
IEEE Communications Magazine • April 200184

A Report on Recent Developments in
TCP Congestion Control

0163-6804/01/$10.00 © 2001 IEEE

ABSTRACT

This article discusses several changes to TCP’s
congestion control, either proposed or in
progress. The changes to TCP include a limited
transmit mechanism for transmitting new pack-
ets upon receipt of one or two duplicate
acknowledgments, and a SACK-based mecha-
nism for detecting and responding to unneces-
sary fast retransmits or retransmit timeouts.
These changes to TCP are designed to avoid
unnecessary retransmit timeouts, to correct
unnecessary fast retransmits or retransmit time-
outs resulting from reordered or delayed pack-
ets, and to assist the development of viable
mechanisms for corruption notification. The
changes in the network include explicit conges-
tion notification, which builds on the addition of
active queue management.

INTRODUCTION
The basis of TCP congestion control lies in addi-
tive increase multiplicative decrease (AIMD),
halving the congestion window for every window
containing a packet loss, and increasing the con-
gestion window by roughly one segment per
round-trip time (RTT) otherwise. A second
component of TCP congestion control of funda-
mental importance in highly congested regimes
is the retransmit timer, including the exponential
backoff of the retransmit timer when a retrans-
mitted packet is itself dropped. A third funda-
mental component is the slow start mechanism
for initial probing for available bandwidth,
instead of initially sending at a high rate that
might not be supported by the network. The
fourth TCP congestion control mechanism is
acknowledgment (ACK)-clocking, where the
arrival of acknowledgments at the sender is used
to clock out the transmission of new data.

Within this general congestion control frame-
work of slow start, AIMD, retransmit timers,
and ACK-clocking, there is a wide range of pos-
sible behaviors. These include the response
when multiple packets are dropped within an
RTT, the precise algorithm for setting the
retransmit timeout, the response to reordered or

delayed packets, the size of the initial congestion
window, and so on. Thus, different TCP imple-
mentations differ somewhat in their ability to
compete for available bandwidth. However,
because they all adhere to the same underlying
mechanisms, there is no bandwidth starvation
between competing TCP connections. That is,
while bandwidth is not necessarily shared equally
between different TCP implementations, it is
unlikely that one conformant TCP implementa-
tion will prevent another from receiving a rea-
sonable share of the available bandwidth.

The changes to TCP discussed in this article
all adhere to this underlying framework of slow
start, AIMD, retransmit timers, and ACK-clock-
ing; that is, none of these changes alter the funda-
mental underlying dynamics of TCP congestion
control. Instead, these proposals would help to
avoid unnecessary retransmit timeouts, correct
unnecessary fast retransmits and retransmit time-
outs resulting from reordered or delayed packets,
and reduce unnecessary costs (in delay and unnec-
essary retransmits) associated with the mechanism
of congestion notification. These proposals are in
various stages of the processes of research, stan-
dardization, and deployment.

Other changes to TCP’s congestion control
mechanisms in various stages of deployment but
not discussed in this paper include larger initial
windows, and NewReno TCP for greater robust-
ness with multiple packet losses in the absence of
the SACK option. Changes to TCP’s congestion
control mechanisms largely in the research stages
include ACK filtering or ACK congestion control
for traffic on the return path, a range of improve-
ments to the slow start procedure, and rate-based
pacing. Pointers to the literature for many of
these proposals can be found in RFC 2760 [1].
Proposals for greater robustness against misbe-
having end hosts, as in [2], would give protection
against a single end node (e.g., at the Web client)
attempting to subvert end-to-end congestion con-
trol, while not changing the congestion control
behavior in the case of conformant end nodes.

Proposals for endpoint congestion manage-
ment (ECM) would not change the congestion
control mechanisms for a single flow, but would
change the number of individual transfers treated

Sally Floyd, AT&T Center for Internet Research at ICSI

TCP PERFORMANCE IN
EMERGING HIGH-SPEED NETWORKS

IEEE Communications Magazine • April 2001 85

as a single stream in terms of end-to-end conges-
tion control. Other proposals for more explicit
communication between the transport layer and
the link layer below or the application level above
(e.g., HTTP), or for performance-enhancing prox-
ies, would modify the context of congestion con-
trol, but not its underlying mechanisms.

