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he primary role of routers is to forward packets
toward their final destinations. To this purpose, a
router must decide for each incoming packet where to
send it next. More exactly, the forwarding decision

consists of finding the address of the next-hop router as well
as the egress port through which the packet should be sent.
This forwarding information is stored in a forwarding table
that the router computes based on the information gathered
by routing protocols. To consult the forwarding table, the
router uses the packet’s destination address as a key; this
operation is called address lookup. Once the forwarding
information is retrieved, the router can transfer the packet
from the incoming link to the appropriate outgoing link, in a
process called switching.

The exponential growth of the Internet has stressed its
routing system. While the data rates of links have kept pace
with the increasing traffic, it has been difficult for the packet
processing capacity of routers to keep up with these increased
data rates. Specifically, the address lookup operation is a
major bottleneck in the forwarding performance of today’s
routers. This article presents a survey of the latest algorithms
for efficient IP address lookup. We start by tracing the evolu-
tion of the IP addressing architecture. The addressing archi-
tecture is of fundamental importance to the routing
architecture, and reviewing it will help us to understand the
address lookup problem.

The Classful Addressing Scheme
In IPv4, IP addresses are 32 bits long and, when broken up
into 4 groups of 8 bits, are normally represented as four deci-
mal numbers separated by dots. For example, the address
10000010_01010110_00010000_01000010 corresponds in dot-
ted-decimal notation to 130.86.16.66.

One of the fundamental objectives of the Internet Protocol
is to interconnect networks, so routing on a network basis was
a natural choice (rather than routing on a host basis). Thus,

the IP address scheme initially used a simple two-level hierar-
chy, with networks at the top level and hosts at the bottom
level. This hierarchy is reflected in the fact that an IP address
consists of two parts, a network part and a host part. The net-
work part identifies the network to which a host is attached,
and thus all hosts attached to the same network agree in the
network part of their IP addresses.

Since the network part corresponds to the first bits of the IP
address, it is called the address prefix. We will write prefixes as
bit strings of up to 32 bits in IPv4 followed by a *. For example,
the prefix 1000001001010110* represents all the 216 addresses
that begin with the bit pattern 1000001001010110. Alternatively,
prefixes can be indicated using the dotted-decimal notation, so
the same prefix can be written as 130.86/16, where the number
after the slash indicates the length of the prefix.

With a two-level hierarchy, IP routers forwarded packets
based only on the network part, until packets reached the des-
tination network. As a result, a forwarding table only needed
to store a single entry to forward packets to all the hosts
attached to the same network. This technique is called address
aggregation and allows using prefixes to represent a group of
addresses. Each entry in a forwarding table contains a prefix,
as can be seen in Table 1. Thus, finding the forwarding infor-
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■ Table 1. A forwarding table.

24.40.32/20 192.41.177.148 2

130.86/16 192.41.177.181 6

208.12.16/20 192.41.177.241 4

208.12.21/24 192.41.177.196 1

167.24.103/24 192.41.177.3 4

Destination address Next-hop Output interface
prefix
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mation requires searching for the prefix in the for-
warding table that matches the corresponding bits of
the destination address.

The addressing architecture specifies how the allo-
cation of addresses is performed; that is, it defines
how to partition the total IP address space of 232

addresses — specifically, how many network address-
es will be allowed and what size each of them should
be. When Internet addressing was initially designed,
a rather simple address allocation scheme was
defined, which is known today as the classful address-
ing scheme. Basically, three different sizes of net-
works were defined in this scheme, identified by a
class name: A, B, or C (Fig. 1). Network size was
determined by the number of bits used to represent
the network and host parts. Thus, networks of class A, B, or C
consisted of an 8, 16, or 24-bit network part and a corre-
sponding 24, 16, or 8-bit host part. 

With this scheme there were very few class A networks, and
their addressing space represented 50 percent of the total
IPv4 address space (231 addresses out of a total of 232). There
were 16,384 (214) class B networks with a maximum of 65,534
hosts/network, and 2,097,152 (221) class C networks with up to
256 hosts. This allocation scheme worked well in the early
days of the Internet. However, the continuous growth of the
number of hosts and networks has made apparent two prob-
lems with the classful addressing architecture. First, with only
three different network sizes from which to choose, the
address space was not used efficiently and the IP address
space was getting exhausted very rapidly, even though only a
small fraction of the addresses allocated were actually in use.
Second, although the state information stored in the forward-
ing tables did not grow in proportion to the number of hosts,
it still grew in proportion to the number of networks. This was
especially important in the backbone routers, which must
maintain an entry in the forwarding table for every allocated
network address. As a result, the forwarding tables in the
backbone routers grew very rapidly. The growth of the for-
warding tables resulted in higher lookup times and higher
memory requirements in the routers, and threatened to
impact their forwarding capacity.

The CIDR Addressing Scheme
To allow more efficient use of the IP address space and to
slow down the growth of the backbone forwarding tables, a
new scheme called classless interdomain routing (CIDR) was
introduced.

Remember that in the classful address scheme, only three
different prefix lengths are allowed: 8, 16, and 24, corre-
sponding to classes A, B and C, respectively (Fig. 1). CIDR
uses the IP address space more efficiently by allowing finer
granularity in the prefix lengths. With CIDR, prefixes can be
of arbitrary length rather than constraining them to be 8, 16,
or 24 bits long.

To address the problem of forwarding table explosion,
CIDR allows address aggregation at several levels. The idea is

that the allocation of addresses has a topological significance.
Then we can recursively aggregate addresses at various points
within the hierarchy of the Internet’s topology. As a result,
backbone routers maintain forwarding information not at the
network level, but at the level of arbitrary aggregates of net-
works. Thus, recursive address aggregation reduces the num-
ber of entries in the forwarding table of backbone routers.

To understand how this works, consider the networks rep-
resented by the network numbers from 208.12.16/24 through
208.12.31/24 (Figs. 2 and 3). Suppose that in a router all these
network addresses are reachable through the same service
provider. From the binary representation we can see that the
leftmost 20 bits of all the addresses in this range are the same
(11010000 00001100 0001). Thus, we can aggregate these 16
networks into one “supernetwork” represented by the 20-bit

prefix, which in decimal notation
gives 208.12.16/20. Note that indicat-
ing the prefix length is necessary in
decimal notation, because the same
value may be associated with prefixes
of different lengths; for instance,
208.12.16/20 (11010000 00001100
0001*) is different from 208.12.16/22
(11010000 00001100 000100*).

While a great deal of aggregation
can be achieved if addresses are care-

■ Figure 1. Classful addresses.
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■ Figure 2. Prefix aggregation.

208.12.16/24 110100000000110000010000*

208.12.21/24 110100000000110000010101*

208.12.31/24 110100000000110000011111*

208.12.16/20 11010000000011000001*

■ Figure 3. Prefix ranges.
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fully assigned, in some situations a few networks can interfere
with the process of aggregation. For example, suppose now
that a customer owning the network 208.12.21/24 changes its
service provider and does not want to renumber its network.
Now, all the networks from 208.12.16/24 through 208.12.31/24
can be reached through the same service provider, except for
the network 208.12.21/24 (Fig. 3). We cannot perform aggre-
gation as before, and instead of only one entry, 16 entries
need to be stored in the forwarding table. One solution that
can be used in this situation is aggregating in spite of the
exception networks and additionally storing entries for the
exception networks. In our example, this will result in only

two entries in the forwarding table:
208.12.16/20 and 208.12.21/24 (Fig. 4
and Table 1). Note, however, that
now some addresses will match both
entries because prefixes overlap. In
order to always make the correct for-
warding decision, routers need to do
more than to search for a prefix that
matches. Since exceptions in the
aggregations may exist, a router must

find the most specific match, which is the longest matching
prefix. In summary, the address lookup problem in routers
requires searching the forwarding table for the longest prefix
that matches the destination address of a packet.

