Announcement

Programming assignment # 3 has been posted in both Blackboard and course website

Due at: 11:59pm EST, Sunday, April 10

Announcement

We will have a quiz on Tuesday, April 5. The quiz is about the question of using Floyd's algorithm for all-pairs shortest paths

Chapter 8: Dynamic Programming

Dynamic Programming is a general algorithm design technique

Invented by American mathematician Richard Bellman in the 1950s to solve optimization problems

"Programming" here means "planning"

Main idea:

- solve several smaller (overlapping) subproblems
 Compared to
 - Divide-and-conquer: two non-overlapping subproblems
 - Decrease-and-conquer: one non-overlapping subproblem
- record solutions in a table so that each subproblem is only solved once
- final state of the table will be (or contain) the solution

Example: Fibonacci numbers

Recall definition of Fibonacci numbers:

$$f(0) = 0$$

 $f(1) = 1$
 $f(n) = f(n-1) + f(n-2)$

Computing the n^{th} Fibonacci number recursively (top-down):

• • •

Example: Fibonacci numbers

Computing the *n*th Fibonacci number using bottom-up iteration:

$$f(0) = 0$$

$$f(1) = 1$$

$$f(2) = 0+1 = 1$$

$$f(3) = 1+1 = 2$$

$$f(4) = 1+2 = 3$$

$$f(5) = 2+3 = 5$$

- A table stores the history
- Record only the previous two results

• • •

$$f(n-2) =$$

 $f(n-1) =$
 $f(n) = f(n-1) + f(n-2)$

Examples of Dynamic Programming Algorithms

Warshall's algorithm for transitive closure

Floyd's algorithms for all-pairs shortest paths

Some instances of difficult discrete optimization problems:

- travelling salesman
- knapsack

Transitive Closure

In a **directed graph** with *n* vertices:

• A *transitive closure* is an nxn boolean matrix $T = \{t_{ij}\}$

$$\mathbf{R}_{ij} = \begin{cases} 1 & \text{There is a directed } \mathbf{path} \text{ from vertex i to vertex j} \\ 0 & \text{otherwise} \end{cases}$$

Problem: Computes the transitive closure of a graph

Solution: find all paths in a directed graph

Main idea: a path exists between two vertices i, j, iff

- •there is an edge from i to j; or
- •there is a path from i to j going through vertex 1; or
- •there is a path from i to j going through vertex 1 and/or 2; or
- •there is a path from i to j going through vertex 1, 2, and/or 3;
- •
- •there is a path from i to j going through any of the other vertices

Construct the transitive closure in a sequence of steps

In the k^{th} stage determine if a path exists between two vertices i, j using intermediate vertices numbered within $1, \ldots, k$

• $R^{(0)}$ does not allow any intermediate vertex and is equal to adjacency matrix

Pseudocode of Warshall's Algorithm

```
ALGORITHM Warshall(A[1..n,1..n])
R^{(0)} \leftarrow A
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
R^{(k)}[i,j] \leftarrow R^{(k-1)}[i,j] \text{ or } (R^{(k-1)}[i,k] \text{ and } R^{(k-1)}[k,j])
return R^{(n)}
```


No new path through c

No new path through e

Second Example

$$R^{(2)} = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$R^{(3)} = \begin{bmatrix} a & b & c & d \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$R^{(4)} = \begin{bmatrix} a & b & c & d \\ b & 1 & 1 & 1 \\ c & 0 & 0 & 0 \\ d & 1 & 1 & 1 \end{bmatrix}$$

Time efficiency? Best case? $\Theta(n^3)$ Average case? $\Theta(n^3)$ Worst case? $\Theta(n^3)$

Floyd's Algorithm: All pairs shortest paths

In a weighted graph, find shortest paths between every pair of vertices

Same idea: construct solution through series of matrices $D^{(0)}$, $D^{(1)}$, ... using an initial subset of the vertices as intermediaries.

Similar to Warshall's Algorithm

 $d_{ij}^{(k)}$ in $D^{(k)}$ is equal to the length of shortest path among all paths from the *i*th vertex to *j*th vertex with each intermediate vertex, if any, numbered not higher than k

$$d_{ij}^{(k)} = \min\{d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)}\} \text{ for } k \ge 1, d_{ij}^{(0)} = w_{ij}$$

Pseudocode of Floyd's Algorithm

The next matrix in sequence can be written over its predecessor

```
ALGORITHM Floyd(W[1..n,1..n])
D \leftarrow W
for k \leftarrow 1 to n do
for i \leftarrow 1 to n do
for j \leftarrow 1 to n do
D[i,j] \leftarrow \min\{D[i,j],D[i,k]+D[k,j]\}
return D
```


No new path through a

No new path through c

No new path through e

$$D = D^{(5)} = \begin{cases} a & 0 & \infty & \infty & \infty \\ b & 3 & 0 & 2 & \infty & \infty \\ c & \infty & \infty & 0 & \infty & \infty \\ d & 107 & 6 & 0 & \infty \\ e & 1 & 9 & 8 & 2 & 0 \end{cases}$$

Second Example

$$D^{(0)} = \begin{bmatrix} a & b & c & d \\ \hline 0 & \infty & 3 & \infty \\ \hline 2 & 0 & \infty & \infty \\ \hline 2 & 0 & \infty & \infty \\ \hline 0 & \infty & \infty & \infty \end{bmatrix}$$

$$D^{(2)} = \begin{bmatrix} a & b & c & d \\ 0 & \infty & 3 & \infty \\ 2 & 0 & 5 & \infty \\ 2 & 0 & 5 & \infty \\ \hline 9 & 7 & 0 & 1 \\ 6 & \infty & 9 & 0 \end{bmatrix}$$

$$D^{(3)} = \begin{array}{c|cccc} a & 0 & \mathbf{10} & 3 & \mathbf{4} \\ b & 2 & 0 & 5 & \mathbf{6} \\ c & 9 & 7 & 0 & 1 \\ d & \mathbf{6} & \mathbf{16} & 9 & 0 \end{array}$$

$$D^{(4)} = \begin{bmatrix} a & b & 0 & 0 \\ b & 0 & 10 & 3 & 4 \\ 2 & 0 & 5 & 6 \\ 7 & 7 & 0 & 1 \\ 6 & 16 & 9 & 0 \end{bmatrix}$$

Time efficiency? $\Theta(n^3)$ for all cases

if using adjacency matrix in implementation