Several themes are carried throughout this
article. One theme is that proposed changes to
TCP’s congestion control algorithms tend
towards increased robustness across a wide
range of environments, rather than fine-tuning
for one particular environment or traffic type at
the expense of another.

A second theme of this article is that many
independent changes are in progress, and evalu-
ating one change requires taking into account its
interactions with other changes in progress. In
addition to considering the impact of a particu-
lar change in TCP given the current environ-
ment, with all else held fixed, it is also useful to
consider the potential impact of a proposed
change some years down the road, when other
changes to TCP and to the network are in place.

A third theme is that there is unavoidable het-
erogeneity in the congestion control behaviors of
deployed TCP implementations, in part due to the
uneven progress of proposed changes to TCP from
research to standardization to actual deployment.
As an example of uneven deployment, the selective
ACK (SACK) option to TCP in RFC 2018 [3],
which allows more robust operation when multiple
packets are lost from a single window of data, was
standardized (as a Proposed Standard) in 1996, but
is only now being widely deployed. (This deploy-
ment is documented by the TBIT tool [4] as well as
by many other researchers.)

This article discusses some changes to TCP at
the end nodes, and changes in the network that
would affect TCP’s congestion control behavior,
as follows. We will discuss the limited transmit
mechanism for reducing unnecessary retransmit
timeouts, and the potential of mechanisms based
on duplicate SACK (D-SACK) information to
add robustness in the presence of reordered or
delayed packets, and we discuss one possible
path of development for corruption notification.
In the section on network changes, we first dis-
cuss active queue management mechanisms such
as random early detection (RED) for controlling
the average queue size and reducing unnecessary
packet drops. We then discuss explicit conges-
tion notification (ECN), which, building on
active queue management, allows routers the
option of marking rather than dropping packets
as indications of congestion to the end nodes.

SMALL CHANGES IN
TCP’S CONGESTION CONTROL MECHANISMS

This section discusses several small changes to
TCP’s congestion control mechanisms intended to
avoid some of the unnecessary retransmit timeouts
for small transfers, and to improve performance in
environments with reordered, delayed, or corrupt-
ed packets. Instead of involving fundamental
changes to TCP’s congestion control, these
changes would bring TCP closer to the “pure”
congestion control behavior, described earlier, of
ACK-clocking, slow start for starting up, AIMD

for congestion windows larger than one segment,
and exponential backoff of the retransmit timer
for environments of heavy congestion.

AVOIDING UNNECESSARY
RETRANSMIT TIMEOUTS

Retransmit timeouts are a necessary mechanism
of last resort in TCP flow control, used when the
TCP sender has no other method of determining
that a segment must be retransmitted. In addi-
tion, the exponential backoff of retransmit timers
is a fundamental component of TCP congestion
control, of particular importance when the con-
gestion window is at most one segment. Howev-
er, when the congestion window is larger than
one segment, TCP is able to use the basic AIMD
congestion control mechanisms, and in this case
it would be preferable to avoid unnecessary
retransmit timeouts as much as possible.

Current TCP implementations have two pos-
sible mechanisms for detecting a packet loss, fast
retransmit or a retransmit timeout. A TCP con-
nection generally recovers more promptly from a
packet loss with fast retransmit, inferring a pack-
et loss after three duplicate ACKs have been
received. When fast retransmit is invoked, the
TCP sender retransmits the segment inferred to
be lost and halves its congestion window, contin-
uing with the data transfer. If the TCP data
sender does not receive three duplicate ACKs
after a loss (e.g., because the congestion window
was less than four segments), the TCP sender
goes through the possibly-considerable delay of
waiting for the transmit timer to expire.