Difficulty of the Longest Matching Prefix Search
In the classful addressing architecture, the length of the prefixes
was coded in the most significant bits of an IP address (Fig. 1),
and the address lookup was a relatively simple operation: Prefixes
in the forwarding table were organized in three separate tables,
one for each of the three allowed lengths. The lookup operation
amounted to finding an exact prefix match in the appropriate
table. The search for an exact match could be performed using

standard algorithms based on hashing or binary search.
While CIDR allows the size of the forwarding

tables to be reduced, the address lookup problem
now becomes more complex. With CIDR, the desti-
nation prefixes in the forwarding tables have arbi-
trary lengths and no longer correspond to the
network part since they are the result of an arbitrary
number of network aggregations. Therefore, when
using CIDR, the search in a forwarding table can no
longer be performed by exact matching because the
length of the prefix cannot be derived from the
address itself. As a result, determining the longest
matching prefix involves not only comparing the bit
pattern itself, but also finding the appropriate length.
Therefore, we talk about searching in two dimen-
sions: value and length. The search methods we will
review try to reduce the search space at each step in
both of these dimensions. In what follows we will use
N to denote the number of prefixes in a forwarding
table and W to indicate the maximum length of pre-
fixes, which typically is also the length of the IP
addresses.

Requirements on Address Lookup Algorithms
It is important to briefly review the characteristics of
today’s routing environment to derive adequate
requirements and metrics for the address lookup
algorithms we will survey.

As we have seen, using address prefixes is a sim-
ple method to represent groups of contiguous
addresses. Address prefixes allow aggregation of for-
warding information and hence support the growth
of the Internet. Figure 5 shows the growth of a typi-
cal backbone router table. We can observe three
phases of table growth: before the introduction of
CIDR, growth was exponential (partly visible in early
1994). From mid-1994 to mid-1998, growth slowed
down and was nearly linear. From mid-1998 to now
growth is again exponential. Since the number of
entries in router tables is still growing, it is important
that search methods drastically reduce the search
space at each step. Algorithms must be scalable with
respect to the number of prefixes.

Another characteristic of the routing environment

■ Figure 4. An exception prefix.
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■ Figure 5. Table growth of a typical backbone router.
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■ Figure 6. Prefix length distribution of a typical backbone router.
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is that a forwarding table needs to be updated dynamically
to reflect route changes. In fact, instabilities in the back-
bone routing protocols can fairly frequently change the
entries in a forwarding table. Labovitz [1] found that back-
bone routers may receive bursts of route changes at rates
exceeding several hundred prefix updates per second. He
also found that, on average, route changes occur 100
times/s. Thus, update operations must be performed in 10
ms or less.

The prefix length distribution in the forwarding tables can
be used as a metric of the quality of the Internet hierarchy
and address aggregation. Shorter prefixes represent a greater
degree of aggregation. Thus, a decrease in average prefix
length would indicate improved aggregation and hierarchy in
the Internet. In Fig. 6 we can see that the historical class C
with its 24-bit prefix length still dominates the number of
entries in the forwarding table (note that the scale is logarith-
mic). A recent study shows that the number of exceptions in
the address aggregation is growing. More precisely, Huston [2]
found that currently 40 percent of the entries of a typical back-
bone forwarding table are prefix exceptions.

The Classical Solution
A Binary Trie
A natural way to represent prefixes is using a trie. A trie is a
tree-based data structure allowing the organization of prefixes
on a digital basis by using the bits of prefixes to direct the
branching. Figure 7 shows a binary trie (each node has at
most two children) representing a set of prefixes of a forward-
ing table.

In a trie, a node on level l represents the set of all address-
es that begin with the sequence of l bits consisting of the
string of bits labeling the path from the root to that node. For
example, node c in Fig. 7 is at level 3 and represents all
addresses beginning with the sequence 011. The nodes that
correspond to prefixes are shown in a darker shade; these
nodes will contain the forwarding information or a pointer to
it. Note also that prefixes are not only located at leaves but
also at some internal nodes. This situation arises because of
exceptions in the aggregation process. For example, in Fig. 7
the prefixes b and c represent exceptions to prefix a. Figure 8
illustrates this situation better. The trie shows the total
address space, assuming 5-bit long addresses. Each leaf repre-
sents one possible address. We can see that the address spaces
covered by prefixes b and c overlap with the address space

covered by prefix a. Thus, prefixes b and c represent excep-
tions to prefix a and refer to specific subintervals of the
address interval covered by prefix a. In the trie in Fig. 7, this
is reflected by the fact that prefixes b and c are descendants of
prefix a; in other words, prefix a is itself a prefix of b and c.
As a result, some addresses will match several prefixes. For
example, addresses beginning with 011 will match both prefix-
es c and a. Nevertheless, prefix c must be preferred because it
is more specific (longest match rule).

Tries allow finding, in a straightforward way, the longest
prefix that matches a given destination address. The search in
a trie is guided by the bits of the destination address. At each
node, the search proceeds to the left or right according to the
sequential inspection of the address bits. While traversing the
trie, every time we visit a node marked as prefix (i.e., a dark
node) we remember this prefix as the longest match found so
far. The search ends when there are no more branches to
take, and the longest or best matching prefix will be the last
prefix remembered. For instance, if we search the best match-
ing prefix (BMP) for an address beginning with the bit pattern
10110 we start at the root in Fig. 7. Since the first bit of the
address is 1 we move to the right, to the node marked as pre-
fix d, and we remember d as the BMP found so far. Then we
move to the left since the second address bit is 0; this time the
node is not marked as a prefix, so d is still the BMP found so
far. Next, the third address bit is 1, but at this point there is
no branch labeled 1, so the search ends and the last remem-
bered BMP (prefix d) is the longest matching prefix.

■ Figure 7. A binary trie for a set of prefixes.
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In fact, what we are doing is a sequential prefix search by
length, trying at each step to find a better match. We begin by
looking in the set of length-1 prefixes, which are located at
the first level in the trie, then in the set of length-2, located at
the second level, and so on. Moreover, using a trie has the
advantage that while stepping through the trie, the search
space is reduced hierarchically. At each step, the set of poten-
tial prefixes is reduced, and the search ends when this set is
reduced to one.

Update operations are also straightforward to implement in
binary tries. Inserting a prefix begins by doing a search. When
arriving at a node with no branch to take, we can insert the
necessary nodes. Deleting a prefix starts again by a search,
unmarking the node as prefix and, if necessary deleting
unused node (i.e., leave nodes not marked as prefixes). Note
finally that since the bit strings of prefixes are represented by
the structure of the trie, the nodes marked as prefixes do not
need to store the bit strings themselves.

Path-Compressed Tries
While binary tries allow the representation of arbitrary-length
prefixes, they have the characteristic that long sequences of
one-child nodes may exist (see prefix b in Fig. 7). Since these
bits need to be inspected, even though no actual branching
decision is made, search time can be longer than necessary in
some cases. Also, one-child nodes consume additional memo-
ry. In an attempt to improve time and space performance, a
technique called path compression can be used. Path compres-
sion consists of collapsing one-way branch nodes. When one-
way branch nodes are removed from a trie, additional
information must be kept in remaining nodes so that a search
operation can be performed correctly.

