
756 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997

A Comparison of Mechanisms for Improving
TCP Performance over Wireless Links

Hari Balakrishnan,Student Member, IEEE,Venkata N. Padmanabhan,Student Member, IEEE,
Srinivasan Seshan, and Randy H. Katz,Fellow, IEEE

Abstract—Reliable transport protocols such as TCP are tuned
to perform well in traditional networks where packet losses occur
mostly because of congestion. However, networks with wireless
and other lossy links also suffer from significant losses due to
bit errors and handoffs. TCP responds to all losses by invok-
ing congestion control and avoidance algorithms, resulting in
degraded end-to-end performance in wireless and lossy systems.
In this paper, we compare several schemes designed to improve
the performance of TCP in such networks. We classify these
schemes into three broad categories: end-to-end protocols, where
loss recovery is performed by the sender; link-layer protocols
that provide local reliability; and split-connection protocols that
break the end-to-end connection into two parts at the base
station. We present the results of several experiments performed
in both LAN and WAN environments, using throughput and
goodput as the metrics for comparison. Our results show that
a reliable link-layer protocol that is TCP-aware provides very
good performance. Furthermore, it is possible to achieve good
performance without splitting the end-to-end connection at the
base station. We also demonstrate that selective acknowledgments
and explicit loss notifications result in significant performance
improvements.

Index Terms—Computer networks, Internetworking, link-lay-
er protocals, TCP, wireless networks.

I. INTRODUCTION

T HE increasing popularity of wireless networks indicates
that wireless links will play an important role in future

internetworks. Reliable transport protocols such as TCP [24],
[26] have been tuned for traditional networks comprising wired
links and stationary hosts. These protocols assumecongestion
in the network to be the primary cause for packet losses
and unusual delays. TCP performs well over such networks
by adapting to end-to-end delays and congestion losses. The
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TCP sender uses the cumulative acknowledgments it receives
to determine which packets have reached the receiver, and
provides reliability by retransmitting lost packets. For this
purpose, it maintains a running average of the estimated round-
trip delay and the mean linear deviation from it. The sender
identifies the loss of a packet either by the arrival of several
duplicate cumulative acknowledgments or the absence of an
acknowledgment for the packet within atimeoutinterval equal
to the sum of the smoothed round-trip delay and four times its
mean deviation. TCP reacts to packet losses by dropping its
transmission (congestion) window size before retransmitting
packets, initiating congestion control or avoidance mechanisms
(e.g., slow start [13]), and backing off its retransmission timer
(Karn’s algorithm [16]). These measures result in a reduction
in the load on the intermediate links, thereby controlling the
congestion in the network.

Unfortunately, when packets are lost in networks for reasons
other than congestion, these measures result in an unnecessary
reduction in end-to-end throughput, and hence, in suboptimal
performance. Communication over wireless links is often
characterized by sporadic high bit-error rates, and intermit-
tent connectivity due to handoffs. TCP performance in such
networks suffers from significant throughput degradation and
very high interactive delays [8].

Recently, several schemes have been proposed to alleviate
the effects of noncongestion-related losses on TCP perfor-
mance over networks that have wireless or similar high-loss
links [3], [7], [28]. These schemes choose from a variety of
mechanisms, such as local retransmissions, split-TCP connec-
tions, and forward error correction, to improve end-to-end
throughput. However, it is unclear to what extent each of the
mechanisms contributes to the improvement in performance.
In this paper, we examine and compare the effectiveness of
these schemes and their variants, and experimentally analyze
the individual mechanisms and the degree of performance
improvement due to each.

There are two different approaches to improving TCP
performance in such lossy systems. The first approach hides
any noncongestion-related losses from the TCP sender, and
therefore requires no changes to existing sender implemen-
tations. The intuition behind this approach is that, since the
problem is local, it should be solved locally, and that the
transport layer need not be aware of the characteristics of the
individual links. Protocols that adopt this approach attempt to
make the lossy link appear as a higher quality link with a
reduced effective bandwidth. As a result, most of the losses
seen by the TCP sender are caused by congestion.
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Examples of this approach include wireless links with
reliable link-layer protocols such as AIRMAIL [1], split-
connection approaches such as Indirect-TCP [3], and TCP-
aware link-layer schemes such as the snoop protocol [7]. The
second class of techniques attempts to make the sender aware
of the existence of wireless hops, and realize that some packet
losses are not due to congestion. The sender can then avoid
invoking congestion control algorithms when noncongestion-
related losses occur—we describe some of these techniques in
Section III. Finally, it is possible for a wireless-aware transport
protocol to coexist with link-layer schemes to achieve good
performance.

We classify the many schemes into three basic groups,
based on their fundamental philosophy: end-to-end proposals,
split-connection proposals, and link-layer proposals. The end-
to-end protocols attempt to make the TCP sender handle losses
through the use of two techniques. First, they use some form
of selective acknowledgments (SACK’s) to allow the sender
to recover from multiple packet losses in a window without
resorting to a coarse timeout. Second, they attempt to have
the sender distinguish between congestion and other forms of
losses using an explicit loss notification (ELN) mechanism.
At the other end of the solution spectrum, split-connection
approaches completely hide the wireless link from the sender
by terminating the TCP connection at the base station. Such
schemes use a separate reliable connection between the base
station and the destination host. The second connection can
use techniques such as negative or selective acknowledgments,
rather than just standard TCP, to perform well over the wireless
link. The third class of protocols, link-layer solutions, lie
between the other two classes. These protocols attempt to
hide link-related losses from the TCP sender by using local
retransmissions and perhaps forward error correction (e.g.,
[18]) over the wireless link. The local retransmissions use
techniques that are tuned to the characteristics of the wireless
link to provide a significant increase in performance. Since the
end-to-end TCP connection passes through the lossy link, the
TCP sender may not be fully shielded from wireless losses.
This can happen either because of timer interactions between
the two layers [10], or more likely because of TCP’s duplicate
acknowledgments causing the sender fast retransmissions,
even for segments that are locally retransmitted. As a result,
some proposals to improve TCP performance use mechanisms
based on the knowledge of TCP messaging to shield the TCP
sender more effectively and avoid competing and redundant
retransmissions [7].