Experimental studies such as those in [5] show
that the performance costs to small flows of unnec-
essarily waiting for a retransmit timer to expire
can be considerable. Figure 1 shows a short TCP
connection with the second packet dropped in the
network. The graph has a mark for each packet
transmitted, with time on the x-axis and packet
number on the y-axis. As shown in the graph, the
TCP sender has to wait for a retransmit timeout
to recover from the packet loss.1

■ Figure 1. TCP without limited transmit, with a single packet drop.

0

Pa
ck

et

Time

0

-1

1

2

3

4

5

6

7

8

0.5 1 1.5 2 2.5 3

Packets
Drops
ACKs
ECN

1 These simulations can be run in the NS simulator with
the command “/test-all-LimTransmit” in “tcl/test.”

IEEE Communications Magazine • April 200186

A number of researchers have proposed a
limited transmit mechanism where the sender
would transmit a new segment after receiving
one or two duplicate ACKs, if allowed by the
receiver’s advertised window; several of the pro-
posals were described in RFC 2760 [1], and lim-
ited transmit has now been approved as a
Proposed Standard [6]. Because the first or sec-
ond duplicate ACK is evidence that a packet has
been delivered to the receiver, and the data
sender has not yet determined that a packet has
been lost, it is conformant with the spirit of the
congestion window to allow a new packet to
enter the pipeline. Because the limited transmit
mechanism transmits a new packet on receiving
the first or second duplicate ACK, rather than
retransmitting an old packet suspected to have
been dropped, the limited transmit mechanism is
robust to reordered packets.

In many cases the limited transmit mecha-
nism allows TCP connections with small win-
dows to recover from less that a full window of
packet losses without a retransmit timeout. As
an example, Fig. 2 shows a simulation with lim-
ited transmit, with the second packet dropped
in the network. In this case, when the TCP
sender receives a duplicate ACK acknowledging
the receipt of the third packet, the sender is
able to send a new packet, ultimately resulting
in three duplicate ACKs followed by a fast
retransmit. We note that in both the simula-

tions, with and without limited transmit, the
TCP sender halves the congestion window in
response to the packet drop. However, with
limited transmit the TCP sender does not have
to wait for a retransmit timeout to learn of the
lost packet. As discussed later, the use of ECN
would also avoid the unnecessary retransmit
timeout in this case.

We hope that limited transmit will soon
become a standard part of TCP implementa-
tions. This should help reduce unnecessary
retransmit timeouts, while preserving the funda-
mental role of retransmit timers in congestion
control for regimes where the available band-
width is at most one packet per RTT.

UNDOING UNNECESSARY
CONGESTION CONTROL RESPONSES TO

REORDERED OR DELAYED PACKETS

There are a number of scenarios where a TCP
sender can infer a packet loss, and consequently
reduce its congestion window, when in fact there
has been no loss. When the retransmit timer
expires unnecessarily early (i.e., when no data or
ACK packet has been lost, and the sender would
have received ACKs for the outstanding packets
if it had waited a little longer), the TCP sender
unnecessarily retransmits a segment. More
important, an early retransmit timeout results in
an unnecessary reduction of the congestion win-
dow, since the flow has not experienced any
packet losses. Similarly, when fast retransmit is
invoked unnecessarily, after three duplicate
ACKs have been received due to reordering
rather than packet loss, the TCP sender also
unnecessarily retransmits a packet and reduces
its congestion window.

Figure 3 shows a TCP connection with sever-
al packets delayed at time 0.75, so the TCP con-
nection undergoes an unnecessary fast retransmit
at time 1.1, accompanied by the termination of
slow start. Figure 4 shows a similar simulation
with the packets delayed slightly less to avoid the
unnecessary fast retransmit. The second simula-
tion simply emphasizes the performance damage
done by the unnecessary fast retransmit in the
first simulation.