There are many ways to exploit the path compression tech-
nique; perhaps the simplest to explain is illustrated in Fig. 9,
corresponding to the binary trie in Fig. 7. Note that the two
nodes preceding b now have been removed. Note also that
since prefix a was located at a one-child node, it has been
moved to the nearest descendant that is not a one-child node.
Since in a path to be compressed several one-child nodes may
contain prefixes, in general, a list of prefixes must be main-
tained in some of the nodes. Because one-way branch nodes
are now removed, we can jump directly to the bit where a sig-
nificant decision is to be made, bypassing the bit inspection
of some bits. As a result, a bit number field must be kept
now to indicate which bit is the next bit to inspect. In Fig. 9
these bit numbers are shown next to the nodes. Moreover,
the bit strings of prefixes must be explicitly stored. A search
in this kind of path-compressed trie is as follows. The algo-
rithm performs, as usual, a descent in the trie under the guid-
ance of the address bits, but this time only inspecting bit
positions indicated by the bit-number field in the nodes tra-
versed. When a node marked as a prefix is encountered, a

comparison with the actual prefix value is per-
formed. This is necessary since during the descent
in the trie we may skip some bits. If a match is
found, we proceed traversing the trie and keep the
prefix as the BMP so far. The search ends when a
leaf is encountered or a mismatch found. As usual,
the BMP will be the last matching prefix encoun-
tered. For instance, if we look for the BMP of an
address beginning with the bit pattern 010110 in the
path-compressed trie shown in Fig. 9, we proceed
as follows. We start at the root node and, since its
bit number is 1, we inspect the first bit of the
address. The first bit is 0, so we go to the left. Since
the node is marked as a prefix, we compare prefix a
with the corresponding part of the address (0).

Since they match, we proceed and keep a as the BMP so far.
Since the node’s bit number is 3, we skip the second bit of
the address and inspect the third one. This bit is 0, so we go
to the left. Again, we check whether the prefix b matches the
corresponding part of the address (01011). Since they do not
match, the search stops, and the last remembered BMP (pre-
fix a) is the correct BMP.

Path compression was first proposed in a scheme called
PATRICIA [3], but this scheme does not support longest pre-
fix matching. Sklower proposed a scheme with modifications
for longest prefix matching in [4]. In fact, this variant was
originally designed to support not only prefixes but also more
general noncontiguous masks. Since this feature was really
never used, current implementations differ somewhat from
Sklower’s original scheme. For example, the BSD version of
the path-compressed trie (referred to as a BSD trie) is essen-
tially the same as that just described. The basic difference is
that in the BSD scheme, the trie is first traversed without
checking the prefixes at internal nodes. Once at a leaf, the
traversed path is backtracked in search of the longest match-
ing prefix. At each node with a prefix or list of prefixes, a
comparison is performed to check for a match. The search
ends when a match is found. Comparison operations are not
made on the downward path in the hope that not many excep-
tion prefixes exist. Note that with this scheme, in the worst
case the path is completely traversed two times. In the case of
Sklower’s original scheme, the backtrack phase also needs to
do recursive descents of the trie because noncontiguous masks
are allowed.

Until recently, the longest matching prefix problem was
addressed by using data structures based on path-compressed
tries such as the BSD trie. Path compression makes a lot of
sense when the binary trie is sparsely populated; but when the
number of prefixes increases and the trie gets denser, using
path compression has little benefit. Moreover, the principal
disadvantage of path-compressed tries, as well as binary tries
in general, is that a search needs to do many memory access-
es, in the worst case 32 for IPv4 addresses. For example, for a
typical backbone router [5] with 47,113 prefixes, the BSD ver-
sion for a path-compressed trie creates 93,304 nodes. The
maximal height is 26, while the average height is almost 20.
For the same prefixes, a simple binary trie (with one-child
nodes) has a maximal height of 30 and an average height of
almost 22. As we can see, the heights of both tries are very
similar, and the BSD trie may perform additional comparison
operations when backtracking is needed.

New IP Lookup Algorithms
We have seen that the difficulty with the longest prefix match-
ing operation is its dual dimensions: length and value. The new
schemes for fast IP lookups differ in the dimension to search

■ Figure 9. A path-compressed trie.
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and whether this search is linear or binary. In the fol-
lowing, we present a classification of the different IP
lookup schemes.

A Taxonomy of IP Lookup Algorithms
Search on values approaches: Sequential search on val-
ues is the simplest method to find the BMP. The data
structure needed is just an array with unordered prefix-
es. The search algorithm is very simple. It goes through
all the entries comparing the prefix with the corre-
sponding bits of a given address. When a match is
found, we keep the longest match so far and continue.
At the end, the last prefix remembered is the BMP.
The problem with this approach is that the search
space is reduced only by one prefix at each step. Clear-
ly, the search complexity in time for this scheme is a
function of the number of prefixes O(N), and hence
the scheme is not scalable. With the search on value approach,
we get rid of the length dimension because of the exhaustive
search. It is clear that a binary search on values would be bet-
ter, and we will see in a later section how this can be done.

Search on length approaches: Another possibility is to base
the search on the length dimension and use linear or binary
search. Two possible ways to organize the prefixes for search on
length exist. In fact, we have already seen linear search on
length, which is performed on a trie. Tries allow to check the
prefixes of length i at step i. Moreover, prefixes in a trie are
organized in such a way that stepping through the trie reduces
the set of possible prefixes. As we will see in a later section,
one optimization of this scheme is using multibit tries. Multibit
tries still do linear search on length, but inspect several bits
simultaneously at each step.

The other possible way to organize the prefixes to allow a
search on length is to use a different table for each possible
length. Then linear search on length can be made by doing at
each step a search on a particular table using hashing, for
instance. We will see how Waldvogel et al. [6] use hash tables
to do binary search on length.

In addition to the algorithm-data structure aspect, various
approaches use different techniques, such as transformation of
the prefix set, compression of redundant information to reduce
the memory requirements, application of optimization techniques,
and exploitation of the memory hierarchy in computers. We
introduce each of these aspects briefly in the following subsection
and then discuss the new lookup schemes in detail according to
the algorithm-data structure aspect in the next sections.

Auxiliary Techniques
Prefix Transformation — Forwarding information is specified
with prefixes that represent ranges of addresses. Although the
set of prefixes used is usually determined by the information
gathered by the routing protocols, the same forwarding infor-
mation can be expressed with different sets of prefixes. Vari-
ous transformations are possible according to special needs,
but one of the most common prefix transformation techniques
is prefix expansion. Expanding a prefix means transforming
one prefix into several longer and more specific prefixes that
cover the same range of addresses. As an example, the range
of addresses covered by prefix 1* can also be specified with
the two prefixes 10*, 11*; or with the four prefixes 100*, 101*,
110*, 111*. If we do prefix expansion appropriately, we can
get a set of prefixes that has fewer different lengths, which can
be used to make a faster search, as we will show later.

We have seen that prefixes can overlap (Fig. 4). In a trie,
when two prefixes overlap, one of them is itself a prefix of the
other (Figs. 7 and 8). Since prefixes represent intervals of con-
tiguous addresses, when two prefixes overlap it means that

one interval of addresses contains another interval of address-
es (Figs. 4 and 8). In fact, that is why an address can be
matched to several prefixes. If several prefixes match, the
longest prefix match rule is used in order to find the most
specific forwarding information. One way to avoid the use of
the longest prefix match rule and still find the most specific
forwarding information is to transform a given set of prefixes
into a set of disjoint prefixes. Disjoint prefixes do not overlap,
and thus no address prefix is itself a prefix of another. A trie
representing a set of disjoint prefixes will have prefixes at the
leaves but not at internal nodes. To obtain a disjoint-prefix
binary trie, we simply add leaves to nodes that have only one
child. These new leaves are new prefixes that inherit the for-
warding information of the closest ancestor marked as a pre-
fix. Finally, internal nodes marked as prefixes are unmarked.
For example, Fig. 10 shows the disjoint-prefix binary trie that
corresponds to the trie in Fig. 7. Prefixes a1, a2, and a3 have
inherited the forwarding information of the original prefix a,
which now has been suppressed. Prefix d1 has been obtained
in a similar way. Since prefixes at internal nodes are expanded
or pushed down to the leaves of the trie, this technique is
called leaf pushing by Srinivasan et al. [7]. Figure 11 shows the
disjoint intervals of addresses that correspond to the disjoint-
prefix binary trie of Fig. 10.

Compression Techniques — Data compression attempts to
remove redundancy from the encoding. The idea to use com-
pression comes from the fact that expanding the prefixes
increases information redundancy. Compression should be
done such that memory consumption is decreased, and retriev-
ing the information from the compressed structure can be
done easily and with a minimum number of memory accesses.
Run-length encoding is a very simple compression technique
that replaces consecutive occurrences of a given symbol with
only one occurrence plus a count of how many times the sym-
bol occurs. This technique is well adapted to our problem
because prefixes represent intervals of contiguous addresses
that have the same forwarding information.