In this paper, we evaluate the performance of several
end-to-end, split-connection, and link-layer protocols using
end-to-end throughput and goodput as performance metrics,
in both LAN and WAN configurations. In particular, we seek
to answer the following specific questions.

1) What combination of mechanisms results in the best
performance for each of the protocol classes?

2) How important is it for link-layer schemes to be aware of
TCP algorithms to achieve high end-to-end throughput?

3) How useful are selective acknowledgments in dealing
with lossy links, especially in the presence of burst
losses?

4) Is it important for the end-to-end connection to be split
in order to effectively shield the sender from wireless
losses and obtain the best performance?

We answer these questions by implementing and testing
the various protocols in a wireless testbed consisting of
Pentium PC base stations and IBM ThinkPad mobile hosts
communicating over a 915-MHz AT&T Wavelan, all running
BSD/OS 2.1. For each protocol, we measure the end-to-end
throughput, and goodputs for the wired and (one-hop) wireless
paths. For any path (or link), goodput is defined as the ratio of
the actual transfer size to the total number of bytes transmitted
over that path. In general, the wired and wireless goodputs
differ because of wireless losses, local retransmissions, and
congestion losses in the wired network. These metrics allow
us to determine the end-to-end performance as well as the
transmission efficiency across the network. While we used a
wireless hop as the lossy link in our experiments, we believe
that our results are applicable in a wider context to links where
significant losses occur for reasons other than congestion.
Examples of such links include high-speed modems and cable
modems.

We show that a reliable link-layer protocol with some
knowledge of TCP results in very good performance. Our
experiments indicate that shielding the TCP sender from
duplicate acknowledgments caused by wireless losses im-
proves throughput by 10%–30%. Furthermore, it is possible
to achieve good performance without splitting the end-to-
end connection at the base station. We also demonstrate
that selective acknowledgments and explicit loss notifications
result in significant performance improvements. For instance,
the simple ELN scheme we evaluated improved the end-to-
end throughput by a factor of more than two compared to
TCP Reno, with comparable goodput values.

The rest of this paper is organized as follows. Section II
briefly describes some proposed solutions to the problem of
reliable transport protocols over wireless links. Section III
describes the implementation details of the different protocols
in our wireless testbed, and Section IV presents the results
and analysis of several experiments. Section V discusses some
miscellaneous issues related to handoffs, ELN implementation,
and selective acknowledgments. We present our conclusions in
Section VI, and mention some future work in Section VII.

II. RELATED WORK

In this section, we summarize some protocols that have been
proposed to improve the performance of TCP over wireless
links. We also briefly describe some proposed methods to add
SACK’s to TCP.

• Link-Layer Protocols:There have been several proposals
for reliable link-layer protocols. The two main classes of
techniques employed by these protocols are: error correc-
tion, using techniques such as forward error correction
(FEC), and retransmission of lost packets in response to
automatic repeat request (ARQ) messages. The link-layer
protocols for the digital cellular systems in the United
States—both CDMA [15] and TDMA [22]—primarily
use ARQ techniques. While the TDMA protocol guar-
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antees reliable, in-order delivery of link-layer frames,
the CDMA protocol only makes a limited attempt and
leaves eventual error recovery to the (reliable) transport
layer. Other protocols like the AIRMAIL protocol [1]
employ a combination of FEC and ARQ techniques for
loss recovery.

The main advantage of employing a link-layer protocol
for loss recovery is that it fits naturally into the layered
structure of network protocols. The link-layer protocol
operates independently of higher layer protocols, and does
not maintain any per-connection state. The main concern
about link-layer protocols is the possibility of an adverse
effect on certain transport-layer protocols such as TCP,
as described in Section I. We investigate this in detail in
our experiments.

• Split-Connection Protocols [3], [28]:Split-connection
protocols split each TCP connection between a sender
and a receiver into two separate connections at the base
station—one TCP connection between the sender and the
base station, and the other between the base station and
the receiver. Over the wireless hop, a specialized protocol
tuned to the wireless environment may be used. In [28],
the authors propose two protocols—one in which the
wireless hop uses TCP, and another in which the wireless
hop uses a selective repeat protocol (SRP) on top of
UDP. They study the impact of handoffs on performance,
and conclude that they obtain no significant advantage by
using SRP instead of TCP over the wireless connection in
their experiments. However, our experiments demonstrate
benefits in using a simple selective acknowledgment
scheme with TCP over the wireless connection.

Indirect-TCP [3] is a split-connection solution that
uses standard TCP for its connection over the wireless
link. Like other split-connection proposals, it attempts
to separate loss recovery over the wireless link from
that across the wireline network, thereby shielding the
original TCP sender from the wireless link. However,
as our experiments indicate, the choice of TCP over the
wireless link results in several performance problems.
Since TCP is not well tuned for the lossy link, the
TCP sender of the wireless connection often times out,
causing the original sender to stall. In addition, every
packet incurs the overhead of going through TCP protocol
processing twice at the base station (as compared to zero
times for a nonsplit-connection approach), although extra
copies are avoided by an efficient kernel implementation.
Another disadvantage of split connections is that the end-
to-end semantics of TCP acknowledgments is violated
since acknowledgments to packets can now reach the
source even before the packets actually reach the mobile
host. Also, since split-connection protocols maintain a
significant amount of state at the base station per TCP
connection, handoff procedures tend to be complicated
and slow. Section V-A discusses some issues related to
cellular handoffs and TCP performance.