While it would be possible to fine-tune TCP’s
retransmit timeout algorithms to achieve an
improved balance between unnecessary retrans-
mit timeouts and unnecessary delay in detecting
loss, it is not possible to design retransmit time-
out algorithms that never result in an unneces-
sary retransmit timeout. Similarly, while it would
be possible to fine-tune TCP’s fast retransmit
algorithm to achieve an improved balance
between unnecessary fast retransmits and unnec-
essary delay in detecting loss, it is not possible to
devise a fast retransmit algorithm that always
correctly determines, after the receipt of a dupli-
cate ACK, whether or not a packet loss has
occurred. Thus, it would be desirable for TCP
congestion control to perform well even in the
presence of unnecessary retransmit timeouts and
fast retransmits.

For a flow with a large congestion window W,
an unnecessary halving of the congestion window
can be a significant performance penalty, since it
takes at least W/2 RTTs for the flow to recover its

■ Figure 2. TCP with limited transmit, with a single packet drop.

0

Pa
ck

et

Time

0

-1

1

2

3

4

5

6

7

8

0.5 1 1.5 2 2.5 3

Packets
Drops
ACKs
ECN

■ Figure 3. TCP with delayed packets at time 0.75, and an unnecessary fast
retransmit.

Packets
ACKs

0

Pa
ck

et

Time

10

0

20

30

40

50

60

70

80

90

1 2 3 4 5

IEEE Communications Magazine • April 2001 87

old congestion window. Similarly, for an environ-
ment with persistent reordering of packets within
a flow, or one with an unreliable estimated upper
bound on the RTT, this repeated unnecessary
halving of the congestion window can have a sig-
nificant performance penalty. Persistent reorder-
ing of packets in a flow could result from changing
routes or from the link-level retransmission of
corrupted packets over a wireless link.

An initial step toward adding robustness in
the presence of unnecessary retransmit timeouts
and fast retransmits is to give the TCP sender
the information to determine when an unneces-
sary retransmit timeout or fast retransmit has
occurred. This first step has been accomplished
with the D-SACK extension (RFC 2883 [7])
recently added to the SACK TCP option. The
D-SACK extension allows the TCP data receiver
to use the SACK option to report the receipt of
duplicate segments. With the use of D-SACK,
the TCP sender can correctly infer the segments
that have been received by the data receiver,
including duplicate segments.

When the sender has retransmitted a pack-
et, D-SACK does not allow TCP to distinguish
between the receipt at the receiver of both the
original and retransmitted packet, and the
receipt of two copies of the retransmitted pack-
et, one of which was duplicated in the network.
If necessary, TCP’s timestamp option could be
used to distinguish between these two cases.
However, in an environment with minimal
packet replication in the network, D-SACK
allows the TCP sender to make reasonable
inferences, one RTT after a packet has been
retransmitted, about whether or not the
retransmission was necessary.

If the TCP data sender determines, a RTT
after retransmitting a packet, that the receiver
received two copies of that segment, and there-
fore the packet retransmission was most likely
unnecessary, one possibility would be for the
sender to “undo” the halving in the congestion
window. The sender could “undo” a recent halv-
ing by setting the slow start threshold, ssthresh,
to the previous value of the old congestion win-
dow, effectively reentering slow start until the
congestion window has reached its old value. If
the connection had been in slow start when the
unnecessary fast retransmit was triggered,
ssthresh could be reset to its old value, restoring
slow start. This would allow the sender to recov-
er its old congestion window in one RTT, instead
of the W/2 RTTs it takes now. In addition to
restoring the congestion window, the TCP sender
would adjust the duplicate ACK threshold or the
retransmit timeout parameters to avoid the wast-
ed bandwidth and other costs of persistent
unnecessary retransmits.

The first part of this work, providing the
information to the sender about duplicate pack-
ets received at the receiver, is done with the D-
SACK extension. The next step is to evaluate
specific mechanisms for identifying an unneces-
sary halving of the congestion window, and for
adjusting the duplicate ACK threshold or
retransmit timeout parameters. Once this is
done, there is no fundamental reason why TCP
congestion control cannot perform effectively in
an environment with persistent reordering.