Application of Optimization Techniques — There are more
than one way to transform the set of prefixes. Optimization
allows us to define some constraints and find the right set of
prefixes to satisfy those constraints. Normally we want to min-
imize the amount of memory consumed.

Memory Hierarchy in Computers — One of the characteristics
of today’s computers is the difference in speed between pro-
cessor and memory, and also between memories of different
hierarchies (cache, RAM, disk). Retrieving information from
memory is expensive, so small data structures are desirable

■ Figure 10. A disjoint-prefix binary trie.
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because they make it more likely for the forwarding table to
fit into the faster cache memory. Furthermore, the number of
memory accesses must be minimized to make searching faster.

New algorithms to the longest prefix matching problem use
one or several of the aspects just outlined. We will survey the
different algorithms by classifying them according to the algo-
rithm-data structure aspect, and discuss other aspects as well.
It is worth mentioning that organizing the prefixes in different
ways allows for different trade-offs between the search and
update costs, as well as memory consumption. We discuss
these trade-offs when we explain the different schemes. We
now present in detail some of the most efficient algorithms
for IP address lookup.

Search on Prefix Lengths Using Multibit Tries
The Basic Scheme
Binary tries provide an easy way to handle arbitrary length
prefixes. Lookup and update operations are straightforward.
Nevertheless, the search in a binary trie can be rather slow
because we inspect one bit at a time and in the worst case 32
memory accesses are needed for an IPv4 address.

One way to speedup the search operation is to inspect not just
one bit a time but several bits simultaneously. For instance, if we
inspect 4 bits at a time we would need only 8 memory accesses in
the worst case for an IPv4 address. The number of bits to be
inspected per step is called stride and can be constant or variable.
A trie structure that allows the inspection of bits in strides of sev-

eral bits is called a multibit trie. Thus, a multibit trie is a trie
where each node has 2k children, where k is the stride.

Since multibit tries allow the data structure to be traversed
in strides of several bits at a time, they cannot support arbitrary
prefix lengths. To use a given multibit trie, the prefix set must
be transformed into an equivalent set with the prefix lengths
allowed by the new structure. For instance, a multibit trie cor-
responding to our example from Fig. 7 is shown in Fig. 12. We
see that a first stride of 2 bits is used, so prefixes of length 1 are
not allowed, and we need to expand prefixes a and d to pro-
duce four equivalent prefixes of length 2. In the same figure it
is shown how prefix c has been expanded to length 4. Note that
the height of the trie has decreased, and so has the number of
memory accesses when doing a search. Figure 13 shows a dif-
ferent multibit trie for our example. We can see again that pre-
fixes a and d have been expanded, but now to length 3.
However, two of the prefixes produced by expansion already
exist (prefixes c and e). We must preserve the forwarding infor-
mation of prefixes c and e since their forwarding information is
more specific than that of the expanded prefix. Thus, expansion
of prefixes a and d finally results in six prefixes, not eight. In
general, when an expanded prefix collides with an existing
longer prefix, forwarding information of the existing prefix must
be preserved to respect the longest matching rule.

Searching in a multibit trie is essentially the same as in a
binary trie. To find the BMP of a given address consists of
successively looking for longer prefixes that match. The multi-
bit trie is traversed, and each time a prefix is found at a node,
it is remembered as the new BMP seen so far. At the end, the
last BMP found is the correct BMP for the given address.
Multibit tries still do linear search on lengths as do binary
tries, but the search is faster because the trie is traversed
using larger strides.

In a multibit trie, if all nodes at the same level have the
same stride size, we say that it is a fixed stride; otherwise, it is
a variable stride. We can choose multibit tries with fixed or
variable strides. Fixed strides are simpler to implement than
variable strides, but in general waste more memory. Figure 13
is an example of a fixed-stride multibit trie, Fig. 12 a variable-
stride multibit trie.

Choice of Strides
Choosing the strides requires a trade-off between search speed
and memory consumption. In the extreme case, we could make
a trie with a single level (i.e., a one-level trie with a 32-bit stride
for IPv4). Search would take in this case just one access, but we
would need a huge amount of memory to store 232 entries.

■ Figure 11. An expanded disjoint-prefix binary trie.
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One natural way to choose strides and control memory con-
sumption is to let the structure of the binary trie determine
this choice. For example, if we look at Fig. 7, we observe that
the subtrie with its root the right child of node d is a full sub-
trie of two levels (a full binary subtrie is a subtrie where each
level has the maximum number of nodes). We can replace this
full binary subtrie with a one-level multibit subtrie. The stride
of the multibit subtrie is simply the number of levels of the
substituted full binary subtrie, two in our example. In fact, this
transformation was already made in Fig. 12. This transforma-
tion is straightforward, but since it is the only transformation
we can do in Fig. 7, it has a limited benefit. We will see later
how to replace, in a controlled way, binary subtries that are
unnecessary full subtries. The height of the multibit trie will
be reduced while controlling memory consumption. We will
also see how optimization techniques can be used to choose
the strides.

Updating Multibit Tries
Size of strides also determines update time bounds. A multibit
trie can be viewed as a tree of one-level subtries. For instance,
in Fig. 13 we have one subtrie at the first level and three sub-
tries at the second level. When we do prefix expansion in a
subtrie, what we actually do is compute for each node of the
subtrie its local BMP. The BMP is local because it is comput-
ed from a subset of the total of prefixes. For instance, in the
subtrie at the first level we are only concerned with finding for
each node the BMP among prefixes a, c, d, e. In the leftmost
subtrie at the second level the BMP for each node will be
selected from only prefix b. In the second subtrie at the sec-
ond level, the BMP is selected for each node among prefixes f

and g, and the rightmost subtrie is concerned only with prefix-
es h and i. Some nodes may be empty, indicating that there
are no BMPs for these nodes among the prefixes correspond-
ing to this subtrie. As a result, multibit tries divide the prob-
lem of finding the BMP into small problems in which local
BMPs are selected among a subset of prefixes. Hence, when
looking for the BMP of a given address, we traverse the tree
and remember the last local BMP as we go through it.

It is worth noting that the BMPs computed at each subtrie
are independent of the BMPs computed at other subtries. The
advantage of this scheme is that inserting or deleting a prefix
only needs to update one of the subtries. Prefix update is
completely local. In particular, if the prefix is or will be stored
in a subtrie with a stride of k bits, the update needs to modify
at most 2k–1 nodes (a prefix populates at most the half of the
nodes in a subtrie). Thus, choosing appropriate stride values
allows the update time to be bounded.

Local BMPs allow incremental updates, but require that
internal nodes, besides leaves, store prefixes; thus, memory
consumption is incremented. As we know, we can avoid pre-
fixes at internal nodes if we use a set of disjoint prefixes. We
can obtain a multibit trie with disjoint prefixes if we expand
prefixes at internal nodes of the multibit trie down to its
leaves (leaf pushing). Figure 14 shows the result of this pro-
cess when applied to the multibit trie in Fig. 13. Nevertheless,
note that now, in the general case, a prefix can be theoretical-
ly expanded to several subtries at all levels. Clearly, with this
approach, the BMPs computed at each subtrie are no longer
local; thus, updates will suffer longer worst case times.

As we can see, a multibit trie with several levels allows, by
varying stride k, an interesting trade-off between search time,

■ Figure 13. A fixed-stride multibit trie.
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■ Figure 14. A disjoint-prefix multibit trie.

00 01 10 1100 01 10 11

Prefixes
a 0*
b 01000*
c 011*
d 1*
e 100*
f 1100*
g 1101*
h 1110*
i 1111*

000 111110001 010 011 100 101

00 01 10 11

a a c e d

fb a a a f g g h h i i



IEEE Network • March/April 200116

memory consumption, and update time. The length of the
path can be controlled to reduce search time. Choosing larger
strides will make faster searches, but more memory will be
needed, and updates will require more entries to be modified
because of expansion.

