
Failure Insensitive Routing for Ensuring Service
Availability ?

Srihari Nelakuditi1, Sanghwan Lee2, Yinzhe Yu2, and Zhi-Li Zhang2

1 Dept. of Computer Science & Engineering,
University of South Carolina,
Columbia, SC 29201, USA
srihari@cse.sc.edu

2 Dept. of Computer Science & Engineering,
University of Minnesota,

Minneapolis, MN 55414, USA
{sanghwan,yyu,zhzhang }@cs.umn.edu

Abstract. Intra-domain routing protocols employed in the Internet route around
failed links by having routers detect adjacent link failures, exchange link state
changes, and recompute their routing tables. Due to several delays in detection,
propagation and recomputation, it may take tens of seconds to minutes after a
link failure to resume forwarding of packets to the affected destinations. This
discontinuity in destination reachability adversely affects the quality of contin-
uous media applications such as Voice over IP. Moreover, the resulting service
unavailability for even a short duration could be catastrophic in the world of e-
commerce. Though careful tuning of the various parameters of the routing pro-
tocols can accelerate convergence, it may cause instability when the majority of
the failures are transient. To improve the failure resiliency without jeopardizing
the routing stability, we propose alocal rerouting based approach calledfail-
ure insensitive routing. Under this approach, upon a link failure, adjacent router
suppressesglobal updating and instead initiates local rerouting. All other routers
infer potential link failures from the packet’s incoming interface,precomputein-
terface specific forwarding tables and route around failed linkswithout explicit
link state updates. We demonstrate that the proposed approach provides higher
service availability than the existing routing schemes.

1 Introduction

Link state routing protocols such as OSPF and IS-IS are the most widely used protocols
for intra-domain routing in today’s Internet. Using these protocols, routers exchange
changes in link state, recompute their routing tables, and thus respond to link and node
failures in the network by routing around them. However, several recent studies [1, 5,
7] have reported that rerouting after a link failure takes tens of seconds to minutes. Dur-
ing this period, some destinations would be unreachable and the corresponding services

? This work is partly supported by National Science Foundation Grants CAREER Award ANI-
9734428, ANI-0073819, and ITR ANI-0085824. Any opinions, findings, and conclusions or
recommendations expressed in this paper are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

unavailable. This discontinuity in routing adversely affects the quality of continuous
media applications such as Voice over IP. Furthermore, downtime of even a few sec-
onds could significantly impact the reputation and the profitability of a company in the
world of e-commerce. Moreover, it has been observed [7] that link failures are fairly
common in the day to day operation of a network due to various causes such as main-
tenance, faulty interfaces, and accidental fiber cuts. Hence, there is a growing demand
for ensuring destination reachability and thus service continuity even in the presence of
link failures.

There have been some modifications proposed [1, 2] for accelerating the conver-
gence of link state routing protocols. But the recipe involves tuning several delays as-
sociated with link failure detection, link state propagation and routing table recompu-
tation. Furthermore, it is not a suitable solution for handling transient failures. It has
been found [7] that majority of the link failures are short-lived with around half of the
failures lasting less than a minute. In such a scenario, it is not prudent to disseminate
these link state changes globally and recompute routing tables at each router in the
network. Instead, it is much more appropriate to perform local rerouting and trigger
global updating and recomputation only if the link failure persists for a longer duration.
Such a local rerouting approach can recover promptly from failures trading off opti-
mality of routing for continuity of forwarding. Our objective is to devise a stable and
robust routing scheme that ensures continuous loop-free forwarding of packets to their
destinations regardless of the various delays in link state propagation and routing table
recomputation.

We propose a local rerouting based approach for failure resiliency which we refer
to as failure insensitive routing(FIR). Under FIR, when a link fails, adjacent nodes
suppress global updating and instead initiate local rerouting of packets that were to be
forwarded through the failed link. Though other nodes are not explicitly notified of the
failure, theyinfer it from the packet’sflight. When a packet arrives at a node through
an unusualinterface (through which it would never arrive had there been no failure),
corresponding potential failures can be inferred and the next hop chosen avoiding those
links. This way under FIR, the next hop for a packet is determined based on not only
the destination address but also the incoming interface. Note that suchinterface spe-
cific forwardingis very much feasible with current router architectures as they anyway
maintain a forwarding table at each line card of an interface for lookup efficiency. These
interface specific forwarding tables can beprecomputedsince inferences about the link
failures can be made in advance. Thus with the FIR approach, when a link fails, only the
nodes adjacent to it locally reroute packets to the affected destinations and all the other
nodes simply forward packets according to their precomputed interface specific for-
warding tables without being explicitly aware of the failure. Once the failed link comes
up again, original forwarding tables are locally restored and forwarding resumes over
the recovered link as if nothing ever happened. This approach decouples destination
reachability and routing stability by handling transient failures locally and notifying
only persistent failures globally. Essentially with FIR, in the presence of link failures,
packets get locally rerouted (possibly along suboptimal paths) without getting caught
in a loop or dropped till the new shortest paths are globally recomputed.

There are several benefits in employing FIR. First, it can be deployed without al-
tering the destination based forwarding paradigm used in the current Internet. Only
the traditional interface independent routing table computation algorithm needs to be
replaced with an FIR algorithm for computing interface dependent forwarding tables.
Second, reachability of destinations does not depend on tuning of the various parame-
ters associated with link failure propagation and routing table recomputation. Thus FIR
improves the service availability without jeopardizing the routing stability. Third, under
FIR approach local rerouting happens only during the time a link failure is suppressed,
i.e., not reflected globally. But once all the routers have the same consistent view of the
network, forwarding under FIR would be no different from traditional routing. So FIR
can be used in conjunction with any other mechanism for engineering traffic. Finally,
FIR increases network reliability and obviates the need for expensive and complex layer
2 protection schemes. Essentially, the FIR approach is about preparing for failures in-
stead of reacting to them.