• The Snoop Protocol [7]:The snoop protocol introduces
a module, called thesnoop agent,at the base station. The
agent monitors every packet that passes through the TCP

connection in both directions, and maintains a cache of
TCP segments sent across the link that have not yet been
acknowledged by the receiver. A packet loss is detected
by the arrival of a small number of duplicate acknowl-
edgments from the receiver or by a local timeout. The
snoop agent retransmits the lost packet if it has it cached,
and suppresses the duplicate acknowledgments. In our
classification of the protocols, the snoop protocol is a
link-layer protocol that takes advantage of the knowledge
of the higher layer transport protocol (TCP).

The main advantage of this approach is that it sup-
presses duplicate acknowledgments for TCP segments
lost and retransmitted locally, thereby avoiding unneces-
sary fast retransmissions and congestion control invoca-
tions by the sender. The per-connection state maintained
by the snoop agent at the base station issoft, and is not
essential for correctness. Like other link-layer solutions,
the snoop approach could also suffer from not being able
to completely shield the sender from wireless losses.

• Selective Acknowledgments:Since standard TCP uses a
cumulative acknowledgment scheme, it often does not
provide the sender with sufficient information to re-
cover quickly from multiple packet losses within a sin-
gle transmission window. Several studies (e.g., [11])
have shown that TCP enhanced with selective acknowl-
edgments performs better than standard TCP in such
situations. SACK’s were added as an option to TCP
by RFC 1072 [14]. However, disagreements over the
use of SACK’s prevented the specification from being
adopted, and the SACK option was removed from later
TCP RFC’s. Recently, there has been renewed interest
in adding SACK’s to TCP. Two relevant proposals are
the recent RFC on TCP SACK’s [19] and the SMART
scheme [17].

The SACK RFC proposes that each acknowledgment
contain information about up to three noncontiguous
blocks of data that have been received successfully by the
receiver. Each block of data is described by its starting
and ending sequence number. Due to the limited number
of blocks, it is best to inform the sender about the most
recent blocks received. The RFC does not specify the
sender behavior, except to require that standard TCP
congestion control actions be performed when losses
occur.

An alternate proposal, SMART, uses acknowledgments
that contain the cumulative acknowledgment and the
sequence number of the packet that caused the receiver
to generate the acknowledgment (this information is a
subset of the three-block scheme proposed in the RFC).
The sender uses this information to create a bitmask
of packets that have been delivered successfully to the
receiver. When the sender detects a gap in the bitmask, it
immediately assumes that the missing packets have been
lost without considering the possibility that they simply
may have been reordered. Thus, this scheme trades off
some resilience to reordering and lost acknowledgments
in exchange for a reduction in overhead to generate and
transmit acknowledgments.
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Fig. 1. Typical loss situation.

TABLE I
SUMMARY OF PROTOCOLS STUDIED IN THIS PAPER

III. I MPLEMENTATION DETAILS

This section describes the protocols we have implemented
and evaluated. Table I summarizes the key ideas in each
scheme and the main differences between them. Fig. 1 shows
a typical loss situation over the wireless link. Here, the TCP
sender is in the middle of a transfer across a two-hop network
to a mobile host. At the depicted time, the sender’s congestion
window consists of five packets. Of the five packets in the
network, the first two packets are lost on the wireless link.
As described in the rest of this section, each protocol reacts
to these losses in different ways, and generates messages that
result in loss recovery. Although this figure only shows data
packets being lost, our experiments have wireless errors in
both directions.

A. End-to-End Schemes

Although a wide variety of TCP versions are used on the
Internet, the current de facto standard for TCP implementations
is TCP Reno [26]. We call this the E2E protocol, and use it
as the standard basis for performance comparison.

The E2E-NEWRENO protocol improves the performance
of TCP-Reno after multiple packet losses in a window by
remaining in fast recovery mode if the first new acknowl-
edgment received after a fast retransmission is “partial,” i.e.,
is less than the value of the last byte transmitted when the
fast retransmission was done. Such partial acknowledgments

are indicative of multiple packet losses within the original
window of data. Remaining in fast recovery mode enables the
connection to recover from losses at the rate of one segment
per round-trip time, rather than stall until a coarse timeout as
TCP-Reno often would [11], [12].

The E2E-SMART and E2E-IETF-SACK protocols add
SMART-based and IETF selective acknowledgments, respec-
tively, to the standard TCP Reno stack. This allows the sender
to handle multiple losses within a window of outstanding
data more efficiently. However, the sender still assumes that
losses are a result of congestion, and invokes congestion
control procedures, shrinking its congestion window size.
This allows us to identify what percentage of the end-to-end
performance degradation is associated with standard TCP’s
handling of error detection and retransmission. We used the
SMART-based scheme [17] only for the LAN experiments.
This scheme is well suited to situations where there is little
reordering of packets, which is true for one-hop wireless
systems such as ours. Unlike the scheme proposed in [17],
we do not use any special techniques to detect the loss of
a retransmission. The sender retransmits a packet when it
receives a SMART acknowledgment only if the same packet
was not retransmitted within the last round-trip time. If no
further SMART acknowledgments arrive, the sender falls back
to the coarse timeout mechanism to recover from the loss. We
used the IETF selective acknowledgment scheme both for the
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LAN and the WAN experiments. Our implementation is based
on the RFC, and takes appropriate congestion control actions
upon receiving SACK information [4].

The E2E-ELN protocol adds an explicit loss notification
(ELN) option to TCP acknowledgments. When a packet is
dropped on the wireless link, future cumulative acknowl-
edgments corresponding to the lost packet are marked to
identify that a noncongestion-related loss has occurred. Upon
receiving this information with duplicate acknowledgments,
the sender may perform retransmissions without invoking the
associated congestion-control procedures. This option allows
us to identify what percentage of the end-to-end performance
degradation is associated with TCP’s incorrect invocation of
congestion control algorithms when it does a fast retrans-
mission of a packet lost on the wireless hop. The E2E-
ELN-RXMT protocol is an enhancement of the previous one,
where the sender retransmits the packet on receiving the
first duplicate acknowledgment with the ELN option set (as
opposed to the third duplicate acknowledgment in the case of
TCP Reno), in addition to not shrinking its window size in
response to wireless losses.