As we have seen, incremental updates are possible with
multibit tries if we do not use leaf pushing. However, inserting
and deleting operations are slightly more complicated than
with binary tries because of prefix transformation. Inserting
one prefix means finding the appropriate subtrie, doing an
expansion, and inserting each of the resulting prefixes. Delet-
ing is still more complicated because it means deleting the
expanded prefixes and, more important, updating the entries
with the next BMP. The problem is that original prefixes are
not actually stored in the trie. To see this better, suppose we
insert prefixes 101*, 110* and 111* in the multibit trie in Fig.
13. Clearly, prefix d will disappear; and if later we delete pre-
fix 101*, for instance, there will be no way to find the new
BMP (d) for node 101. Thus, update operations need an addi-
tional structure for managing original prefixes.

Multibit Tries in Hardware
The basic scheme of Gupta et al. [8] uses a two-level multibit
trie with fixed strides similar to the one in Fig. 14. However,
the first level corresponds to a stride of 24 bits and the second
level to a stride of 8 bits. One key observation in this scheme
is that in a typical backbone router, most of the entries have
prefixes of length 24 bits or less (Fig. 6, with logarithmic scale
on the y axis). As a result, using a first stride of 24 bits allows
the BMP to be found in one memory access for the majority
of cases. Also, since few prefixes have a length longer than 24,
there will be only a small number of subtries at the second
level. In order to save memory, internal nodes are not allowed
to store prefixes. Hence, should a prefix correspond to an
internal node, it will be expanded to the second level (leaf
pushing). This process results in a multibit trie with disjoint
expanded prefixes similar to the one in Fig. 14 for the exam-
ple in Fig. 13. The first level of the multibit trie has 224 nodes
and is implemented as a table with the same number of
entries. An entry in the first level contains either the forward-
ing information or a pointer to the corresponding subtrie at
the second level. Entries in the first table need 2 bytes to
store a pointer; hence, a memory bank of 32 Mbytes is used to
store 224 entries. Actually, the pointers use 15 bits because the
first bit of an entry indicates if the information stored is the
forwarding information or a pointer to a second-level subtrie.
The number of subtries at the second level depends on the

number of prefixes longer than 24 bits. In the
worst case each of these prefixes will need a
different subtrie at the second level. Since the
stride for the second level is 8 bits, a subtrie at
the second level has 28 = 256 leaves. The sec-
ond-level subtries are stored in a second mem-
ory bank. The size of this second memory
bank depends on the expected worst case pre-
fix length distribution. In the MaeEast table
[5] we examined on August 16, 1999, only 96
prefixes were longer than 24 bits. For example,
for a memory bank of 220 entries of 1 byte
each (i.e., a memory bank of 1 Mbyte), the
design supports a maximum of 212 = 4096 sub-
tries at the second level.

In Fig. 15 we can see how the decoding of a
destination address is done to find the corre-
sponding forwarding information. The first 24
bits of the destination address are used to
index into the first memory bank (the first

level of the multibit trie). If the first bit of the entry is 0, the
entry contains the forwarding information; otherwise, the for-
warding information must be looked up in the second memory
bank (the second level of the multibit trie). In that case, we
concatenate the last 8 bits of the destination address with the
pointer just found in the first table. The result is used as an
index to look up the forwarding information in the second
memory bank.

The advantage of this simple scheme is that the lookup
requires a maximum of two memory accesses. Moreover, since
it is a hardware approach, the memory accesses can be
pipelined or parallelized. As a result the lookup operation
takes practically one memory access time. Nevertheless, since
the first stride is 24 bits and leaf pushing is used, updates may
take a long time in some cases.

Multibit Tries with the Path Compression Technique
Nilsson et al. [9] recursively transform a binary trie with pre-
fixes into a multibit trie. Starting at the root, they replace
the largest full binary subtrie with a corresponding one-level
multibit subtrie. This process is repeated recursively with
the children of the multibit subtrie obtained. Additionally,
one-child paths are compressed. Since we replace at each
step a binary subtrie of several levels with a multibit trie of
one level, the process can be viewed as a compression of the
levels of the original binary trie. Level-compressed (LC) is
the name given by Nilsson to these multibit tries. Neverthe-
less, letting the structure of the binary trie strictly determine
the choice of strides does not allow control of the height of
the resulting multibit trie. One way to further reduce the
height of the multibit trie is to let the structure of the trie
only guide, not determine, the choice of strides. In other
words, we will replace nearly full binary subtries with a
multibit subtrie (i.e., binary subtries where only few nodes
are missing).

Nilsson proposes replacing a nearly full binary subtrie with a
multibit subtrie of stride k if the nearly full binary subtrie has a
sufficient fraction of the 2k nodes at level k, where a sufficient
fraction of nodes is defined using a single parameter called fill
factor x, with 0 < x £ 1. For instance, in Fig. 7, if the fill factor
is 0.5, the fraction of nodes at the fourth level is not enough to
choose a stride of 4, since only 5 of the 16 possible nodes are
present. Instead, there are enough nodes at the third level (5 of
the 8 possible nodes) for a multibit subtrie of stride 3.

In order to save memory space, all the nodes of the LC trie
are stored in a single array: first the root, then all the nodes at
the second level, then all the nodes at the third level, and so

■ Figure 15. The hardware scheme of [8].
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on. Moreover, internal nodes are not allowed to store prefix-
es. Instead, each leaf has a linear list with prefixes, in case the
path to the leaf should have one or several prefixes (less spe-
cific prefixes). As a result, a search in an LC trie proceeds as
follows. The LC trie is traversed as is the basic multibit trie.
Nevertheless, since path compression is used, an explicit com-
parison must be performed when arriving at a leaf. In case of
mismatch, a search of the list of prefixes must be performed
(less specific prefixes, i.e., prefixes in internal nodes in the
original binary trie).

Since the LC trie is implemented using a single array of
consecutive memory locations and a list of prefixes must be
maintained at leaves, incremental updates are very difficult.

Multibit Tries and Optimization Techniques
One easy way to bound worst-case search times is to define
fixed strides that yield a well-defined height for the multibit
trie. The problem is that, in general, memory consumption
will be large, as seen earlier.

On the other hand, we can minimize the memory consump-
tion by letting the prefix distribution strictly determine the
choice of strides. Unfortunately, the height of the resulting
multibit trie cannot be controlled and depends exclusively on
the specific prefix distribution. We saw in the last section that
Nilsson uses the fill factor as a parameter to control the influ-
ence of the prefix distribution on stride choice, and so influ-
ences somewhat the height of the resulting multibit trie. Since
prefix distribution still guides stride choice, memory consump-
tion is still controlled. Nevertheless, the use of the fill factor is
simply a reasonable heuristic and, more important, does not
allow a guarantee on worst-case height.

Srinivasan et al. [7] use dynamic programming to deter-
mine, for a given prefix distribution, the optimal strides that
minimize memory consumption and guarantee a worst-case
number of memory accesses. The authors give a
method to find the optimal strides for the two
types of multibit tries: fixed stride and variable
stride.

Another way to minimize lookup time is to take
into account, on one hand, the hierarchical struc-
ture of the memory in a system and, on the other,
the probability distribution of the usage of prefixes
(which is traffic-dependent). Cheung et al. [10]
give methods to minimize the average lookup time
per prefix for this case. They suppose a system
having three types of hierarchical memories with
different access times and sizes.

Using optimization techniques makes sense if the
entries of the forwarding table do not change at all
or change very little, but this is rarely the case for
backbone routers. Inserting and deleting prefixes
degrades the improvement due to optimization, and
rebuilding the structure may be necessary.

Multibit Tries and Compression

Expansion creates several prefixes that all inherit the forward-
ing information of the original prefix. Thus, if we use multibit
tries with large strides, we will have a great number of con-
tiguous nodes with the same BMP. We can use this fact and
compress the redundant information, which will allow saving
memory and make the search operation faster because of the
small height of the trie.