We make the following contributions in this paper. We propose a mechanism for
facilitating prompt local rerouting. We present an efficient algorithm that computes in-
terface specific forwarding tables for dealing with single link failures inO(|E| log2 |V|)
time, whereV is the set of nodes andE is the set of edges. We demonstrate that by
preparing for single link failures, most of the simultaneous failures can also be handled
and the service availability can be improved by an order of magnitude. We describe an
incremental algorithm for forwarding table computation that requiresO(D2|V|) space,
whereD is the network diameter, for remembering the intermediate steps of the previ-
ous computation but takes on average less thanO(|E| log |V|) time. We argue that with
its resiliency and stability, FIR is a better alternative to the existing routing schemes.

The rest of the paper is organized as follows. Section 2 introduces our FIR approach
for failure resiliency. Efficient algorithms for computing interface specific forwarding
tables are described in Section 3. Section 4 presents the results of our evaluation of
the performance of FIR. The related work is discussed in Section 5. Finally, Section 6
concludes the paper.

2 Failure Insensitive Routing

The fundamental issue in designing a local rerouting scheme is the avoidance of for-
warding loops. A straightforward local recomputation of new shortest paths without the
failed link by the adjacent node could result in a loop since other nodes are not aware
of the failure and their routing tables do not reflect the failure. We propose to address
this looping problem by forwarding a packet based on its incoming interface. This en-
ables a router toinfer failures when a packet arrives through anunusualinterface due
to local rerouting. These inferences about link failures can be made in advance and in-
terface specific forwarding tables can beprecomputedavoiding the potentially failed
links. This way when a link fails, only the adjacent nodes reroute packets that were to
be forwarded through the failed link. All other nodes simply forward packets according
to their precomputed interface specific forwarding tables without being explicitly aware
of the failure. We refer to this approach asfailure insensitive routing(FIR). In the fol-

lowing, using an example topology, we illustrate how packets get forwarded under FIR
and how these forwarding tables are computed.

1

2

3

6

4

5

1 1

1
2 2

3
3

Fig. 1.Topology used for the illustration of the FIR approach

2.1 Forwarding under FIR

Consider the topology shown in Figure 1 where each link is labeled with its weight.
The corresponding shortest path routing entries at each node to destination node6 are
shown in Figure 2. First, we point out the problem with the conventional routing in
case of a link failure. Suppose link2−5 is down. When node2 recomputes its routing
table, it will have1 as the next hop to reach6 as shown in Figure 2. If only node2
recomputes its entries while others are not notified or still in the process of recomputing
their entries, then packets from1 to 6 get forwarded back and forth between nodes2 and
1. This shows that using conventional forwarding tables, local rerouting is not viable as
it causes forwarding loops.

node 1 2 3 4 5

next 2 5 5 6 6

node 1 2 3 4 5

next hop 2 1 5 6 6

Fig. 2.Routing entries:beforeandafter local recomputation by node2

Under FIR, forwarding loops are avoided by inferring link failures from the packet’s
incoming interface. When a packet with destination6 arrives at1 from 2, node1 can
sense that some link must have failed. Otherwise, based on shortest path routing, node2
should never forward to1, a packet destined for6. Node2 would forward packets for6
to node1 if the link 2−5 is down. Same is true even when5−6 is down. So when a packet
for 6 arrives at1 from 2, node1 can infer that one or both of these links are down. Since
node1 is not explicitly notified of the failures, it can ensure that the packet reaches6
by forwarding it to4 avoiding both the potentially failed links2−5 and5−6. That is why
in Figure 3, a packet arriving at node1 with destination6 through neighbor node2 is
forwarded to4 while it is forwarded to2 if it arrives through the other two neighbors.
Such interface specific forwarding makes it possible to perform local rerouting.

node 1 2 3 4 5

prev 2 3 4 1 5 1 5 1 6 2 3 6

next 4 2 2 5 1 5 1 6 - 6 6 -

node 1 2 3 4 5

prev 2 3 4 1 5 1 5 1 6 2 3 6

next 4 2 2 1 - 5 1 6 - 6 6 -

Fig. 3. Interface specific forwarding entries:beforeandafter local recomputation by node2

Let us again consider the case of link2−5 going down. Node2 recomputes its
forwarding table entries as shown in Figure 3. So a packet from2 to 6 takes the route
2→1→4→6 when the link2−5 is down. Since node1 is not aware of the failure, a packet
from 1 to 6 gets forwarded to2 which reroutes it back to1. Node1 then forwards the
packet to4 according to its entry at the interface with previous hop2. This way, packets
from 1 to 6 traverse the path1→2→1→4→6. Note that though node1 appears twice in
the path, it doesn’t constitute a loop. With interface specific forwarding, a packet would
loop only if it traverses the same link in the same direction twice. Thus using interface
specific forwarding tables, FIR avoids looping and provides local rerouting.

It should be noted that FIR adheres to conventional destination based forwarding
paradigm though it has different forwarding table at each interface. While FIR requires
that the next hop for a packet is determined based on its previous hop, it is very much
feasible with the current router architectures as they anyway maintain a forwarding
table at each line card of an interface for lookup efficiency. The only deviation is that
unlike in the current routers with the same forwarding table at each interface, with the
FIR approach these tables are different. However, the forwarding process remains the
same — when a packet arrives at an incoming interface, the corresponding forwarding
table is looked up to determine the next hop and the outgoing interface.

2.2 Forwarding Table Computation

The forwarding process under FIR is essentially the same as it is under the conven-
tional routing. The key difference is in the way interface specific forwarding tables
are computed. The computation of the forwarding table entries of an interface involves
identifying a set of links whose individual or combined failure causes a packet to arrive
at the node through that interface. We refer to these links askey linksand denote by
Kd

j→i the set of links which when one or more down cause packets with destinationd to
arrive at nodei from nodej. Note that this key link set is empty, i.e.,Kd

j→i = ∅ if nodei
is anyway the next hop along the shortest path fromj to d without any link failures. For
the topology in 1,K6

2→1 = {2−5, 5−6} andK6
3→1 = {3−5} whileK6

1→2 = ∅ as explained
below.