IMPLICATIONS FOR
CORRUPTION NOTIFICATION

One of the fundamental components of TCP
congestion control is that packet losses are used
as indications of congestion. TCP halves its con-
gestion window after any window of data in
which one or more packets have been lost. With
the addition of ECN to the IP architecture,
routers would also be able to set a bit in the
ECN field of the IP header as an indication of
congestion. However, the addition of ECN to
the IP architecture would not eliminate conges-
tion-related packet losses due to buffer overflow,
and therefore would not allow end nodes to
ignore packet losses as indications of congestion.

For wired links, packet losses due to packet
corruption instead of congestion are infrequent,
at least in terms of their effect on congestion
control [8]; this is not always the case for wire-
less links [9]. While many wireless links use for-
ward error correction (FEC) and link-level
retransmission to repair packet corruption, it is
not always possible to eliminate all packet cor-
ruption in a timely fashion.

One possible response to packet corruption
would be for the TCP sender to “undo” the con-
gestion window reduction if the TCP sender
found out, after the fact, that a single packet loss
had been due to corruption rather than conges-
tion. This late “undoing” of a congestion window
reduction could use a delayed notification of
packet corruption, where the TCP sender
receives the notification of corruption some time
after it has already retransmitted the packet and
halved the congestion window.

Such a mechanism for the late “undoing” of a
congestion window reduction would allow a link-
level protocol to develop a method for the
delayed sending of a corruption notification
message to the TCP data receiver. That is, the
link-level protocol could determine when the
link level is no longer attempting to retransmit a
packet lost at the link level due to corruption. In
this case, the link-level protocol could arrange
for the link-level sender to send a corruption
notification message to the IP destination of the
corrupted packet. Of course, this short corrup-
tion notification message could itself be corrupt-
ed or lost, in which case the transport end nodes

■ Figure 4. TCP with delayed packets at time 0.75, but without the unnecessary
fast retransmit.

Packets
ACKs

0

Pa
ck

et

Time

10

0

20

30

40

50

60

70

80

90

1 2 3 4 5

IEEE Communications Magazine • April 200188

would be left to their earlier inference that the
packet had been lost due to congestion.

With this form of corruption notification, a
TCP sender that has halved its congestion win-
dow as a result of a single packet loss could
receive information from the link level, some
time later, that this packet was lost due to cor-
ruption rather than due to congestion. If such
mechanisms for corruption notification are
developed, a necessary next step will be to deter-
mine the appropriate response of the end nodes
to this corruption. For packet corruption that is
not an indication of congestion from competing
traffic, halving the congestion window in
response to a single corrupted packet is clearly
unnecessarily severe. At the same time, main-
taining a persistent high sending rate in the pres-
ence of a high packet corruption rate is also
clearly unacceptable; each corrupted packet
could represent wasted bandwidth on the path to
the point of corruption.

The development of corruption notification
will also require the development of accompany-
ing mechanisms for protection against misbehav-
ing routers or receivers so that receivers cannot
mislead the sender into treating a congestion-
related packet loss as a corruption-related loss.

CHANGES IN THE NETWORK
TCP’s congestion control behavior is affected by
changes in the network as well as changes to the
TCP implementations at the end hosts. In this
section we discuss the impact of ECN on TCP
congestion control. Because ECN depends on
the deployment of active queue management, we
first consider the impact of active queue man-
agement by itself on TCP congestion control
behavior.

The scheduling mechanisms used in the routers
also have a significant impact on TCP’s congestion
control dynamics. However, in this article we limit
our discussion to the environment of FIFO
scheduling typical of the current Internet.

ACTIVE QUEUE MANAGEMENT
It has long been known that drop-tail queue
management can result in pathological packet-
dropping patterns, particularly in simple simula-
tion scenarios with long-lived connections,
one-way traffic, and fixed packet sizes; this is dis-

cussed in detail in [10]. A more relevant issue
for actual networks is that with small-scale statis-
tical multiplexing, drop-tail queue management
can result in global synchronization among mul-
tiple TCP connections, with underutilization of
the congested link resulting from several connec-
tions halving their congestion window at the
same time. This global synchronization is less
likely to be a problem with large-scale statistical
multiplexing.