One example of this approach is the full expansion/com-
pression scheme proposed by Crescenzi et al. [11]. We will
illustrate their method with a small example where we do a
maximal expansion supposing 5-bit addresses and use a two-
level multibit trie. The first level uses a stride of 2 bits, the
second level a stride of 3 bits, as shown in Fig. 16. The idea is
to compress each of the subtries at the second level. In Fig. 17
we can see how the leaves of each second-level subtrie have
been placed vertically. Each column corresponds to one of the
second-level subtries. The goal is to compress the repeated
occurrences of the BMPs. Nevertheless, the compression is
done in such a way that at each step the number of com-
pressed symbols is the same for each column. With this strate-
gy the compression is not optimal for all columns, but since
the compression is made in a synchronized way for all the
columns, accessing any of the compressed subtries can be
made with one common additional table of pointers, as shown
in Fig. 17. To find the BMP of a given address we traverse the
first level of the multibit trie as usual; that is, the first 2 bits of
the address are used to choose the correct subtrie at the sec-
ond level. Then the last 3 bits of the address are used to find
the pointer in the additional table. With this pointer we can
readily find the BMP in the compressed subtrie. For example,
searching for the address 10110 will guide us to the third sub-
trie (column) in the compressed structure; and using the

■ Figure 16. A two-level fully expanded multibit trie.
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■ Figure 17. A full expansion parallel compression scheme.
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pointer contained in the entry 110 of the additional table, we
will find d as the best matching prefix.

In the actual scheme proposed by Crescenzi, prefixes are
expanded to 32 bits. A multibit trie of two levels is also used,
but the stride of the first and second levels is 16 bits. It is worth
noting that even though compression is done, the resulting
structure is not small enough to fit in the cache memory. Nev-
ertheless, because of the way to access the information, search
always takes only three memory accesses. The reported memo-
ry size for a typical backbone forwarding table is 1.2 Mbytes.

Another scheme that combines multibit tries with the com-
pression idea has been dubbed the Lulea algorithm [12]. In
this scheme, a multibit trie with fixed stride lengths is used.
The strides are 16,8,8, for the first, second, and third level
respectively, which gives a trie of height 3. In order to do effi-
cient compression, the Lulea scheme must use a set of disjoint
prefixes; hence, the Lulea scheme first transforms the set of
prefixes into a disjoint-prefix set. Then the prefixes are
expanded in order to meet the stride constraints of the multi-
bit trie. Additionally, in order to save memory, prefixes are
not allowed at internal nodes of the multibit trie ; thus, leaf
pushing is used.

Again, the idea is to compress the prefix information in the
subtries by suppressing repeated occurrences of consecutive
BMPs. Nevertheless, contrary to the last scheme, each subtrie
is compressed independent of the others. Once a subtrie is
compressed, a clever decoding mechanism allows the access to
the BMPs. Due to lack of space we do not give the details of
the decoding mechanism.

While the trie height in the Lulea scheme is 3, actually more
than three memory references are needed because of the decod-
ing required to access the compressed data structure. Searching
at each level of the multibit trie needs, in general, four memory
references. This means that in the worst case 12 memory refer-
ences are needed for IPv4. The advantage of the Lulea scheme,
however, is that these references are almost always to the cache
memory because the whole data structure is very small. For
instance, for a forwarding table containing 32,732 prefixes the
reported size of the data structure is 160 kbytes.

Schemes using multibit tries and compression give very fast
search times. However, compression and the leaf pushing
technique used do not allow incremental updates. Rebuilding
the whole structure is the only solution.

A different scheme using compression is the Full Tree Bit
Map by Eatherton [13]. Leaf pushing is avoided, so incremen-
tal updates are allowed.

Binary Search on Prefix Lengths

The problem with arbitrary prefix lengths is
that we do not know how many bits of the
destination address should be taken into
account when compared with the prefix val-
ues. Tries allow a sequential search on the
length dimension: first we look in the set of
prefixes of length 1, then in the set of length
2 prefixes, and so on. Moreover, at each
step the search space is reduced because of
the prefix organization in the trie.

Another approach to sequential search
on lengths without using a trie is organiz-
ing the prefixes in different tables accord-
ing to their lengths. In this case, a hashing
technique can be used to search in each of
these tables. Since we look for the longest
match, we begin the search in the table
holding the longest prefixes; the search
ends as soon as a match is found in one of

these tables. Nevertheless, the number of tables equals the
number of different prefix lengths. If W is the address length
(32 for IPv4), the time complexity of the search operation is
O(W) assuming a perfect hash function, which is the same as
for a trie.

In order to reduce the search time, a binary search on
lengths was proposed by Waldvogel et al. [6]. In a binary
search, we reduce the search space in each step by half. On
which half to continue the search depends on the result of a
comparison. However, an ordering relation needs to be estab-
lished before being able to make comparisons and proceed to
search in a direction according to the result. Comparisons are
usually done using key values, but our problem is different
since we do binary search on lengths. We are restricted to
checking whether a match exists at a given length. Using a
match to decide what to do next is possible: if a match is
found, we can reduce the search space to only longer lengths.
Unfortunately, if no match is found, we cannot be sure that
the search should proceed in the direction of shorter lengths,
because the BMP could be of longer length as well. Waldvo-
gel et al. insert extra prefixes of adequate length, called mark-
ers, to be sure that, when no match is found, the search must
proceed necessarily in the direction of shorter prefixes.

To illustrate this approach consider the prefixes shown in
Fig. 18. In the trie we can observe the levels at which the pre-
fixes are located. At the right, a binary search tree shows the
levels or lengths that are searched at each step of the binary
search on lengths algorithm. Note that the trie is only shown
to understand the relationship between markers and prefixes,
but the algorithm does not use a trie data structure. Instead,
for each level in the trie, a hash table is used to store the pre-
fixes. For example, if we search for the BMP of the address
11000010, we begin by searching the table corresponding to
length 4; a match will be found because of prefix f, and the
search proceeds in the half of longer prefixes. Then we search
at length 6, where the marker 110000* has been placed. Since
a match is found, the search proceeds to length 7 and finds
prefix k as the BMP. Note that without the marker at level 6,
the search procedure would fail to find prefix k as the BMP.
In general, for each prefix entry a series of markers are need-
ed to guide the search. Since a binary search only checks a
maximum of log2W levels, each entry will generate a maxi-
mum of log2W markers. In fact, the number of markers
required will be much smaller for two reasons: no marker will
be inserted if the corresponding prefix entry already exists
(prefix f in Fig. 18), and a single marker can be used to guide

■ Figure 18. Binary search on prefix lengths.
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the search for several prefixes (e.g., prefixes e and p, which
use the same marker at level 2). However, for the very same
reasons, the search may be directed toward longer prefixes,
although no longer prefix will match. For example, suppose
we search for the BMP for address 11000001. We begin at
level 4 and find a match with prefix f, so we proceed to length
6, where we find again a match with the marker, so we pro-
ceed to level 7. However, at level 7 no match will be found
because the marker has guided us in a bad direction. While
markers provide valid hints in some cases, they can mislead in
others. To avoid backtracking when being misled, Waldvogel
uses precomputation of the BMP for each marker. In our
example, the marker at level 6 will have f as the precomputed
BMP. Thus, as we search, we keep track of the precomputed
BMP so far, and then in case of failure we always have the
last BMP. The markers and precomputed BMP values increase
the memory required. Additionally, the update operations
become difficult because of the several different values that
must be updated.

Prefix Range Search
A search on values only, to find the longest matching prefix, is
possible if we can get rid of the length dimension. One way of
doing so is to transform the prefixes to a unique length. Since
prefixes are of arbitrary lengths, we need to do a full expan-
sion, transforming all prefixes to 32-bit-length prefixes in the
case of IPv4. While a binary search on values could be done
now, this approach needs a huge amount of memory. Fortu-
nately, it is not necessary to store all of the 232 entries. Since a
full expansion has been done, information redundancy exists.