Consider the node1. The next hop along the shortest path from node1 to reach6 is
2, i.e.,K6

1→2 = ∅. So if all the links are up, node1 should never receive from2 a packet
destined for6. However, if the link2−5 is down, node2 would forward packets with
destination6 to node1. Similarly when the link5−6 is down, packets from5 to 6 would
traverse the path5→2→1→4→6. So from the arrival of a packet with destination6 from
neighbor node2, node1 can infer that one or both of the links2−5 and5−6 are down,

i.e.,K6
2→1 = {2−5, 5−6}. Similarly, node1 would receive a packet for the destination6

through3 when the link3−5 is down. In the other case when link5−6 is down, packets
arrive at node1 through2 and not through3 since from5 to 6 the (recomputed) shortest
path would be5→2→1→4→6. Hence from arrival of packets with destination 6 through
node3, node1 infers that only link3−5 is down, i.e.,K6

3→1 = {3−5}.

2→1
dest 2 3 4 5 6

next hops - 3 4 3 4

3→1
dest 2 3 4 5 6

next hops 2 - 4 2 2

4→1
dest 2 3 4 5 6

next hops 2 3 - 2 2

Fig. 4.Forwarding tables at node1

Once the key links are determined, it is straightforward to compute the interface
specific forwarding tables. LetE be the set of all links in the network. SupposeRd

i (X)
represents the set of next hops fromi to d given the set of linksX . LetFd

j→i denote the
forwarding table entry, i.e., the set of next hops tod for packets arriving ati through
the interface associated with neighborj. This entry can be computed using Dijkstra’s
Shortest Path First (SPF) algorithm after excluding the links in the setKd

j→i from the
set of all linksE . Thus,

Fd
j→i = Rd

i (E \ Kd
j→i)

The forwarding tables corresponding to node1 of Figure 1 are shown in Figure 4.
Given thatK6

2→1 = {2−5, 5−6}, the shortest path from1 to 6 without those links be
1→4→6. Therefore, packets destined for6 arriving at1 through2 are forwarded to next
hop4. On the other hand, the next hop for packets to destination5 arriving through2 is
set to3 sinceK5

2→1 = {2−5}. The other entries are also determined similarly. Once the
forwarding tables are computed, packets arriving through an interface are forwarded
in the usual manner by looking up the table corresponding to that interface. We can
prove [12] that with forwarding tables computed thus, when no more than one link
fails, FIR always finds a loop-free path to a destination if such a path exists.

We reiterate that these inferences about potential link failures are madenot on the
fly but in advance and forwarding tables are precomputed according to these inferences.
Furthermore, packets are forwarded according to their destination addresses only. In
other words, FIR does not require any changes to the existing forwarding plane, making
it amenable for ready deployment.

2.3 Local Recomputation of Forwarding Tables

The forwarding tables computed as explained above help perform local rerouting with-
out any global recomputation of routing and forwarding tables. Only the nodes adjacent
to a failed link have to recompute their entries. However, if the local recomputation
takes significant time, then there would not be substantial savings due to this approach

over conventional global updating based approach. Fortunately, we do not have to com-
pute these tables from scratch. It is possible to locally recompute the forwarding tables
in negligible amount of time by maintaining what we refer to asbackwarding tablefor
each interface.

1→2
dest 2 3 4 5 6

back hops 3 4 3 3 3

1→3
dest 2 3 4 5 6

back hops 4 2 - 4 4

1→4
dest 2 3 4 5 6

back hops - - 2 - -

Fig. 5.Backwarding tables at node1

When an interface is down, its backwarding table can be used to reroute packets that
were to be forwarded through that interface. The entries in this table, denoted byBd

i→j ,
give the set of alternate next hops, referred to asback hops, from nodei for forwarding
a packet with destinationd when the interface or the link to the usual next hop nodej
is down. The backwarding table entries can also be precomputed similar to forwarding
table entries once the key links are identified as follows:

Bd
i→j ⇐ Rd

i (E \ Kd
i→j \ i−j)

Essentially we exclude all the links that would cause the packet to exit from the interface
of i to j and also the linki−j itself in computing the back hops. When preparing for at
most single link failures, this amounts to

Bd
i→j ⇐ Rd

i (E \ i−j)

The backwarding table entries for node1 of the topology in Figure 1 are shown in
Figure 5. Let us look at the entries for the interface1→2. It is clear that when the link
1−2 is down, packets to destinations2, 5 and6 be rerouted to3 since the shortest path to
these nodes without1−2 is through3. But, it may not be obvious why the next hops for
destinations3 and4 are4 and3 respectively. Consider the entry of3. The corresponding
set of key linksK3

1→2 is {1−3}, i.e., a packet with destination3 is forwarded from1 to
2 only if {1−3} is down. So when{1−2} is also down, the next best path is through4.
Similarly B4

1→2 is 3. Now let us turn our attention to the backwarding table in Figure 5
for the interface1−4. According to these entries, when link1−4 is down, packets to4 get
rerouted to2 and packets to any other destination are simply discarded as they are not
reachable. This is because packets to other destinations are forwarded to4 only when
certain other links are also down. For example,K6

1→4 = {2−5, 5−6} and when link1−4
also fails, node6 becomes unreachable from node1.

By employing interface specific forwarding and backwarding tables, we can elim-
inate the delay due to any dynamic recomputation and reroute packets without any
interruption even in the presence of link failures. The downside is that the deployment
of backwarding tables requires changes to the forwarding plane. When an interface is

down, the corresponding backwarding table needs to be looked up to reroute the packet
through another interface. This necessitates change in the router architecture, the cost
of which we are not in a position to assess. To avoid altering the forwarding plane, we
propose to maintain the backwarding tables in the control plane and recompute the for-
warding tables as follows. Suppose the failed link isi−k and the new forwarding tables
are denoted bỹF . Then the forwarding table entry of destinationd for j→i interface,
wherej 6= k, is computed as follows:

F̃d
j→i =

Fd
j→i \ k ∪ Bd

i→k if k ∈ Fd
j→i

Fd
j→i otherwise

The above expression takes into account the possibility of multiple next hops along
equal cost paths to a destination. A simplified expression for single path routing would
be

F̃d
j→i =

Bd
i→k if Fd

j→i = k
Fd

j→i otherwise

Essentially, only those entries in the forwarding tables that havek as the next hop are
reset according to the backwarding table associated withk. Thus, using the backwarding
tables, in case of an adjacent link failure, a node quickly recomputes the forwarding
tables locally and promptly resumes forwarding.