However, there is a fundamental trade-off
between high throughput and low delay with any
queue management, whether it is active queue
management such as RED [11] or simple queue
management such as drop-tail. Maintaining a
low average delay with drop-tail queue manage-
ment means that the queue will have little
capacity to accommodate transient bursts, and
can result in an unnecessarily high packet drop
rate. At the same time, drop-tail queue manage-
ment is perfectly capable of delivering accept-
able performance in many circumstances. For
example, experimental studies such as [12] have
confirmed that with higher levels of statistical
multiplexing and heterogeneous session start
times, RTTs, transfer sizes, and packet sizes typ-
ical of the current Internet, drop-tail queue
management is quite capable of delivering both
high link utilization and low overall response
times for Web traffic.

The main motivation for active queue man-
agement is to control the average queuing delay
while at the same time preventing transient fluc-
tuations in the queue size from causing unneces-
sary packet drops. For environments where low
per-packet delay and high aggregate throughput
are both important performance metrics, active
queue management can allow a queue to be
tuned for low average per-packet delay while
reducing the penalty in unnecessary packet
drops that might be necessary with drop-tail
queue management with the same average
queueing delay. However, for environments with
the same worst-case queuing delay for drop-tail
as for active queue management, the lower aver-
age queue size maintained by active queue man-
agement can sometimes come at the cost of a
higher packet drop rate.

In environments with highly bursty packet
arrivals (as would be encouraged by a scenario
with ACK compression and ACK losses on the
return path), drop-tail queue management can
result in an unnecessarily large number of pack-
et drops compared to active queue management,
particularly with similar average queuing delays.
Even if there is full link utilization, a higher
packet drop rate can have two consequences:
wasted bandwidth on congested links before the
point of loss, and a higher variance in transfer
times for the individual flows.

One might ask whether unnecessary packet
drops really matter if full link utilization can be
maintained. Unnecessary packet losses result in
wasted bandwidth to the point of loss only if
there are multiple congested links, where other
traffic could have made more effective use of the
available bandwidth upstream of the point of
congestion. Paths with multiple congested links
might seem unlikely, given the lack of congestion
reported within many backbone networks. How-

■ Figure 5. TCP with no packets dropped or marked.

0

Pa
ck

et

Time

0

-1

1

2

3

4

5

6

7

8

0.5 1 1.5 2 2.5 3

Packets
Drops
ACKs
ECN

IEEE Communications Magazine • April 2001 89

ever, even with uncongested backbone networks,
a path with a congested link to the home, a con-
gested link at an Internet exchange point, and a
congested transoceanic link would still be char-
acterized by multiple congested links.

The second possible consequence of unneces-
sary packet losses even with full link utilization
can be a higher variance in transfer times. For
example, small flows with an “unnecessary”
packet drop of the last packet in a transfer will
have a long wait for a retransmit timeout, while
other active flows might have their total transfer
time shortened by one packet transmission time.

We would also note that the bursty packet
loss patterns typical of drop-tail queue manage-
ment have had a particularly unfortunate inter-
action with Reno TCP, but since Reno
implementations in the Internet are gradually
being replaced by NewReno and Sack TCP, this
interaction is becoming less of a problem. Reno
TCP has well-known performance problems
with multiple packets dropped from a single
window of data, and these multiple drops are
more likely with drop-tail than with active
queue management. The gradual replacement
of Reno by NewReno and Sack TCP does not
mean that active queue management is no
longer needed, however; it just means that this
particular performance problem of multiple
packets dropped from a window of data is now
of less pressing concern.