A prefix represents an aggregation of contiguous addresses;
in other words, a prefix determines a well-defined range of
addresses. For example, supposing 5-bit-length addresses, pre-
fix a = 0* defines the range of addresses [0,15]. So why not
simple store the range endpoints instead of every single
address? The BMP of the endpoints is, in theory, the same for
all the addresses in the interval; and search of the BMP for a
given address would be reduced to finding any of the end-

points of the corresponding interval (e.g., the predecessor,
which is the greatest endpoint smaller than or equal to a given
address). The BMP problem would be readily solved, because
finding the predecessor of a given address can be performed
with a classical binary search method. Unfortunately, this
approach may not work because prefix ranges may overlap
(i.e., prefix ranges may be included in other prefix ranges; Fig.
4). For example, Fig. 19 shows the full expansion of prefixes
assuming 5-bit-length addresses. The same figure shows the
endpoints of the different prefix ranges, in binary as well as
decimal form. There we can see that the predecessor of
address value 9, for instance, is endpoint value 8; nevertheless,
the BMP of address 9 is not associated with endpoint 8 (b),
but with endpoint 0 (a) instead. Clearly, the fact that a range
may be contained in another range does not allow this
approach to work. One solution is to avoid interval overlap. In
fact, by observing the endpoints we can see that these values
divide the total address space into disjoint basic intervals.

In a basic interval, every address actually has the same BMP.
Figure 19 shows the BMP for each basic interval of our exam-
ple. Note that for each basic interval, its BMP is the BMP of
the shortest prefix range enclosing the basic interval. The BMP
of a given address can now be found by using the endpoints of
the basic intervals. Nevertheless, we can observe in Fig. 19 that
some basic intervals do not have explicit endpoints (e.g., I3 and
I6). In these cases, we can associate the basic interval with the
closer endpoint to its left. As a result, some endpoints need to
be associated to two basic intervals, and thus endpoints must
maintain in general two BMPs, one for the interval they belong
to and one for the potential next basic interval. For instance,
endpoint value 8 will be associated with basic intervals I2 and
I3, and must maintain BMPs b and a.

Figure 20 shows the search tree indicating the steps of the
binary search algorithm. The leaves correspond to the end-
points, which store the two BMPs (= and >). For example, if
we search the BMP for address 10110 (22), we begin comparing
the address with key 26; since 22 is smaller than 26, we take the
left branch in the search tree. Then we compare 22 with key 16
and go to the right; then at node 24 we go to the left arriving at

■ Figure 19. Binary range search.
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node 19; and finally, we go to the right and arrive at the leaf
with key 19. Because the address (22) is greater than 19, the
BMP is the value associated with > (i.e., d).

As for traditional binary search, the implementation of this
scheme can be made by explicitly building the binary search
tree. Moreover, instead of a binary search tree, a multiway
search tree can be used to reduce the height of the tree and
thus make the search faster. The idea is similar to the use of
multibit tries instead of binary tries. In a multiway search tree,
internal nodes have k branches and k – 1 keys; this is especial-
ly attractive if an entire node fits into a single cache line
because search in the node will be negligible compared to
normal memory accesses.

As previously mentioned, the BMP for each basic interval
needs to be precomputed by finding the shortest range (longest
prefix) enclosing the basic interval. The problem with this
approach, which was proposed by Lampson et al. [14], is that
inserting or deleting a single prefix may require recomputing
the BMP for many basic intervals. In general, every prefix
range spans several basic intervals. The more basic
intervals a prefix range covers, the higher the number
of BMPs to potentially recompute. In fact, in the worst
case we would need to update the BMP for N basic
intervals, N as usual being the number of prefixes. This
is the case when all 2N endpoints are different and one
prefix contains all the other prefixes.

One idea to reduce the number of intervals covered
by a prefix range is to use larger, yet still disjoint,
intervals. The leaves of the tree in Fig. 20 correspond
to basic intervals. A crucial observation is that internal
nodes correspond to intervals that are the union of
basic intervals (Fig. 21). Also, all the nodes at a given
level form a set of disjoint intervals. For example, at
the second level the nodes marked 12, 24, and 28 cor-
respond to the intervals [0,15], [16,25], and [26,29],
respectively. So why store BMPs only at leaves? For
instance, if we store a at the node marked 12 in the
second level, we will not need to store a at leaves, and
update performance will be better. In other words,
instead of decomposing prefix ranges into basic inter-
vals, we decompose prefix ranges into disjoint inter-
vals as large as possible. Figure 21 shows how prefixes

can be stored using this idea. Search
operation is almost the same, except
that now it needs to keep track of the
BMP encountered when traversing
the path to the leaves. We can com-
pare the basic scheme to using leaf
pushing and the new method to not
doing so. Again, we can see that
pushing information to leaves makes
update difficult, because the number
of entries to modify grows. The mul-
tiway range tree approach [15] pre-
sents and develops this idea to allow
incremental updates.

Comparison and
Measurements of Schemes
Each of the schemes presented has
its strengths and weaknesses. In this
section, we compare the different
schemes and discuss the important
metrics to evaluate these schemes.
The ideal scheme would be one with

fast searching, fast dynamic updates, and a small memory
requirement. The schemes presented make different trade-
offs between these aspects. The most important metric is obvi-
ously lookup time, but update time must also be taken into
account, as well as memory requirements. Scalability is also
another important issue, with respect to both the number and
length of prefixes.

Complexity Analysis
The complexity of the different schemes is compared in Table 2.
The next sections carry out detailed comparison.

Tries — In binary tries we potentially traverse a number of
nodes equal to the length of addresses. Therefore, the
search complexity is O(W). Update operations are readily
made and basically need a search, so update complexity is
also O(W). Since inserting a prefix potentially creates W
successive nodes (along the path that represents the pre-
fix), the memory consumption for a set of N prefixes has

■ Figure 20. A basic range search tree.
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■ Table 2. Complexity comparison.

Binary trie O(W) O(W) O(NW)

Path-compressed tries O(W) O(W) O(N)

k-stride multibit trie O(W/k) O(W/k + 2k) O(2kNW/k)

LC trie O(W/k) – O(2kNW/k)

Lulea trie O(W/k) – O(2kNW/k)

Full expansion/compression 3 – O(2k + N2)

Binary search on prefix lengths O(log2W) O(Nlog2W) O(log2W)

Binary range search O(log2N) O(N) O(N)

Multiway range search O(log2N) O(N) O(N)

Multiway range trees O(log2N) O(klogkN) O(NklogkN)

Scheme Worst case Update Memory
lookup
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complexity O(NW). Note that this upper bound is not tight,
since some nodes are, in fact, shared along the prefix paths.
Path compression reduces the height of a sparse binary trie,
but when the prefix distribution in a trie gets denser, height
reduction is less effective. Hence, complexity of search and
update operations in path-compressed tries is the same as
in classical binary tries. Path-compressed tries are full bina-
ry tries. Full binary tries with N leaves have N – 1 internal
nodes. Hence, space complexity for path compressed tries
is O(N).

Multibit tries still do linear search on lengths, but since the
trie is traversed in larger strides the search is faster. If search
is done in strides of k bits, the complexity of the lookup oper-
ation is O(W/k). As we have seen, updates require a search
and will modify a maximum of 2k–1 entries (if leaf pushing is
not used). Update complexity is thus O(W/k + 2k) where k is
the maximum stride size in bits in the multibit trie. Memory
consumption increases exponentially with k: each prefix entry
may need potentially an entire path of length W/k, and paths
consist of one-level subtries of size 2k. Hence, memory used
has complexity (O(2kNW/k).

Since the Lulea and full expansion/compression schemes
use compressed multibit tries together with leaf pushing,
incremental updates are difficult if not impossible, and we
have not indicated update complexity for these schemes. The
LC trie scheme uses an array layout and must maintain lists of
less specific prefixes. Hence, incremental updates are also
very difficult.

