Announcement

HW #3 has been posted on the website and Blackboard.
Due: Thursday, Feb. 24 before class starts
Chapter 4: Decrease and Conquer

Reduce problem instance to smaller instance of the same problem

Solve smaller instance

Extend solution of smaller instance to obtain solution to original problem

Also referred to as inductive or incremental approach
Examples of Decrease and Conquer

Decrease by one:
- Insertion sort
- Graph search algorithms:
 - DFS
 - BFS
 - Topological sorting

Decrease by a constant factor
- Binary search

Variable-size decrease
- Euclid’s algorithm for computing gcd
- Selection by partition
Decrease-by-one -- Insertion Sort

This is a typical decrease-by-one technique

Assume $A[0..i-1]$ has been sorted, how to achieve the sorted $A[0..i]$?

Solution: insert the last element $A[i]$ to the correct position

Comparison direction

\[
A[0] \leq \ldots \leq A[j] < A[j+1] \leq \ldots \leq A[i-1] \quad | \quad A[i] \ldots A[n-1]
\]

smaller than or equal to $A[i]$ \quad greater than $A[i]$
Insertion Sort

ALGORITHM InsertionSort(A[0..n – 1])
//Sorts a given array by insertion sort
//Input: An array A[0..n – 1] of n orderable elements
//Output: Array A[0..n – 1] sorted in nondecreasing order
for i ← 1 to n – 1 do
 v ← A[i]
 j ← i – 1
 while j ≥ 0 and A[j] > v do
 j ← j – 1
 A[j + 1] ← v

Input size? Basic operations?

\[C_{\text{best}}(n) = \sum_{i=1}^{n-1} 1 = n - 1 \in \Theta(n) \]
\[C_{\text{worst}}(n) = \sum_{i=1}^{n-1} \sum_{j=0}^{i-1} 1 = \frac{n(n-1)}{2} \in \Theta(n^2) \]
\[C_{\text{average}}(n) \approx \frac{n^2}{4} \in \Theta(n^2) \]
Insertion Sort Examples

Sort the numbers in a non-decreasing order

(a) 12 1 13 6 22 4
(b) 1 4 6 12 13 22
(c) 22 13 12 6 4 1

How many comparisons you need?
Insertion Sort Examples

1+1+3+1+5=11 comparisons
Graph Traversal

Many problems require processing all graph vertices in systematic fashion

Graph traversal algorithms:
- Depth-first search (DFS)
- Breadth-first search (BFS)

They can be treated as decrease-by-one strategy.
Depth-First Search (DFS)

- Visits graph’s vertices by always moving away from last visited vertex to an unvisited one, backtracks if no adjacent unvisited vertex is available.

- Uses a stack
 - a vertex is pushed onto the stack when it’s reached for the first time
 - a vertex is popped off the stack when it becomes a dead end, i.e., when there is no adjacent unvisited vertex

- Construct a DFS forest
Example – Undirected Graph

Input Graph

Stack push/pop

DFS forest
(Tree/Back edge)
Example – Undirected Graph

Input Graph

Adjacency matrix

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>i</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>j</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Adjacency linked list

- $a \rightarrow c \rightarrow d \rightarrow e$
- $b \rightarrow e \rightarrow f$
- $c \rightarrow a \rightarrow d \rightarrow f$
- $d \rightarrow a \rightarrow c$
- $e \rightarrow a \rightarrow b \rightarrow f$
- $f \rightarrow b \rightarrow c \rightarrow e$
- $g \rightarrow h \rightarrow j$
- $h \rightarrow g \rightarrow i$
- $i \rightarrow h \rightarrow j$
- $j \rightarrow g \rightarrow h$
Example – Undirected Graph

Input Graph

Stack push/pop

DFS forest
(Tree/Back edge)
Depth-first search (DFS)

Pseudo code for Depth-first search of graph $G = (V, E)$

ALGORITHM $DFS(G)$

// Input: Graph $G = \langle V, E \rangle$

// Output: Graph G with its vertices marked with consecutive integers in the order they've been first visited by DFS traversal

mark each vertex in V with 0 // label as unvisited

$count \leftarrow 0$

for each vertex v in V do

 if v is marked with 0

 $dfs(v)$

///

for each vertex w in V adjacent to v do

 if w is marked with 0

 $dfs(w)$

Sub-algorithm
Example – Directed Graph (Digraph)

Original Diagraph

DFS forest

Stack push/pop
DFS Forest and Stack

Four types of edges:
- Tree edge: parent to child (solid lines)
- Back edge: descendant to an ancestor
- Forward edge (directed graph only): a link to a nonchild descendant
- Cross edge (directed graph only): other edges

How many back edges? 1
Forward edges? 0
Cross edges? 3
DFS: Notes

DFS can be implemented with graphs represented as:

- Adjacency matrices: $\Theta(|V|^2)$
- Adjacency linked lists: $\Theta(|V|+|E|)$

Why?

Yields two distinct ordering of vertices:

- Preorder traversal: as vertices are first encountered (pushed onto stack)
- Postorder traversal: as vertices become dead-ends (popped off stack)

Applications:

- checking connectivity, finding connected components
- checking acyclicity
Breadth-First Search (BFS)

Explore graph moving across to all the neighbors of last visited vertex

Similar to level-by-level tree traversals

Instead of a *stack (LIFO)*, breadth-first uses *queue (FIFO)*

Applications: same as DFS
BFS Example – undirected graph

Input Graph
(Adjacency matrix / linked list)

BFS forest
(Tree edge / Cross edge)

Queue
BFS algorithm

ALGORITHM BFS(G)

//Input: Graph $G = \langle V, E \rangle$
//Output: Graph G with its
//vertices marked with
//consecutive integers in the
//order they’ve been visited by
//BFS traversal

count ← 0
mark each vertex with 0
for each vertex v in V do
 if v is marked with 0
 bfs(v)

$bfs(v)$

count ← count + 1
mark v with $count$
initialize queue with v
while queue is not empty do
 for each vertex w adjacent to the front
 vertex do
 if w is marked with 0
 count ← count + 1
 mark w with $count$
 add w to the end of the queue
 remove the front vertex from the queue
Example – Directed Graph

BFS traversal:
BFS Forest and Queue

How many cross edges? 4
Breadth-first search: Notes

BFS has same efficiency as DFS and can be implemented with graphs represented as:

- Adjacency matrices: $\Theta(|V|^2)$
- Adjacency linked lists: $\Theta(|V|+|E|)$

Yields single ordering of vertices (order added/deleted from queue is the same)
Graph Traversal

▪ **DFS**
 ▪ Uses a stack
 ▪ Yields two distinct ordering of vertices:
 - Preorder traversal: as vertices are first encountered (pushed onto stack)
 - Postorder traversal: as vertices become dead-ends (popped off stack)
 ▪ Result in a DFS forest
 -- Tree edges, back edges, forward edges, and cross edges

▪ **BFS**
 ▪ Uses a queue
 ▪ Yields one ordering of vertices
 ▪ Result in a BFS forest with tree edges and cross edges

▪ **Both DFS and BFS have efficiency**
 • Adjacency matrices: $\Theta(|V|^2)$
 • Adjacency linked lists: $\Theta(|V|+|E|)$