2.4 Summary of the FIR Scheme

We now summarize the operation of the FIR scheme. Each nodei under FIR maintains
a forwarding tableFj→i per each neighborj, and a backwarding tableBi→j per each
neighborj. Fj→i is used to forward packets arriving ati through neighborj. Bi→j is
needed for locally recomputing the forwarding tables ofi when the linki−j is down.

Suppose the failure of the linki−j is detected by nodei at timetdown . Then node
i locally recomputes its forwarding tables and performs local rerouting of the packets
that were to be forwarded toj. If the failure persists for a preset durationTdown , then a
global link state update is triggered attdown+Tdown and forwarding tables at all routers
are recomputed. During the time period betweentdown and tdown +Tdown , the link
failure update is said to besuppressedsince all the nodes other than the adjacent nodes
i andj are not aware of the failure. Local rerouting is in effect when and only when
there exists a suppressed failure event.

After sometime, suppose at timetup , link i−j comes up. Then the action taken by
nodei depends on whether the failure event is being suppressed or not. If the failure
event is being suppressed, original forwarding tables are locally restored and forwarding
resumes over the recovered link as if nothing ever happened. Otherwise, the link is
observed for a preset periodTup and if it stays up, then at timetup + Tup , a global
update is triggered announcing that the link is up. This way, failures of short duration
are handled locally while persistent failures are updated globally. When the failures are
transient, FIR not only improves reachability but also reduces overhead.

3 Efficient FIR Algorithms

The process of forwarding and backwarding table computation, as explained in the pre-
vious section, involves determining a set of key links for each interface of a node. In this
section, we develop efficient algorithms for identifying key links. We show that by sav-
ing some intermediate steps of the previous computation, forwarding and backwarding
tables can be obtained incrementally in time less than an SPF computation.

The algorithms described here assume that all the links are point to point, and bidi-
rectional with equal weight in both directions, which is generally true for the backbone
networks. It is also assumed that no more than one link fails simultaneously. There are
several reasons for concentrating on singe link failures. First, it has been observed [13]
that failure of a single link is more common than simultaneous multiple link failures.
Second, under FIR a failure issuppressedfor a certain duration and if it persists beyond
that time, a global update is triggered. Only simultaneous suppressed failures could pose
problem for FIR. The possibility of multiple simultaneous suppressed failures happen-
ing in the network is rare considering that suppress interval would be in the order of a
minute. Third, as we demonstrate in the next section, by preparing just for single link
failures, FIR can deal with the majority of the multiple simultaneous failures also.

3.1 Available Shortest Path First

We now present an algorithm for determining key links and computing forwarding and
backwarding tables. We refer to this procedure asavailable shortest path first(ASPF)
since it computes shortest paths excluding the unavailable (potentially failed) links.
The notation used here and the rest of the paper is listed in a table along with all the
algorithms. A straightforward method for determining key links would be to invoke Di-
jkstra’sSPFprocedure once per each link in the network. Its time complexity would be
O(|E|2 log |V|), which is too high to be practical. Fortunately, it is possible to compute
key links more efficiently for single link failures inO(|E| log2 |V|) time based on the
following observations:

– Only the failure of a link along the shortest path from nodei to a destinationd
may requireunusualforwarding of packets tod arriving at i. Otherwise packets
are forwarded simply along the usual shortest path. As per thisreviseddefinition of
key links, for the topology in Figure 1,K6

3→1 = ∅ instead of the original set{3−5}
since3−5 is not along the shortest path from1 to 6. This new interpretation limits
the search space for key links to links in SPT rooted ati. Given that the number of
links in a tree would beO(|V|), search space is reduced fromO(|E|) to O(|V|).

– A packet needs to be forwarded to an unusual next hop only when it arrives back
from a usual next hop. In other words, an edgee is included inKd

j→i only if j is a
next hop fromi to d with e, andi is a next hop fromj to d without e. This helps
segregate nodes and links based on the next hops fromi, i.e.,Kd

j→i is ∅ if j is not
a usual next hop fromi to d. Also, an edgee is not a member ofKd

j→i if e is not
in the subtree belowj of the SPT ofi. Therefore, the key links of all the interfaces
together can be determined withinO(|V|) SPT computations.

Notation
V set of all vertices
E set of all edges
Ni set of neighbors of nodei
We weight of edgee
|N | avg no. of neighbors of a node
D diameter of the network

Rd
i set of next hops fromi to d

Fd
j→i set of next hops fromj→i to d.

Bd
j→i set of back hops fromi→j to d.

Kd
j→i key links fromj→i to d.