EXPLICIT CONGESTION NOTIFICATION
ECN allows routers to set the congestion experi-
enced (CE) bit in the IP packet header as an indi-
cation of congestion to the end nodes rather than
dropping the packet. ECN is specified in RFC
2481 [13], and as this is being written is an experi-
mental addition to the IP architecture. ECN-capa-
ble packets in TCP connections advertise their
capability for ECN in the IP header. In terms of
congestion control, TCP connections respond to a
single ECN mark as they would to a single packet
loss. One of the key advantages of ECN will not be
for TCP traffic, but instead for traffic such as real-
time or interactive traffic, where the cost of an
unnecessary packet drop is either the unnecessary
delay of retransmitting the packet, or possibly mak-
ing do without that packet altogether.

To first order, TCP congestion control
dynamics with ECN are similar to those without
ECN. The main difference is that the TCP
sender does not have to retransmit the marked
packet (as it would if the packet had been
dropped). For example, ECN would mean short-
er transfer times for the small number of short
flows that might otherwise have the final packet
of a transfer dropped. Experimental studies such
as [14] have shown the performance advantages
of ECN for TCP short transfers.

One of the advantages of ECN is that, by
replacing a packet drop by a packet mark, a TCP
connection with a small congestion window can
avoid a retransmit timeout. Figure 6 shows a
simulation with ECN-capable TCP, with the sec-
ond packet marked rather than dropped in the
network. The TCP sender receives the conges-
tion notification with the receipt of the ACK
packet, and halves its congestion window. Figure
5 shows the same simulation with no packets

marked or dropped, to emphasize the halving of
the congestion window in the simulation with
ECN. Figure 1 showed the same scenario with
the third packet dropped rather than marked,
resulting in a retransmit timeout.

Figure 2 shows that limited transmit without
ECN could also have avoided a retransmit time-
out in this scenario. Because limited transmit
could sometimes avoid a retransmit timeout in
this case even in the absence of ECN, the
deployment of limited transmit could somewhat
diminish the performance benefits of ECN for
small flows (by improving TCP performance
even in the absence of ECN, not by worsening
TCP performance with ECN). Thus, some of the
performance advantages reported for ECN for
TCP short transfers would diminish with the
introduction of limited transmit. At the same
time, there are many scenarios (e.g., transfer of
only a few packets) where ECN avoids a retrans-
mit timeout while limited transmit does not, and
also scenarios (with forced drops due to buffer
overflow) where the opposite is the case.

Experimental studies such as [14] have also
shown that ECN has some performance advan-
tages even for long TCP transfers. One perfor-
mance advantage is that ECN eliminates the
delays of the fast retransmit and retransmit time-
out procedures, allowing the TCP sender to
immediately begin transmitting at the reduced
rate. ECN gives an explicit notification of con-
gestion that is robust in the presence of
reordered or delayed packets, and does not rely
on the imprecise duplicate ACK thresholds or
retransmit timeout intervals used by TCP to
detect lost packets.

As noted earlier, ECN cannot be relied on to
completely eliminate packet losses as indications
of congestion, and therefore would not allow the
end nodes to interpret packet losses as indica-
tions of corruption instead of congestion.
Because ECN cannot eliminate packet loss com-
pletely, it does not eliminate the need for limited
transmit. Similarly, ECN does not eliminate the
need for fast retransmit and retransmit timeout
mechanisms to detect dropped packets, and
therefore does not eliminate the need for the D-
SACK procedures discussed earlier for undoing
unnecessary congestion control responses to
reordered or delayed packets.

■ Figure 6. TCP with ECN, with a single packet marked.

0

Pa
ck

et

Time

0

-1

1

2

3

4

5

6

7

8

0.5 1 1.5 2 2.5 3

Packets
Drops
ACKs
ECN

IEEE Communications Magazine • April 200190

CONCLUSIONS

To summarize, changes to TCP are in progress
that would continue to bring TCP’s congestion
control behavior closer to the goal of AIMD for
larger congestion windows, and exponential back-
off of the retransmit timer for regimes of higher
congestion. These changes include the limited
transmit mechanism to avoid unnecessary retrans-
mit timeouts, and D-SACK-based mechanisms to
identify and reverse unnecessary congestion con-
trol responses to reordered or delayed packets.
More speculative possibilities include corruption
notification messages for the link level to inform
transport end nodes about packets lost to corrup-
tion rather than congestion.