In practice, it might be difficult to identify which packets are
lost due to errors on a lossy link. However, in our experiments,
we assume sufficient knowledge at the receiver about wire-
less losses to generate ELN information. We describe some
possible implementation policies and strategies for the ELN
mechanism in Section V-B.

B. Link-Layer Schemes

Unlike TCP for the transport layer, there is no de facto
standard for link-layer protocols. Existing link-layer proto-
cols choose from techniques such as stop-and-wait, go-back-
N, selective repeat, and forward error correction to provide
reliability. Our base link-layer algorithm, called LL, uses
cumulative acknowledgments to determine lost packets that are
retransmitted locally from the base station to the mobile host.
To minimize overhead, our implementation of LL leverages off
TCP acknowledgments instead of generating its own. Timeout-
based retransmissions are done by maintaining a smoothed
round-trip time estimate, with a minimum timeout granularity
of 200 ms to limit the overhead of processing timer events.
This still allows the LL scheme to retransmit packets several
times before a typical TCP Reno transmitter would time out.
LL is equivalent to the snoop agent that does not suppress
any duplicate acknowledgments, and does not attempt in-order
delivery of packets across the link (unlike protocols proposed
in [15], [22]).

While the use of TCP acknowledgments by our LL protocol
renders it atypical of traditional ARQ protocols, we believe
that it still preserves the key feature of such protocols: the
ability to retransmit packets locally, independently of and on
a much faster time scale than TCP. Therefore, we expect the
qualitative aspects of our results to be applicable to general
link-layer protocols.

We also investigated a more sophisticated link-layer pro-
tocol (LL-SMART) that uses selective retransmissions to im-
prove performance. The LL-SMART protocol performs this

by applying a SMART-based acknowledgment scheme at
the link layer. Like the LL protocol, LL-SMART uses TCP
acknowledgments instead of generating its own and limits its
minimum timeout to 200 ms. LL-SMART is equivalent to the
snoop agent performing retransmissions based on selective
acknowledgment but not suppressing duplicate acknowledg-
ments at the base station.

We added TCP awareness to both the LL and LL-SMART
protocols, resulting in the LL-TCP-AWARE and LL-SMART-
TCP-AWARE schemes. The LL-TCP-AWARE protocol is
identical to the snoop protocol, while the LL-SMART-TCP-
AWARE protocol uses SMART-based techniques for fur-
ther optimization using selective repeat. LL-SMART-TCP-
AWARE is the best link-layer protocol in our experiments—it
performs local retransmissions based on selective acknowledg-
ments and shields the sender from duplicate acknowledgments
caused by wireless losses.

C. Split-Connection Schemes

Like I-TCP, our SPLIT scheme uses an intermediate host to
divide a TCP connection into two separate TCP connections.
The implementation avoids data copying in the intermediate
host by passing the pointers to the same buffer between
the two TCP connections. A variant of the SPLIT approach
that we investigated, SPLIT-SMART, uses a SMART-based
selective acknowledgment scheme on the wireless connection
to perform selective retransmissions. There is little chance of
reordering of packets over the wireless connection since the in-
termediate host is only one hop away from the final destination.

IV. EXPERIMENTAL RESULTS

In this section, we describe the experiments we performed
and the results we obtained, including detailed explanations for
observed performance. We start by describing the experimental
testbed and methodology. We then describe the performance
of the various link-layer, end-to-end, and split-connection
schemes.

A. Experimental Methodology

We performed several experiments to determine the perfor-
mance and efficiency of each of the protocols. The protocols
were implemented as a set of modifications to the BSD/OS
TCP/IP (Reno) network stack. To ensure a fair basis for
comparison, none of the protocols implementations introduces
any additional data copying at intermediate points from sender
to receiver.

Our experimental testbed consists of IBM ThinkPad laptops
and Pentium-based personal computers running BSD/OS 2.1
from BSDI. The machines are interconnected using a 10-Mb/s
Ethernet and 915-MHz AT&T WaveLANs [27], a shared-
medium wireless LAN with a raw signaling bandwidth of 2
Mb/s. The network topology for our experiments is shown
in Fig. 2. The peak throughput for TCP bulk transfers is 1.5
Mb/s in the local area testbed and 1.35 Mb/s in the wide-
area testbed in the absence of congestion or wireless losses.
These testbed topologies represent typical scenarios of wireless
links and mobile hosts, such as cellular wireless networks. In
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Fig. 2. Experimental topology. There were an additional 16 Internet hops
between the source and base station during the WAN experiments.

addition, our experiments focus on data transfer to the mobile
host, which is the common case for mobile applications (e.g.,
Web accesses).

In order to measure the performance of the protocols under
controlled conditions, we generate errors on the lossy link us-
ing an exponentially distributed bit-error model. The receiving
entity on the lossy link generates an exponential distribution
for each bit-error rate, and changes the TCP checksum of the
packet if the error generator determines that the packet should
be dropped. Losses are generated in both directions of the
wireless channel, so TCP acknowledgments are dropped too.
The TCP data packet size in our experiments is 1400 bytes.
We first measure and analyze the performance of the various
protocols at an average error rate of one every 64 kbytes (this
corresponds to a bit-error rate of about 1.910 ). Note
that since the exponential distribution has a standard deviation
equal to its mean, there are several occasions when multiple
packets are lost in close succession. We then report the results
of some burst error situations, where between two and six
packets are dropped in every burst (Section IV-E). Finally,
we investigate the performance of many of these protocols
across a range of error rates from one every 16 kbytes to one
every 256 kbytes.