Ti shortest path tree rooted ati
T e

i SPT ofi without edgee
C(k, T) cost to nodek from root ofT
P (k, T) parents of nodek in treeT
N(k, T) next hops tok from root ofT
S(k, T) subtree belowk in treeT
V (T) set of all vertices in treeT
E(T) set of all edges in treeT
Q priority queue

Algorithm 1 : ASPF(i)
1: for all j ∈ Ni do
2: for all d ∈ V do
3: Kd

j→i ⇐ ∅
4:
5: Ti ⇐ SPF(i,V, E)
6: for all j ∈ Ni and j ∈ N(j, Ti) do
7: Tj ⇐ SPF(j,V, E)
8: E ′ ⇐ E(S(j, Ti))
9: for all u→v ∈ E ′ do

10: V ′ ⇐ V (S(v, Ti))
11: T u−v

j = ISPF(Tj ,V ′, {u−v})
12: for all d ∈ V ′ do
13: if i ∈ N(d, T u−v

j) then
14: Kd

j→i ⇐ Kd
j→i ∪ {u−v}

15:
16: return TABLES(i)

Algorithm 2 : TABLES(i)
1: for all j ∈ V do
2: T i−j

i ⇐ ISPF(Ti,V, {i−j})
3: for all d ∈ V do
4: Bd

i→j ⇐ N(d, T i−j
i)

5: if not existsT
Kd

j→i

i then

6: T
Kd

j→i

i ⇐ ISPF(Ti,V,Kd
j→i)

7: Fd
j→i ⇐ N(d, T

Kd
j→i

i)
8: return Fj→i,Bi→j ∀j ∈ Ni

Algorithm 3 : IASPF1(i, f)
1: T̃i ⇐ ISPF(Ti,V, {f})
2: for all j ∈ Ni and j ∈ N(j, Ti) do
3: T̃j ⇐ ISPF(Tj ,V, {f})
4: E ′ ⇐ E(S(j, T̃i))
5: for all u→v ∈ E ′ do
6: V ′ ⇐ V (S(v, T̃i))
7: T̃ u−v

j = ISPF(T̃j ,V ′, {u−v})
8: for all d ∈ V ′ do
9: if i ∈ N(d, T̃ u−v

j) then
10: Kd

j→i ⇐ Kd
j→i ∪ {u−v}

11:
12: return TABLES(i)

Algorithm 4 : IASPF2(i, f)
1: T̃i ⇐ ISPF(Ti,V, {f})
2: for all j ∈ Ni and j ∈ N(j, Ti) do
3: T̃j ⇐ ISPF(Tj ,V, {f})
4: E ′ ⇐ E(S(j, T̃i))
5: for all u→v ∈ E ′ do
6: V ′ ⇐ V (S(v, T̃i))
7: if 6 ∃T u−v

j or V ′ 6⊆ V (T u−v
j) or f ∈

E(T u−v
j) then

8: T̃ u−v
j ⇐ ISPF(T̃j ,V ′, {u−v})

9: else
10: T̃ u−v

j ⇐ T u−v
j

11: for all d ∈ V ′ do
12: if i ∈ N(d, T̃ u−v

j) then
13: Kd

j→i ⇐ Kd
j→i ∪ {u−v}

14:
15: return TABLES(i)

– Incremental SPF (ISPF) procedure can be used for efficiently figuring out the ef-
fect of a link failure.ISPF adjusts an existing shortest path tree instead of con-
structing it from scratch. The complexity of theISPF is proportional to the number
of nodes affected by the link failure which on the average is much smaller than|V|.

The ASPF procedure based on the above observations is shown in Algorithm 1.
It usesISPF procedure (not shown here but can be found in [12]), for incrementally
building a new SPT from an existing SPT. The arguments toISPF include the treeT
corresponding to the edge setE , the setE ′ of (failed) edges to be removed and the set
V ′ of interested destinations. It returns a new tree consisting of nodes inV ′ without the
links in E ′. In ASPFprocedure, the sets of key links are first initialized to∅ (lines1−3).
Then the shortest path treeTi rooted ati is computed usingSPF procedure (line5).
Each neighborj that is a next hop to some destination is considered in turn (line6). If
not, the key links for the corresponding interfacej→i remain∅. Otherwise,j is the next
hop to all the nodes in the subtree belowj. Only the linksE(S(j, Ti)) in this subtree
S(j, Ti) could be key links for the nodesV (S(j, Ti)). So the search for key links is
restricted only toE(S(j, Ti)) (lines8−9). A SPTT u−v

j without each of these edgesu−v
is incrementally computed usingISPF (line 11) from Tj which was computed earlier
usingSPF (line 7). These SPTs are partial trees computed to span only the affected
nodes belowu−v in treeTi (lines10−11). Finally, a linku−v is included inKd

j→i for
all d in V (S(v, Ti)) if i is a next hop tod from j in treeT u−v

j rooted atj without edge
u−v (lines12−14).

Once key links are determined, forwarding and backwarding tables are computed
usingTABLESprocedure shown in Algorithm 2. Since we are preparing the forwarding
tables for handling single link failures, the backwarding table for an interfacei→ j
contains the next hops without only the edgei−j. These entries are obtained using
ISPF onTi (lines2−4). The forwarding table entry for destination ofj→i interface is

computed by excluding the links in the setKd
j→i. A treeT K

d
j→i

i corresponding to key link
setKd

j→i is computed only if it wasn’t previously computed (lines5−6). In particular,
when the key link set is empty, existing treeTi can be reused. Essentially, a shortest
path tree is computed only once for each distinct set of key links.

We now analyze the complexity of theASPFprocedure . There are|N |+ 1 invoca-
tions ofSPF(lines5 and7) andO(|V|) of ISPF invocations (line11). The running time
of an incremental algorithm such asISPF depends on the number of nodes affected (re-
quiring recomputation of paths) by the changes in the edge set. So let us measure the
complexity in terms of the affected nodes. Each linke in the treeTi is pulled down in
turn to see its impact on the next hops from a neighborj. Only those nodes that are
below the linke are affected by the removal ofe. A node is affected by the removal
of any of the links along the path to it from the root. The number of link removals
(the ISPF computations) affecting a node in the worst case would be the diameter of
the networkD. So the total number of affected nodes due toO(|V|) ISPF invocations
would beO(D|V|). Since regularSPF computation has to start from scratch, we can
say that the affected nodes areO(|V|). So the complexity of key link computation is
thenO(D + |N |+ 1) times regularSPFcomputation. The time taken byTABLESde-
pends on the sets of key links and it is found to be dominated by the time for key link

computation. Therefore, considering thatD can be approximated bylog |V| andSPF
takesO(|E| log |V|), the complexity ofASPFis O(|E| log2 |V|).

