the single-source shortest paths. But Floyd’s algorithm has \(O(|V|^3)\) complexity!

There are many algorithms that can solve this problem, here we introduce the Dijkstra’s algorithm

Note: Dijkstra’s algorithm only works when all the edge-weight are nonnegative.
Dijkstra’s Algorithm on Undirected Graph

Similar to Prim’s MST algorithm, with the following difference:

• Start with tree consisting of one vertex – **source**
• “grow” tree one vertex/edge, which has minimum length of path, at a time to produce spanning tree
 – Construct a series of expanding subtrees T_1, T_2, …
• Keep track of shortest path from source to each of the vertices in T_i
• at each stage **construct** T_{i+1} from T_i: add minimum weight edge connecting a vertex in tree (T_i) to one not yet in tree
 – choose from “fringe” nodes
 – (this is the “greedy” step!)
• algorithm stops when all vertices are included
Example:

Find the shortest paths starting from vertex a
Step 1:

Tree vertices: $a(-,0)$

Priority queue: $b(a,3), d(a,7), c(-,\infty), e(-,\infty)$
Step 2:

Tree vertices: $a(-,0)$, $b(a,3)$,

Priority queue: $d(a,7) \rightarrow d(b,3+2)$, $c(-,\infty) \rightarrow c(b,3+4)$, $e(-,\infty)$
Step 3:

Tree vertices: \(a(-0), b(a,3), d(b,5)\)

Priority queue: \(c(b,3+4), e (-\infty) \rightarrow e(d,5+4)\)
Step 4:

Tree vertices: $a(-,0), b(a,3), d(b,5), c(b,7)$

Priority queue: $e(d,9)$
Step 5:

Tree vertices: a(-,0), b(a,3), d(b,5), c(b,7), e(d,9)

Remaining vertices: none → the algorithm is done!
Output the Single-Source Shortest Paths

Tree vertices: \(a(-,0), b(a,3), d(b,5), c(b,7), e(d,9) \)

- from a to b: a-b of length 3
- from a to d: a-b-d of length 5
- from a to c: a-b-c of length 7
- from a to e: a-b-d-e of length 9