Binary Search on Lengths — For a binary search on lengths,
the complexity of the lookup operation is logarithmic in the
prefix length. Notice that the lookup operation is independent
of the number of entries. Nevertheless, updates are complicat-
ed due to the use of markers. As we have seen, in the worst
case log2W markers are necessary per prefix; hence, memory
consumption has complexity O(Nlog2W). For the scheme to
work, we need to precompute the BMP of every marker. This
precomputed BMP is a function of the entries being prefixes
of the marker; specifically, the BMP is the longest. When one
of these prefix entries is deleted or a new one is added, the
precomputed BMP may change for many of the markers that
are longer than the new (or deleted) prefix entry. Thus, the

marker update complexity is
O(Nlog2W) since theoretically an entry
may potentially be prefix of N – 1
longer entries, each having potentially
log2W markers to update.

Range Search — The range search
approach gets rid of the length dimen-
sion of prefixes and performs a search
based on the endpoints delimiting dis-
joint basic intervals of addresses. The
number of basic intervals depends on
the covering relationship between the
prefix ranges, but in the worst case it
is equal to 2N. Since a binary or multi-
way search is performed, the complex-
ity of the lookup operation is O(log2N)
or O(logkN), respectively, where k is
the number of branches at each node
of the search tree. Remember that the
BMP must be precomputed for each
basic interval, and in the worst case an
update needs to recompute the BMP
of N basic intervals. The update com-
plexity is thus O(N). Since the range

search scheme needs to store the endpoints, the memory
requirement has complexity O(N).

We previously mentioned that by using intervals made of
unions of the basic intervals, the approach of [15] allows bet-
ter update performance. In fact, the update complexity is
O(klogkN), where k is the number of branches at each node of
the multiway search tree.

Scalability and IPv6 — An important issue in the Internet is
scalability. Two aspects are important: the number of entries
and the prefix length. The last aspect is especially important
because of the next generation of IP (IPv6), which uses 128-
bit addresses. Multibit tries improve lookup speed with
respect to binary tries, but only by a constant factor on the
length dimension. Hence, multibit tries scale badly to longer
addresses. Binary search on lengths has a logarithmic com-
plexity with respect to the prefix length, and its scalability
property is very good. The range search approaches have log-
arithmic lookup complexity with respect to the number of
entries but independent, in principle, of prefix length. Thus, if
the number of entries does not grow excessively, the range
search approach is scalable for IPv6.

Measured Lookup Time
While the complexity metrics of the different schemes
described above are an important aspect for comparison, it is
equally important to measure the performance of these
schemes under “real conditions.” We now show the results of
a performance comparison made using a common platform
and a prefix database of a typical backbone router [5].

Our platform consists of a Pentium-Pro-based computer
with a clock speed of 200 MHz. The size of memory cache L2
is 512 kbytes. All programs are coded in C and were executed
under the Linux operating system. The code for the path-com-
pressed trie (BSD trie) was extracted from the FreeBSD
implementation, the code for the multibit trie was implement-
ed by us [16], and the code for the other schemes was obtained
from the corresponding authors.

While prefix databases in backbone routers are publicly
available, this is not the case for traffic traces. Indeed, traffic
statistics depend on the location of the router. Thus, what we
have done to measure the performance of the lookup opera-

■ Figure 21. A range search tree.
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tion is to consider that every prefix has the same probability
of being accessed. In other words, the traffic per prefix is sup-
posed to be the same for all prefixes. Although a knowledge
of the access probabilities of the forwarding table entries
would allow better evaluation of the average lookup time,
assuming constant traffic per prefix still allows us to measure
important characteristics, such as the worst-case lookup time.
In order to reduce the effects of cache locality we used a ran-
dom permutation of all entries in the forwarding table
(extended to 32 bits by adding zeroes). Figure 22 shows the
distributions of the lookup operation for five different
schemes. The lookup time variability for the five different
schemes is summarized in Table 3.

Lookup time measured for the BSD trie scheme reflects
the dependence on the prefix length distribution. We can
observe a large variance between time for short prefixes and
time for long prefixes because of the high height of the BSD
trie. On the contrary, the full expansion/compression scheme
always needs exactly three memory access-
es. This scheme has the best performance
for the lookup operation in our experi-
ment. Small variations should be due to
cache misses as well as background oper-
ating system tasks.

As we know, lookup times for multibit
tries can be tuned by choosing different
strides. We have measured the lookup
time for the LC trie scheme, which uses
an array layout and the path compression
technique. We have also measured the
lookup time for a multibit trie implement-

ed with a linked tree structure and
without path compression [16]. Both
are variable-stride multibit tries that
use the distribution of prefixes to
guide the choice of strides. Addi-
tionally, the fill factor was chosen
such that a stride of k bits is used if
at least 50 percent of the total possi-
ble nodes at level k exist (discussed
earlier). Even with this simple strate-
gy to build multibit tries, lookup
times are much better than for the
BSD trie. Table 4 shows the statis-
tics of the BSD trie and multibit
tries, which explains the performance
observed. The statistics for the cor-
responding binary trie are also
shown. Notice that the height values
of the BSD trie are very close to val-
ues for the binary trie. Hence, a path
compression technique used alone,

as in the BSD trie, has almost no benefit for a
typical backbone router. Path compression in the
multibit trie LC makes the maximum height
much smaller than in the “pure” multibit trie.
Nevertheless, the average height is only one level
smaller than for the pure multibit trie. Moreover,
since the LC trie needs to do extra comparisons
in some cases, the gain in lookup performance is
not very significant.

The binary search on lengths scheme also
shows better performance than the BSD trie
scheme. However, the lookup time has a large
variance. As we can see in Fig. 23, different pre-
fix lengths need a different number of hashing
operations. We can distinguish five different

groups, which need from one to five hashing operations. Since
hashing operations are not basic operations, the difference,
between a search that needs five hashes and one that needs
only one hash can be significant. For example, lookup times
of about 3.5 ms correspond to prefix lengths that need five
hash operations.

Summary
To avoid running out of available IP addresses and reduce the
amount of information exchanged by the routing protocols, a
new address allocation scheme, CIDR, was introduced. CIDR
promotes hierarchical aggregation of addresses and leads to rela-
tively small forwarding tables, but requires a longest prefix
matching operation. Longest prefix matching is more complex
than exact matching. The lookup schemes we have surveyed
manipulate prefixes by doing controlled disaggregation in order
to provide faster search. Since original prefixes are usually trans-

formed into several prefixes, to add, delete
or change a single prefix requires updating
several entries, and in the worst case the
entire data structure needs to be rebuilt.
Thus, in general a trade-off between lookup
time and incremental update time needs to
be made. We provide a framework and clas-
sify the schemes according to the algorithm-
data structure aspect. We have seen that the
difficulty with the longest prefix matching
operation is its dual dimension: length and
value. Furthermore, we describe how classi-
cal search techniques have been adapted to

■ Figure 22. Lookup time distributions of several lookup mechanisms.
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■ Table 3. Percentiles of lookup times (ms).

BSD trie 4.63 5.95 8.92

Multibit trie 0.82 1.33 2.99

LC trie 0.95 1.28 1.98

Full expansion/compression 0.26 0.48 0.84

Binary search on prefix lengths 1.09 1.58 7.08

Scheme 10th 50th percentile 99th 
percentile (median) percentile

■ Table 4. Trie statistics for the
MaeEast router (16 August, 1999).

Binary trie 21.84 30

BSD trie 19.95 26

LC trie 1.81 5

Multibit trie 2.76 12

Scheme Average Maximum 
height height
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solve the longest prefix matching problem. Finally, we compare
the different algorithms in terms of their complexity and mea-
sured execution time on a common platform. The longest prefix
matching problem is important by itself; moreover, solutions to
this problem can be used as a building block for the more gener-
al problem of packet classification [17].
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■ Figure 23. Standard binary search on lengths for IPv4.
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