3.2 Incremental ASPF Algorithms

TheASPFprocedure described above computes forwarding tables efficiently and thus
makes the deployment of FIR feasible. Its running time can be further improved by sav-
ing the intermediate steps of the previous computation of these tables (corresponding
to the previous global update) instead of obtaining them from scratch. We devised two
incremental versionsIASPF1 andIASPF2 that take advantage of the saved informa-
tion in determining new key links and tables when an update is received notifying the
failure of a link. These two versions differ in the amount of memory usage.IASPF1
remembersTi rooted ati, Tj andT i−j

i for each neighborj. So the total space required
for IASPF1 is O((2|N |+ 1)|V|). In addition to this,IASPF2 saves partial treesT u−v

j

for each edgeu−v in Ti. The additional space required forIASPF2 is O(D2|V|).
The procedureIASPF1 shown in Algorithm 3 is quite similar toASPFwith changes

only in lines5 and7 (renumbered1 and3 respectively inIASPF1). Suppose the failed
link is f . While ASPFusesSPF (line 5), IASPF1 invokesISPF to compute new̃Ti

without link f based on the saved oldTi (line 1). Similarly T̃j is computed for eachj
using oldTj (line 3). The backwarding table computation time can also be improved
by using the savedT i−j

i . The rest of theIASPF1 procedure is no different fromASPF.
With only minor changes, usingO((2|N | + 1)|V|) space,IASPF1 reduces approxi-
mately|N | + 2 SPF computations. These procedures are shown only for a link down
event. A link up event can also be treated analogously.

The IASPF2 procedure shown in Algorithm 4 further improves the running time
by avoiding unnecessary computations of the partial treesT u−v

j for each edgeu−v in Ti.
This procedure is similar toIASPF1 except for lines7−10. A treeT u−v

j is reused if it
exists and spans all the nodes affected whenu−v is down without including the failed
link f . Otherwise, a new such tree is constructed by invokingIASPF . Since these trees
are partial trees and a link is not part of many such trees, a large fraction ofIASPF
invocations can be avoided. In the next section, we show that the average running time
of IASPF2 is less than even a singleSPFcomputation. Now let us look at the additional
space required for storing these partial trees. As mentioned earlier, a node is affected
by all the links along its path from the root and their count in the worst case would
be the network diameterD. So a node would be a member of at mostD partial trees.
The space needed for a partial tree in the worst case would beD times the number of
affected nodes in it. So the total space for all the partial trees put together would be less
thanD2|V| which is only linear in terms of the number of nodes in the network.

4 Evaluation of the FIR scheme

We now evaluate the performance of the FIR scheme and demonstrate its failure re-
siliency and forwarding efficiency. We first describe how link failures in random topolo-
gies are modeled. Then, we show how service downtime is reduced substantially by
employing FIR. It is also shown that compared to the optimal shortest path routing

the extent of path elongation due to local rerouting by FIR is not significant. Finally,
the relative computational complexity of ASPF and incremental ASPF algorithms w.r.t.
Dijkstra’s SPF algorithm is presented to affirm that FIR is viable.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000

cu
m

ul
at

iv
e

di
st

rib
ut

io
n

failure duration (minutes)

(a) failure duration

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

0 1 2 3 4 5 6 7 8 9 10 10+

re
la

tiv
e

fr
eq

ue
nc

y
(%

)

number of simultaneous link failures

(b) simultaneous failures

Fig. 6.Distribution of failures

4.1 Link Failure Model

The pattern of link failures in large operational networks is yet to be characterized very
well. In [7], some detailed measurements and analysis on the link failure events in the
Sprint’s IP backbone network are reported. They presented a histogram of the mean
time between failure of links and the cumulative distribution of failure durations. Their
findings are used in this paper as the basis for inducing failures on random topologies
generated using the BRITE topology generator [9] with link weights chosen randomly
from the range100 to 300. We modeled the mean time between failures (MTBF) of
links with a heavy tailed distribution, with the distribution function obtained by curve
fitting on the histogram reported in [7]. The MTBF values generated in this way vary
from several hours to tens of days. Our model of failure events duration was based on
the cumulative distribution reported in [7]. We partitioned that distribution function
into several segments and use straight lines to approximate each segment as shown
in Figure 6(a). Histograms on the relative frequency of the number of simultaneous
failures is shown in Figure 6(b) for50 node topology with average degree4.

4.2 Service Downtime

We now compare the routing performance with and without employing FIR. The per-
formance is measured in terms ofservice downtimewhich is defined as the total time
any two nodes in the network are unreachable from each other. First consider the per-
formance with FIR. When a router under FIR detects an adjacent link failure, it does

0 20 40 60 80 100 120
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

suppress interval (seconds)

se
rv

ic
e

do
w

nt
im

e
(%

)

200 Nodes
100 Nodes
50 Nodes

(a) with FIR due to multiple failures

10 20 30 40 50 60
0

1

2

3

4

5

6

7

convergence delay (seconds)

se
rv

ic
e

do
w

nt
im

e
(%

)

100 Nodes, w/o FIR
50 Nodes, w/o FIR
100 Nodes, w/ FIR
50 Nodes, w/ FIR

(b) with and without FIR

Fig. 7.Performance evaluation in terms of service downtime

not propagate the LSP immediately. Instead itsuppressesthe global update and initi-
ates local rerouting. There would not be any delay between failure detection and local
rerouting if backwarding tables are employed in the forwarding plane. However, local
rerouting by different nodes due to multiple suppressed failures can result in a forward-
ing loop contributing to service downtime. For example, suppose the links2−5 and
4−6 of the topology in Figure 1 are down. Then packets from1 to 6 take the path
1→2→1→4 →1 →2→1 · · ·, thus keep looping even though6 is reachable through
1→3→5→6. Nevertheless, since failures are suppressed only for a certainsuppress
interval, it is less likely that multiple links fail simultaneously within a short duration.
Moreover, only a specific scenario of failures of links along the shortest path and the
alternate path can cause looping.