The choice of the exponentially distributed error model is
motivated by our desire to understand the precise dynamics
of each protocol in response to a wireless loss, and is not an
attempt to empirically model a wireless channel. While the
actual performance numbers will be a function of the exact
error model, the relative performance is dependent on how
the protocol behaves after one or more losses in a single
TCP window. Thus, we expect our overall conclusions to
be applicable under other patterns of wireless loss as well.
Finally, we believe that although wireless errors are generated
artificially in our experiments, the use of a real testbed
is still valuable in that it introduces realistic effects such
as wireless bandwidth limitation, media access contention,
protocol processing delays, etc., which are hard to model
realistically in a simulation.

In our experiments, we attempt to ensure that losses are
only due to wireless errors (and not congestion). This allows
us to focus on the effectiveness of the mechanisms in handling
such losses. The WAN experiments are performed across 16
Internet hops with minimal congestion1 in order to study the
impact of large delay-bandwidth products.

1WAN experiments across the United States were performed between 10
P.M. and 4A.M. PST and we verified that no congestion losses occurred in the
runs reported.

Each run in the experiment consists of an 8-Mbyte transfer
from the source to receiver across the wired net and the
WaveLAN link. We chose this rather long transfer size in order
to limit the impact of transient behavior at the start of a TCP
connection. During each run, we measure the throughput at the
receiver in megabits per second, and the wired and wireless
goodputs as percentages. In addition, all packet transmissions
on the Ethernet and WaveLan are recorded for analysis using

[20], and the sender’s TCP code instrumented to
record events such as coarse timeouts, retransmission times,
duplicate acknowledgment arrivals, congestion window size
changes, etc. The rest of this section presents and discusses
the results of these experiments.

B. Link-Layer Protocols

Traditional link-layer protocols operate independently of the
higher layer protocol, and consequently, do not necessarily
shield the sender from the lossy link. In spite of local retrans-
missions, TCP performance could be poor for two reasons: 1)
competing retransmissions caused by an incompatible setting
of timers at the two layers and 2) unnecessary invocations of
the TCP fast retransmission mechanism due to out-of-order
delivery of data. In [10], the effects of the first situation are
simulated and analyzed for a TCP-like transport protocol (that
closely tracks the round-trip time to set its retransmission
timeout) and a reliable link-layer protocol. The conclusion was
that unless the packet loss rate is high (more than about 10%),
competing retransmissions by the link and transport layers
often lead to significant performance degradation. However,
this is not the dominating effect when link layer schemes, such
as LL, are used with TCP Reno and its variants. These TCP
implementations have coarse retransmission timeout granular-
ities that are typically multiples of 500 ms, while link-layer
protocols typically have much finer timeout granularities. The
real problem is that when packets are lost, link-layer protocols
that do not attempt in-order delivery across the link (e.g., LL)
cause packets to reach the TCP receiver out of order. This leads
to the generation of duplicate acknowledgments by the TCP
receiver, which causes the sender to invoke fast retransmission
and recovery. This can potentially cause degraded throughput
and goodput, especially when the delay–bandwidth product is
large.

Our results substantiate this claim, as can be seen by
comparing the LL and LL-TCP-AWARE results (Fig. 3 and
Table II). For a packet size of 1400 bytes, a bit-error rate of
1.9 10 (1/65536 bytes) translates to a packet error rate of
about 2.2%–2.3%. Therefore, an optimal link-layer protocol
that recovers from errors locally and does not compete with
TCP retransmissions should have a wireless goodput of 97.7%
and a wired goodput of 100% in the absence of congestion.
In the LAN experiments, the throughput difference between
LL and LL-TCP-AWARE is about 10%. However, the LL
wireless goodput is only 95.5%, significantly less than LL-
TCP-AWARE’s wireless goodput of 97.6%, which is close
to the maximum achievable goodput. When a loss occurs,
the LL protocol performs a local retransmission relatively
quickly. However, enough packets are typically in transit
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Fig. 3. Performance of link-layer protocols: bit-error rate= 1:9 � 10
�6 (1 error/65536 bytes), socket buffer size= 32 kbytes. For each case, there

are two bars: the thick one corresponds to the scale on the left and denotes the throughput in megabits per second; the thin one corresponds to the
scale on the right and shows the throughput as a percentage of the maximum, i.e., in the absence of wireless errors (1.5 Mb/s in the LAN environment
and 1.35 Mb/s in the WAN environment).

TABLE II
SUMMARY OF THE RESULTS FOR THELINK-LAYER SCHEMES FOR ANAVERAGE ERROR RATE OF ONE EVERY 65536 BYTES OF DATA. EACH ENTRY IS OF THE FORM:

THROUGHPUT (WIRELESS GOODPUT, WIRED GOODPUT). THROUGHPUT IS MEASURED IN Mb/s. GOODPUT IS EXPRESSED AS APERCENTAGE

to create more than three duplicate acknowledgments. These
duplicates eventually propagate to the sender, and trigger
a fast retransmission and the associated congestion control
mechanisms. These fast retransmissions result in reduced
goodput; about 90% of the lost packets are retransmitted by
both the source and the base station.

The effects of this interaction are much more pronounced
in the wide-area experiments—the throughput difference is
about 30% in this case. The cause for the more pronounced
deterioration in performance is the higher bandwidth–delay
product of the wide-area connection. The LL scheme causes
the sender to invoke congestion control procedures often due
to duplicate acknowledgments, and causes the average window
size of the transmitter to be lower than for LL-TCP-AWARE.
This is shown in Fig. 4, which compares the congestion
window size of LL and LL-TCP-AWARE as a function of
time. Note that the number of outstanding data bytes in the
network is the minimum of the congestion window and the
receiver advertised window. This is bounded by the receiver’s
socket buffer size. In the congestion window graphs for each
protocol, the receiver socket buffer is 32 kbytes.