At the same time, changes in the network are
either proposed or in progress to reduce unnec-
essary packet losses, and to replace some con-
gestion-related losses by packet marking instead.
Like the possible changes to TCP, changes such
as ECN would bring TCP’s congestion control
behavior closer to its desired ideal behavior, as
well as be of great potential value to newer
unreliable unicast, unreliable multicast, and reli-
able multicast transport protocols.

ACKNOWLEDGMENTS
I would like to thank Mark Allman and Jamshid
Mahdavi for feedback on an earlier draft of this
article.

REFERENCES
[1] M. Allman et al., “Ongoing TCP Research Related to

Satellites,” RFC 2760, Feb. 2000.
[2] S. Savage et al., “TCP Congestion Control with a Misbe-

having Receiver,” ACM Comp. Commun. Rev., vol. 29,
no. 5, Oct. 1999, pp. 71–78.

[3] M. Mathis et al.,”TCP Selective Acknowledgment
Options,” RFC 2018, Apr. 1996.

[4] J. Padhye and S. Floyd, TBIT Web site: http://www.aciri.
org/tbit/

[5] H. Balakrishnan et al., “TCP Behavior of a Busy Web
Server: Analysis and Improvements,” IEEE INFOCOM,
Mar. 1998.

[6] M. Allman, H. Balakrishnan, and S. Floyd, “Enhancing
TCP’s Loss Recovery Using Limited Transmit,” RFC 3042,
Jan. 2001.

[7] S. Floyd et al., “An Extension to the Selective Acknowl-
edgement (SACK) Option for TCP,” RFC 2883, July
2000.

[8] J. Stone and C. Partridge, “When the CRC and TCP
Checksum Disagree,” SIGCOMM Symp. Commun. Archi-
tectures and Protocols, Sept. 2000.

[9] S. Dawkins et al., “End-to-end Performance Implications
of Links with Errors,” Internet draft, July 2000, work in
progress.

[10] S. Floyd and V. Jacobson, “On Traffic Phase Effects in
Packet-Switched Gateways,” Internetworking: Research
and Experience, vol. 3, no. 3, Sept. 1992, pp. 115–56.

[11] S. Floyd and V. Jacobson, “Random Early Detection
Gateways for Congestion Avoidance,” IEEE/ACM Trans.
Net., vol. 1, no. 4, Aug. 1993, pp. 397–413.

[12] M. Christiansen et al., “Tuning RED for Web Traffic,”
SIGCOMM Symp. Commun. Architectures and Proto-
cols, Sept. 2000, pp. 139–50.

[13] K. K. Ramakrishnan and S. Floyd, “A Proposal to add
Explicit Congestion Notification (ECN) to IP,” RFC 2481,
Jan. 1999.

[14] U. Ahmed and J. Salim, “Performance Evaluation of
Explicit Congestion Notification (ECN) in IP Networks,”
RFC 2884, July 2000.

BIOGRAPHY
SALLY FLOYD (floyd@aciri.org) received a B.A. degree in soci-
ology, with a minor in mathematics, from the University of
California at Berkeley in 1971. From 1975 to 1982 she
worked on computer systems for Bay Area Rapid Transit
(BART). She received M.S. and Ph.D. degrees from the Uni-
versity of California at Berkeley in 1987 and 1989, respec-
tively, in computer science. From May 1990 to January
1999 she was a member of the Network Research Group at
Lawrence Berkeley National Laboratory. Since February
1999 she has been a member of the AT&T Center for Inter-
net Research (ACIRI) at the International Computer Science
Institute (ICSI). Her research interests include congestion
control in computer networks and the analysis of network
dynamics.

Changes to TCP

are in progress

that would

continue to bring

TCP’s congestion

control behavior

closer to the goal

of AIMD for

larger congestion

windows, and

exponential

backoff of the

retransmit timer

for regimes of

higher

congestion.