To demonstrate the ability of FIR in handling simultaneous failures, the downtime
with FIR is plotted as a function of the suppress interval in Figure 7(a). The results are
shown for network topologies of different size (50, 100, and200 nodes) and average
degree of4. Every point in the plot is the average of5 simulation runs, with the vertical
bars reporting95% confidence intervals. When the suppress interval is60 seconds, the
fraction of the time some destination is unreachable due to loop-causing simultaneous
multiple suppressed failures is less than0.02%. Even when the suppress interval is
made2 minutes to further reduce the global link state update overhead, all nodes are
reachable99.95% of the time. These results suggest that by preparing for single link
failures, FIR can also handle most of the simultaneous link failures.

The discussion above assumed that local rerouting does not incur any delay. But
when the backwarding tables are not employed in the forwarding plane there would be
some delay in locally sensing the failure, recomputing the forwarding tables and up-
dating FIBs. The time to detect a link failure would be much shorter with local rerout-
ing than with global rerouting. For example, a link can be considered failed and local
rerouting is triggered with the loss of single hello packet, while the failure event is no-
tified globally only after the loss of5 hello packets. Essentially, local rerouting enables

swift response to failures without causing routing instability. Using the backwarding
tables stored in the control plane, the forwarding tables can be recomputed in negligi-
ble amount of time. Then, the time to update FIBs depends on the number of entries
changed. Assuming that the total local rerouting delay is2 seconds, the service down-
time with FIR is contrasted with downtime without FIR in Figure 7(b).

Let us look at the downtime without FIR. Suppose a link fails at timet and after a
periodT all routers reconverge and forwarding to the affected destinations is resumed.
We refer to this timeT as the convergence delay which is the sum of all the delays
due to several contributing factors such aslsp-generationinterval, andspf-intervalas
explained in [7]. During this period certain node pairs that have shortest paths through
the failed link are not reachable. Figure 7(b) shows the service downtime without FIR
as a function of the convergence delay. It also shows the downtime with FIR assuming
local rerouting delay of2 seconds and suppress interval of1 minute. It is clear that by
employing FIR, service downtime can be improved by at least an order of magnitude.
In addition, by suppressing the update of failures that last less than a minute, majority
of the failures are handled without global updating and recomputation. These results
indicate that FIR not only increases failure resiliency but also ensures routing stability
while reducing update overhead.

4.3 Path Length Stretch

Under FIR, only the node adjacent to a failed link is aware of the failure and all other
nodes are not. So, a packet takes the usual shortest path till the point of failure and then
gets rerouted along the alternate path. Consequently, in the presence of link failures, FIR
may forward packets along longer paths compared to the globally recomputed optimal
paths based on the link state updates. For example in the topology of Figure 1, when
the link2−5 is down, packets from1 to 6 are forwarded along the path1→2→1→4→6.
Had node1 been made aware of the link failure, packets would be forwarded along the
shorter path1→3→5→6. However, we found that on realistic large topologies the
extent of this elongation is not significant. Letstretchof a path between a pair of nodes
be the ratio of the lengths of the path under FIR and the optimal shortest path. When
the weights of all the links are not same, path length is said to be the sum of the weights
of its links. Without any link failures, there is no difference between the FIR paths and
the optimal shortest paths. So the stretch is1. We have measured the stretch under link
failures due to FIR for random topologies of various sizes. Across all topologies the
average stretch is less than1.2 and in most cases it is close to1.

4.4 Forwarding Table Computation Complexity

As explained before, the main change required in the control plane for the deployment
of FIR is the replacement of traditional interface independent routing table computation
algorithm with an algorithm for computing interface dependent forwarding tables. This
algorithm is invoked only when a link failure lasts longer than a suppress interval and
a global update is triggered. This computation is done while packets to the affected
destinations are locally rerouted. Therefore, unlike in the existing routing schemes, the
running time of the FIR algorithms does not affect the reachability of destinations.

Nevertheless, it is desirable to reduce the computational overhead on a router. Here we
evaluate the running time of the FIR algorithms and show that the forwarding tables can
be incrementally computed in less than a SPF computation time.

1

3

5

7

9

11

25 50 75 100 125 150 175 200

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

ASPF
IASPF v1
IASPF v2

(a) average degree of4

1

3

5

7

9

11

13

25 50 75 100 125 150 175 200

re
la

tiv
e

pe
rf

or
m

an
ce

number of nodes

ASPF
IASPF v1
IASPF v2

(b) average degree of6

Fig. 8.Comparison of run time complexity of FIR algorithms

We measured the time complexity of all theseSPF based algorithms in terms of
the number of distance comparisons made as was done in [10]. The distances of two
nodes are compared for updating distance of one of them or for readjusting the prior-
ity queue after anextract or enque operation. The running time ofASPFand its
incremental versionsIASPF1 andIASPF2 are shown in Figure 8. We show the rela-
tive performance of these algorithms w.r.t. well known Dijkstra’sSPFalgorithm. Since
Dijkstra’s algorithm is widely deployed, using it as a reference helps in assessing the
running time of these algorithms. The memorylessASPFprocedure takes around10
times longer thanSPF for computing forwarding tables from scratch. The incremental
procedureIASPF1 remembers2|N | + 1 shortest path trees and improves the running
time to less than5 timesSPF. Using an additional space of less thanD2|V|, IASPF2
takes no more than a singleSPFcomputation. Its relative performance gets better as the
connectedness increases. Apart from the modest space requirement,IASPF2 does not
add any additional processing burden on routers that currently employ Dijkstra’sSPF
algorithm for computing routes.

These results establish that FIR is feasible, reliable, and stable. Furthermore, it re-
quires minimal changes in control plane only and also reduces communication over-
head. These features make FIR an attractive alternative to the existing routing schemes.