In the wide area, the bandwidth–delay product is about
23 000 bytes (1.35 Mb/s 135 ms), and the congestion
window drops below this value several times during each
TCP transfer. On the other hand, the LAN experiments do
not suffer from such a large throughput degradation because
LL’s lower congestion-window size is usually still larger
than the connection’s delay–bandwidth product of about 1900
bytes (1.5 Mb/s 10 ms). Therefore, the LL scheme can

(a)

(b)

Fig. 4. Congestion window size for link-layer protocols in wide-area tests.
The horizontal dashed line in the LL graph shows the 23000 byte WAN
bandwidth–delay product.

maintain a nearly full “data pipe” between the sender and
receiver in the local connection, but not in the wide-area
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(a)

(b)

Fig. 5. Packet sequence traces for LL-TCP-AWARE and LL. No coarse
timeouts occur in either case. For LL-TCP-AWARE, the horizontal row of
dots shows the times of wireless link retransmissions. For LL, the top row
shows sender fast retransmission times, and the bottom row shows both local
wireless and sender retransmissions.

one. The 10% LAN degradation is almost entirely due to
the excessive retransmissions over the wireless link and to
the smaller average congestion window size compared to LL-
TCP-AWARE. Another important point to note is that LL
successfully prevents coarse timeouts from happening at the
source. Fig. 5 shows the sequence traces of TCP transfers for
LL-TCP-AWARE and LL.

In summary, our results indicate that a simple link-layer re-
transmission scheme does not entirely avoid the adverse effects
of TCP fast retransmissions and the consequent performance
degradation. An enhanced link-layer scheme that uses knowl-
edge of TCP semantics to prevent duplicate acknowledgments
caused by wireless losses from reaching the sender and locally
retransmits packets achieves significantly better performance.

C. End-to-End Protocols

The performance of the various end-to-end protocols is
summarized in Fig. 6 and Table III. The performance of TCP
Reno, the baseline E2E protocol, highlights the problems with
TCP over lossy links. At a 2.3% packet loss rate (as explained
in Section IV-B), the E2E protocol achieves a throughput
of less than 50% of the maximum (i.e., throughput in the
absence of wireless losses) in the local-area and less than
25% of the maximum in the wide-area experiments. However,
all of the end-to-end protocols achieve goodputs close to
the optimal value of 97.7%. The primary reason for the
low throughput is the large number of timeouts that occur

during the transfer (Fig. 7). The resulting average window
size during the transfer is small, preventing the “data pipe”
from being kept full and reducing the effectiveness of the fast
retransmission mechanism (Fig. 8).

The modified end-to-end protocols improve throughput by
retransmitting packets known to have been lost on the wireless
hop earlier than they would have been by the baseline E2E
protocol, and by reducing the fluctuations in window size.
The E2E-NEWRENO, E2E-ELN, E2E-SMART, and E2E-
IETF-SACK protocols each use new TCP options and more
sophisticated acknowledgment processing techniques to im-
prove the speed and accuracy of identifying and retransmitting
lost packets, as well as by recovering from multiple losses
in a single transmission window without timing out. The
remainder of this section discusses the benefits of three tech-
niques—partial acknowledgments, explicit loss notifications,
and selective acknowledgments.

1) Partial Acknowledgments:E2E-NEWRENO, which
uses partial acknowledgment information to recover from
multiple losses in a window at the rate of one packet per
round-trip time, performs between 10% and 25% better than
E2E over a LAN and about two times better than E2E in
the WAN experiments. The performance improvement is
a function of the socket buffer size—the larger the buffer
size, the better the relative performance. This is because, in
situations where E2E suffers a coarse timeout for a loss, the
probability that E2E-NEWRENO does not increase with the
number of outstanding packets in the network.

2) Explicit Loss Notification:One way of eliminating the
long delays caused by coarse timeouts is to maintain as
large a window size as possible. E2E-NEWRENO remains
in fast recovery if the new acknowledgment is only partial,
but reduces the window size to half its original value upon the
arrival of the first new acknowledgment. The E2E-ELN and
E2E-ELN-RXMT protocols use ELN information (Section III-
A) to prevent the sender from reducing the size of the
congestion window in response to a wireless loss. Both of
these schemes perform better than E2E-NEWRENO, and over
two times better than E2E. This is a result of the sender’s
explicit awareness of the wireless link, which reduces the
number of coarse timeouts (Fig. 7) and rapid window size
fluctuations (Fig. 8). The E2E-ELN-RXMT protocol performs
only slightly better than E2E-ELN when the socket buffer size
is 32 kbytes. This is because there is usually enough data in
the pipe to trigger a fast retransmission for E2E-ELN. The per-
formance benefits of E2E-ELN-RXMT are more pronounced
when the socket buffer size is smaller, as the numbers for
the 8-kbytes socket buffer size indicate (Table III). This is
because E2E-ELN-RXMT does not wait for three duplicate
acknowledgments before retransmitting a packet, if it has ELN
information for it. The maximum socket buffer size of 8
kbytes limits the number of unacknowledged packets to a small
number at any point in time, which reduces the probability
of three duplicate acknowledgments arriving after a loss and
triggering a fast retransmission.

Despite explicit awareness of wireless losses, timeouts
sometimes occur in the ELN-based protocols. This is a
result of our implementation of the ELN protocol, which
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Fig. 6. Performance of end-to-end protocols: bit-error rate =1:9 � 10
�6 (1 error/65536 bytes).

(a)

(b)

Fig. 7. Packet sequence traces for E2E (TCP Reno) and E2E-ELN. The top
row of horizontal dots shows the times when fast retransmissions occur; the
bottom row shows the coarse timeouts.

does not convey information about multiple wireless-related
losses to the sender. Since it is coupled with only cumulative
acknowledgments, the sender is unaware of the occurrence
of multiple wireless-related losses in a window; we plan to
couple SACK’s and ELN together in future work. Section V-B
discusses some possible implementation strategies and policies
for ELN.

