
Announcement

Programming Assignment #2 has been posted in Blackboard
and course website

Due at 11:59pm, Tuesday, March 29

5 20

124 7

2

(a)

10

1

8

10

1

0

-1

0

0

5 20

4 7

2

(b)

10

2

8

00

1

0

-1

0

Representation Change – Balanced Binary

Search Trees (AVL Trees)

An AVL tree Not an AVL tree

The AVL tree is named after its two inventors, G.M. Adelson-Velsky
and E.M. Landis, who published it in their 1962 paper "An algorithm
for the organization of information.“

AVL tree is a balanced binary search tree.

The number shown above the node is its balance factor

balance factor = height of left subtree - height of right subtree

For an AVL tree, |balance factor| <=1

General Case: Single R-rotation

321 TrTcT 

Height(T1)=Height(T2)=Height(T3)

1

0

Last inserted node

Insert a node

1

2 0

0
Single R-rotation

General Case: Double LR-rotation

4321 TrTgTcT 

0

1 2

-1
Insert a node

Last inserted node

0

-1/00/1
Double LR-rotation

Height(T1)=Height(T4)= Height(T2)+1= Height(T3)+1

Notes on AVL Tree

  3277.1)2(log4405.1log 22 −+ nhn

1.0log01.1 2 +n

Operations in an AVL Tree

Searching: Θ(logn)

Insertion: a new node is inserted at the leaf position

• Searching Θ(logn)

• Rebalance (bottom up) Θ(logn)

Deletion:

• Searching: Θ(logn)

• Deletion:

– A leaf or a non-leaf node with only one child, remove it. Θ(1)

– Otherwise, replace it with either the largest in its left subtree or
the smallest in its right subtree, and remove that node. Θ(logn)

• Rebalance Θ(logn)

Drawbacks: need rotation frequently to rebalance the tree

Other Search Trees

2-3 Tree – A Multiway Search Tree

• A search tree may have 2-node and 3-node

• Height balanced – all leaves are on the same level

• Constructed by successive insertions of keys

• A new key is always inserted into a leaf of the tree. If the
leaf is a 3-node (with two keys) already, it’s split into two
with the middle key promoted to the parent.

An Example of 2-3 Tree Construction

Construct a 2-3 tree for the list 9, 5, 8, 3, 2, 4, 7

9

>
8

955, 9 5, 8, 9

8

93, 5

2, 3, 5

8

9

>

>

3, 8

92 5

3, 8

92 4, 5

3, 8

4, 5, 72 9

> 3, 5, 8

2 4 7 9

5

3

42

8

97

Note on 2-3 Tree

• Height of the tree log3 (n + 1) - 1  h  log2 (n + 1) - 1

• Time efficiency

• Search, insertion, and deletion are in (log n)

The idea of 2-3 tree can be generalized by allowing more keys
per node

• 2-3-4 trees

• B-trees

Representation Change – Heap and Heapsort

Recall: A priority queue is the ADT (abstract data type) of an
ordered set with the operations:

• find element with highest priority

• delete element with highest priority

• insert element with assigned priority

Applications:

• Scheduling in computer operating system, traffic management,
communication networks

• Critical data structure for implementing many algorithms

– Prim’s algorithm

– Dijkstra’s algorithm

– Huffman coding

Heaps are very good for implementing priority queues

Representation Change – Heap and Heapsort

Definition:

A heap is a binary tree with the following conditions:

(1) it is essentially complete: all its levels are full except
possibly the last level, where only some rightmost leaves may
be missing

(2) The key at each node is ≥ keys at its children

Which tree is a heap, why?

An Example:

10

5

4 2

7

1

10

5

2

7

1

10

5

6 2

7

1

Definition implies

• Given n, there exists a unique binary tree with n nodes that
is essentially complete, with h= log2n

• Parent dominate

• Maxheap

• The parent has a value larger or equal than its children

• The root has the largest key

• Don’t confuse it with a BST

• There is no relationship between the left and right subtrees

• The subtree rooted at any node of a heap is also a heap

• Priority queue

• A useful structure in many algorithms

Heap Implementation

A heap can be implemented as an array H[1..n] by recording
its elements in the top-down left-to-right fashion.

Leave H[0] empty

First elements are parental node keys and the last
elements are leaf keys

i-th element’s children are located in positions 2i and 2i+1

10

5

4 2

7

1

10 5 7 4 2 1

0 1 2 3 4 5 6Index

value

 2/n  2/n

Therefore

   2/,...,2,1,]12[],2[max][niiHiHiH =+ for

Heap Construction -- Bottom-up Approach

Heap Construction -- Construct a heap for a given list of keys

Initialize an essentially complete binary tree with the given
order of the n keys

• Starting from the last parental node to the first parental node,
check whether

• If not, swap parental and child keys to satisfy this requirement

Note that if a certain parental key is swapped with one child,
we need to keep checking this key at its new location until no
more swap is required or a leaf key is reached

 ]12[],2[max][+ iHiHiH

An Example:

7

2

9

6 5 8

>

2

9

6 5

8

7

2

9

6 5

8

7

2

9

6 5

8

7

>

9

2

6 5

8

7

9

6

2 5

8

7

>

Another Example: {2 4 5 3 1 9 7}

2

4

3

5

91 7

8 6

2

4

8

5

91 7

3 6

2

4

8

9

51 7

3 6

2

8

4

9

51 7

3 6

2

8

6

9

51 7

3 4

9

8

6

2

51 7

3 4

9

8

6

7

51 2

3 4

HeapBottomUp Code

Use the larger children

Swap the parent key with the larger children

Keep checking the key

Algorithm Efficiency

In the worst case, the tree is complete, i.e, n=2k-1

The height of the tree

In the worst case, each key on level i of the tree will travel to
leaf level h

Two key comparisons (finding the larger children and
determine whether to swap with the parental key) are
needed to move down one level (level i has 2i keys)

  1log2 −== knh

)(

))1(log(22)(2)(2)(2

1

0

1

0
 levelin

keys all

n

nnihihnT
h

i

i
h

i
i

worst



+−=−=−=  
−

=

−

=

The root

The level above the leaf level

෍

𝒊=𝟎

𝒉

𝟐𝒊=𝟐𝒉+𝟏−𝟏

෍

𝒊=𝟏

𝒉

𝒊𝟐𝒊=(𝒉−𝟏)𝟐𝒉+𝟏+𝟐

Heap Construction – Top-down Approach

It is based on the operation of inserting a new item to an
existing heap, and maintain a heap

Inserting a new key to the existing heap (analogue to insertion
sort) is achieved by

• Insert the new key as the last element in array H as a leaf of
the binary tree

• Compare this new key to its parent and swap if the parental
key is smaller

• If such a swap happened, repeat this for this key with its new
parent until there is no swap happened or it gets to the root

An Example:

Insert a new key 10 into the heap with 6 keys [9 6 8 2 5 7]

9

6

2 5

8

7 10

9

6

2 5

10

7 8

> >

10

6

2 5

9

7 8

Note

The time efficiency of each insertion algorithm is
because the height of the tree is Θ(log2n)

A heap can be constructed by inserting the given list of keys
into the heap (initially empty) one by one.

Construct a heap from a list of n keys using this insertion
algorithm, in the worst case, will take the time

)(logn

)log(log
1

nni
n

i


=

Bottom-up Versus Top-down

Time efficiency:

• Bottom-up

• Top-down

Space:

• Bottom-up: fixed size n+1 array

• Top-down: need to allocate array every time of insertion

When we use top-down?

)(n

)log(nn

The top-down heap construction is less

efficient than the bottom-up heap construction

The application of priority queue.

Delete an Item From the Heap

Let’s consider only the operation of deleting the root’s key,
i.e., the largest key

It can be achieved by the following three consecutive steps

(1) Exchange the root’s key with the last key K of the heap

(2) Decrease the heap’s size by 1 (remove the last key)

(3) “Heapify” the remaining binary tree by shifting the key K
down to its right position using the same technique used in
bottom-up heap construction (compare key K with its child
and decide whether a swap with a child is needed. If no, the
algorithm is finished. Otherwise, repeat it with its new
children until no swap is needed or key K has become a
leaf)

An Example:

Delete the largest key 9

9

8

2 5

6

1

1

8

2 5

6

9

> > >

1

8

2 5

6

8

5

2 1

6
Step 1 Step 2 Step 3

Notes On Key Deletion

The required # of comparison or swap operations is no more
than the height of the heap. The time efficiency of deleting
the root’s key is then

Question: How to delete an arbitrary key from the heap?

• Search for the key

• It is similar to the three-step root-deletion operation

– Exchange with the last element K

– “Heapify” the new binary tree. But it may be shift up or down,
depending on the value of K

)(logn

)(n
)(logn

Heapsort

Two Stage algorithm to sort a list of n keys

First, heap construction

Second, sequential root deletion (the largest is deleted first,
and the second largest one is deleted second, etc …)

)(n

10

6

2

8

75 4

1

1

6

2

8

75 4

10

Step1

1

6

2

8

75 4

8

6

2

1

75 4

8

6

2

7

15 4

Step2

Step3 Step5

Step1
8

6

2

7

15 4

Step2

Step3

4

6

2

7

15 8

4

6

2

7

15

7

6

2

4

15

Step1
Step2

Step3

7

6

2

4

15

1

6

2

4

75

6

1

2

4

5

1

6

2

4

5

6

5

2

4

1

Step4

Step1
Step2

Step3

6

5

2

4

1

Step4

1

5

2

4

6

1

5

2

4

5

1

2

4

5

2

1

4

Step1
Step2

Step3

5

2

1

4

1

2

5

4

1

2 4

4

2 1

4

2 1

Step1
1

2 4

Step2

1

2

Step3

2

1

Notes on Heapsort

Time efficiency:

• Worst case

• Average case efficiency is also

Advantage: in place – no additional space needed

Disadvantage: not stable

)log(log2)(
1

1

2 nninC
n

i

= 
−

=

)log(nn

Reading Assignment

Chapter 6.5 and 6.6