5 Related Work

The nature of link failures in a network and their impact on the traffic has received a
great deal of attention recently. The frequency and the duration of link failures in a back-
bone network has been studied and reported in [5, 7]. They observe that link failures are

part of everyday operation of a network due to various causes such as maintenance,
accidental fiber cuts, and misconfigurations. It is also found that the majority of the
failures are transient lasting less than a minute warranting local rerouting. The impact
of link failures on Voice-over-IP is assessed in [4]. They noticed that link failures may
be followed by routing instabilities that last for tens of minutes resulting in the loss of
reachability of large sets of end hosts. Since the level of congestion in a backbone is
almost negligible, offering high availability of service is identified as the major con-
cern for VoIP. These findings about the link failures and their debilitating effect on the
network services provide a strong motivation for schemes such as FIR that focus on
ensuring service continuity.

There have been several proposals for mitigating the impact of link failures on net-
work performance. [6] and [13] address the issue of assigning weights to links such that
the traffic is balanced across the network even in the presence of link failures. These
schemes can be thought of as preparing for link failures in terms of reducing overload
while FIR is concerned with increasing availability. As mentioned earlier, guarantee-
ing reachability is found to be an overriding concern than avoiding congestion in a
backbone network. Moreover, these schemes can be used in conjunction with FIR. A
detailed analysis of the sources of delay in routing reconvergence after a link failure is
provided in [1, 2]. They suggest tuning various parameters related to link state propa-
gation and routing table computation for accelerating the convergence and reducing the
downtime. This may not be the best recipe for handling common transient link failures.
The objective of FIR is to make forwarding insensitive to the parameter values chosen
for accelerating convergence and insuring stability.

A recent work closely related to FIR is the deflection routing proposed in [8]. The
basic idea underlying their approach is to select a next hop node based on strictly de-
creasing cost criterion. While deflection routing guarantees loop-free paths, it may not
always find such a path even if one exists. For example, in a simple triangle topology
when a link with the smallest cost goes down, the corresponding pair of nodes are not
reachable. Apart from this last hop problem, deflecting routing requires that the weights
of links satisfy a certain condition. FIR imposes no such restrictions on weight assign-
ment and assures loop-free forwarding to any reachable destinations in case of single
link failures. An algorithm proposed in [11] performs local restoration by informing
only the routers in the neighborhood about link failure events instead of all routers. FIR
achieves similar effect without requiring any changes to link state propagation mecha-
nism. An application layer solution is proposed in [3] for detecting and recovering from
path outages using a resilient overlay network. While RON is an attempt to overcome
the slow convergence of BGP based inter-domain routing, FIR is a remedy for outages
in intra-domain routing. Nevertheless, we believe network layer schemes such as FIR
obviate the need for application layer approaches like RON.

6 Conclusions and Future Work

In this paper, we addressed the problem of ensuring destination reachability in the pres-
ence of link failures. We proposed afailure insensitive routingapproach where routers
infer link failures from the packet’s flight and precompute interface specific forward-

ing tables avoiding the potentially failed links. When a link fails, only adjacent nodes
locally reroute packets while all other nodes simply forward them according to their
precomputed interface specific forwarding tables without being explicitly aware of the
failure. We presented anavailable shortest path firstalgorithm that computes interface
specific forwarding tables for dealing with single link failures inO(|E| log2 |V|) time.
We have also described an incrementalASPFalgorithm that requiresO(D2|V|) space
for remembering intermediate steps of the previous computation but runs in less time
than aSPFcomputation. We have demonstrated that FIR handles simultaneous multiple
failures also and reduces service downtime by an order of magnitude. Essentially FIR
approach improves failure resiliency without jeopardizing routing stability. It does so
without altering the forwarding plane while reducing communication overhead. Hence,
we believe that FIR is an attractive alternative to the existing routing schemes. We are
currently in the process of conducting packet level simulations to assess the utility of
FIR in terms of throughput received by TCP flows and quality experienced by VoIP
flows. Also, we plan to actually implement FIR and evaluate its performance to make
its case more compelling.

References

1. C. Alattinoglu, V. Jacobson, and H. Yu, “Towards Milli-Second IGP Convergence,” draft-
alaettinoglu-ISIS-convergence-00.txt, November 2000.

2. C. Alattinoglu, and S. Casner, “ISIS routing on the Qwest backbone: A recipe for subsecond
ISIS convergence,” NANOG 24, 2/2002.

3. D. Anderson, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient Overlay Networks,”
SOSP, 2001.

4. C. Boutremans, G. Iannaccone, and C. Diot, “Impact of Link Failures on VoIP Performance,”
NOSSDAV, 2002.

5. C.-N. Chuah, S. Bhattacharyya, G. Iannaccone, C. Diot, “Studying failures& their impact
on traffic within a tier-1 IP backbone”, CCW, 2002.

6. B. Fortz, “Optimizing OSPF/IS-IS weights in a changing world”, IEEE JSAC Special Issue
on Advances in Fundamentals of Network Management, Spring 2002.

7. G. Iannaccone, C.-N. Chuah, R. Mortier, S. Bhattacharyya, C. Diot, “Analysis of link failures
in an IP backbone”, IMW 2002.

8. S. Iyer, S. Bhattacharyya, N. Taft, N. McKeown, and C. Diot, “An approach to alleviate link
overload as observed on an IP backbone,” INFOCOM, 2003.

9. A. Medina, A. Lakhina, I. Matta, and J. Byers, “BRITE: An Approach to Universal Topology
Generation”, Proceedings of MASCOTS 2001, Cincinnati, August 2001.

10. P. Narvaez, “Routing reconfiguration in IP networks”, Ph.D. Dissertation, MIT, June 2000.
11. P. Narvaez, K.-Y. Siu, and H.-Y. Tzeng, “Local Restoration Algorithms for Link-State Rout-

ing Protocols”, ICCCN, 1999.
12. S. Nelakuditi, S. Lee, Y. Yu, and Z.-L. Zhang, “Failure Insensitive Routing for Ensuring

Service Availability,” Technical Report, University of South Carolina, Columbia, February
2003.

13. A. Nucci, B. Schroeder, S. Bhattachrayya, N. Taft, C. Diot, “IS-IS link weight assignment
for transient link failures,” SPRINT ATL Technical Report TR02-ATL-071000.