3) Selective Acknowledgments:We experimented with two
different SACK schemes. In the LAN case, we used a simple
SACK scheme based on a subset of the SMART proposal.
This protocol was the best of the end-to-end protocols in this

(a)

(b)

Fig. 8. Congestion window size as a function of time for E2E (TCP Reno)
and E2E-ELN. This figure clearly shows the utility of ELN in preventing rapid
fluctuations, thereby maintaining a larger average congestion windows size.

situation, achieving a throughput of 1.25 Mb/s (in contrast,
the best local scheme, LL-SMART-TCP-AWARE, obtained a
throughput of 1.39 Mb/s).

In the WAN case, we based our SACK implementation [4]
on RFC 2018. For the exponentially distributed loss pattern we
used, the throughput was about 0.8 Mb/s, significantly higher
than the 0.31 Mb/s throughput of TCP Reno. However, this
is still about 35% worse than LL-OPT. Even though SACK’s
allow the sender to often recover from multiple losses without
timing out, the sender’s congestion window decreases every
time there is a packet dropped on the wireless link, causing
it to remain small.
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TABLE III
SUMMARY OF RESULTS FOR THEEND-TO-END SCHEMES FOR AN AVERAGE ERROR RATE OF ONE EVERY

65536 BYTES OF DATA. THE NUMBERS IN THE CELLS FOLLOW THE SAME CONVENTION AS IN TABLE II

Fig. 9. Performance of split-connection protocols: bit-error rate =1:9 � 10
�6 (1 error/65536 bytes).

In summary, E2E-NEWRENO is better than E2E, espe-
cially for large socket buffer sizes. Adding ELN to TCP
improves throughput significantly by successfully preventing
unnecessary fluctuations in the transmission window. Finally,
SACK’s provide significant improvement over TCP Reno,
but perform about 10%–15% worse than the best link-layer
schemes in the LAN experiments, and about 35% worse in
the WAN experiments. These results suggest that an end-to-
end protocol that has both ELN and SACK’s will result in
good performance, and is an area of current work.

D. Split-Connection Protocols

The main advantage of the split-connection approaches is
that they isolate the TCP source from wireless losses. The
TCP sender of the second, wireless connection performs all of
the retransmissions in response to wireless losses.

Fig. 9 and Table IV show the throughput and goodput
for the split connection approach in the LAN and WAN
environments. We report the results for two cases: when the
wireless connection uses TCP Reno (labeled SPLIT), and when
it uses the SMART-based selective acknowledgment scheme
described earlier (labeled SPLIT-SMART). We see that the
throughput achieved by the SPLIT approach (0.6 Mb/s) is quite
low, about the same as that for end-to-end TCP Reno (labeled
E2E in Fig. 6). The reason for this is apparent from Figs. 10
and 11, which show the progress of the data transfer and
the size of the congestion window for the wired and wireless
connections. We see that the wired connection neither has any
retransmissions nor any timeouts, resulting in a wired goodput
of 100%. However, it (eventually) stalls whenever the sender
of the wireless connection experiences a timeout since the
amount of buffer space at the base station (64 kbytes in our

TABLE IV
SUMMARY OF RESULTS FOR THESPLIT-CONNECTION SCHEMES

AT AN AVERAGE ERROR RATE OF 1 EVERY 64 kbytes

experiments) is bounded.2 In the WAN case, the throughput
of the SPLIT approach is about 0.58 Mb/s, which is better
than the 0.31 Mb/s that the E2E approach achieves (Fig. 6),
but not as good as several other protocols described earlier.
The large congestion window size of the wired sender in
SPLIT enables a higher bandwidth utilization over the wired
network, compared to an end-to-end TCP connection where
the congestion window size fluctuates rapidly.

As expected, the throughput for the SPLIT-SMART scheme
is much higher. It is about 1.3 Mb/s in the LAN case and
about 1.1 Mb/s in the WAN case. The SMART-based selective
acknowledgment scheme operating over the wireless link
performs very well, especially since no reordering of packets
occurs over this hop. However, there are a few times when
both the original transmission and the first retransmission of
a packet get lost, which sometimes results in a coarse timeout
(as described in Section III-A). This explains the difference
in throughput between the SPLIT-SMART scheme and the
LL-SMART-TCP-AWARE scheme (Fig. 3).

2A larger buffer at the base station will not necessarily improve performance
for two reasons: 1) we measure performance in terms of receiver throughput,
which is limited by the small congestion window size of the wireless
connection and 2) a long enough transfer will still fill up the buffer.
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(a)

(b)

Fig. 10. Packet sequence trace for the wind and wireless parts of the SPLIT
protocol. The wireless part has two rows of horizontal dots: the top one
shows the times of fast retransmissions, and the bottom one the times of the
timeout-based ones.

In summary, while the split-connection approach results
in good throughput if the wireless connection uses special
mechanisms, the performance is worse than that of a well-
tuned, TCP-aware link-layer protocol (LL-TCP-AWARE or
LL-SMART-TCP-AWARE). Moreover, the link-layer protocol
preserves the end-to-end semantics of TCP acknowledgments.
This demonstrates that the end-to-end connection need not be
split at the base station in order to achieve good performance.

E. Reaction to Burst Errors

In this section, we report the results of some experiments
that illustrate the benefit of selective acknowledgments in
handling burst losses. We consider two of the best per-
forming local protocols: LL-TCP-AWARE (snoop) and LL-
SMART-TCP-AWARE (snoop with SMART-based selective
acknowledgments). LL-TCP-AWARE recovers from a single
loss by retransmitting the lost packet when two duplicate
acknowledgments arrive for it. It also keeps track of the
number of expected duplicate acknowledgments and the next
expected new acknowledgment after this local retransmission.
If this loss is part of a burst, the first new acknowledgment to
arrive after the duplicates will be less than the next expected
new one; this causes an immediate retransmission of the lost
segment. This is similar to the mechanism used by E2E-
NEWRENO (Section III-A). LL-SMART-TCP-AWARE uses
the additional useful information provided by the SMART
scheme—the sequence number of the segment that caused
the duplicate acknowledgment—to accurately determine losses
and recover from them.

(a)

(b)

Fig. 11. Congestion window sizes as a function of time for the wired and
wireless parts of the split TCP connection. The wired sender never sees any
losses, and maintains a 64-kbyte congestion window. However, the wireless
TCP connection’s congestion window fluctuates rapidly.

TABLE V
THROUGHPUTS OFLL-TCP-AWARE AND LL-SMART-TCP-AWARE
AT DIFFERENT BURST LENGTHS. THIS ILLUSTRATES THE BENEFITS OF

SACK’S, EVEN FOR A HIGH-PERFORMANCE, TCP-AWARE LINK PROTOCOL

Table V shows the performance of the two protocols for
bursts of lengths two, four, and six packets. These errors
are generated at an average rate of one every 64 kbytes of
data, and two, four, or six packets are destroyed in each case.
Selective acknowledgments improve the performance of LL-
SMART-TCP-AWARE over LL-TCP-AWARE by up to 30%
in the presence of burst errors. While this is a fairly simplistic
burst-error model, it does illustrate the problems caused by the
loss of multiple packets in succession. We are in the process
of experimenting with atemporalburst-loss model based on
average lengths of fades and other causes of wireless losses.
The parameters of this model are derived from a trace-based
modeling and characterization of the WaveLAN network [23].

F. Performance at Different Error Rates

In this section, we present the results of several experi-
ments performed across a range of bit-error rates for some
of the protocols described earlier—E2E (the baseline case),
LL-TCP-AWARE, LL-SMART-TCP-AWARE, E2E-SMART,
E2E-IETF-SACK, and SPLIT-SMART. We chose the best
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Fig. 12. Performance of six protocols (LAN case) across a range of bit-error
rates, ranging from 1 error every 16 kbytes to 1 every 256 kbytes shown on
a log scale.

performing protocols from each category, as well as some
other protocols (e.g., E2E-IETF-SACK) to illustrate some
interesting effects.

Fig. 12 shows the performance of these protocols for an
8 Mbyte end-to-end transfer in a LAN environment, across
exponentially distributed error rates ranging from 1 error every
16 kbytes to 1 error every 256 kbytes, in increasing powers of
2. We find that the overall qualitative results and conclusions
are similar to those presented earlier for the 64-kbyte error rate.
At low error rates (128- and 256-kbyte points in the graph),
all of the protocols shown perform almost equally well in
improving TCP performance. At the 16-kbyte error rate, the
performance of the TCP-aware link-layer schemes is about
1.75–2 times better than E2E-SMART and about nine times
better than TCP Reno.

Another interesting point to note is the relative performance
of E2E-IETF-SACK and E2E-SMART, especially at the high
error rates. The congestion window does not grow larger than
a few packets in the steady state at these error rates where
there are multiple losses in many windows. E2E-IETF-SACK
does not retransmit any packet using SACK information unless
it receives three duplicate acknowledgments (to overcome
potential reordering of packets in the network), which implies
that no fast retransmissions are triggered if the number of
packets in the window is less than four or five.3 The sender’s
congestion window is often smaller than this, resulting in
timeouts and degraded performance. In contrast, our imple-
mentation of E2E-SMART assumes no reordering of packets
(which is justified in the LAN case), and retransmits the lost
packet when the first duplicate acknowledgment with loss
information arrives. This reduces the number of timeouts, and
results in better end-to-end performance. In Section V-C, we
outline a scheme in which the IETF protocol can be modified
to work well even when the sender’s congestion window is not
large enough to provide enough duplicate acknowledgments.

V. DISCUSSION

In this section, we present a discussion of some miscel-
laneous issues. We discuss the effects of handoff on TCP

3This depends on whether delayed acknowledgments are used.

performance, some implementation strategies and policies
for the ELN mechanism introduced in Section III-A, and
some issues related to SMART-based and IETF selective
acknowledgment schemes.

A. Wireless Handoffs

Wireless networks are usually organized in a cellular topol-
ogy where each cell includes a base station that acts as a router
between the wireless subnet and a wireline backbone. Mobile
hosts typically communicate with fixed hosts via the base
station in the cell in which they are currently located. Examples
of networks organized in this fashion include cellular telephone
networks and wireless local-area networks.

As a mobile host moves, it may get out of the range
of its current base station, but still be within the range of
other neighboring base stations. To maintain the mobile host’s
connectivity, ahandoffprocedure is invoked to reroute traffic
to and from the mobile host via the new base station. However,
depending on the details of the handoff algorithms, this
procedure could lead to packet losses and reordering, which in
turn could cause significant deterioration in the performance
of ongoing TCP transfers [8].

Several proposals have been made for achieving fast hand-
offs. Two examples include multicast-based handoffs [25] and
hierarchical handoffs [9]. In both of these schemes, handoffs
are made fast by restricting updates to the immediate vicinity
of the mobile host. As a result, the handoff latency in a
WaveLAN-based wireless local-area network is on the order
of 10–30 ms.

A small amount of buffering and retransmission from base
stations prevents packet loss during the short handoff period. In
[9], the buffering happens at the mobile host’s old base station,
which forward packets to the new base station at the time of
handoff. In [25], one or more base stations in the vicinity join a
multicast group corresponding to the mobile host, and receive
all packets destined to it, in anticipation of a handoff. When
the handoff happens, the new base station is readily able to
forward the buffered and the newly arriving packets without
introducing any reordering, thereby preventing unnecessary
invocations of TCP fast retransmissions. Experimental results
reported in [25] indicate that such fast handoffs have a minimal
adverse effect on TCP performance, even when the handoff
frequency is as high as once per second.

In contrast to the above schemes that operate at the network
layer, handoffs in a split-connection context, such as in I-TCP
[3], involve the transfer of transport-layer state from the old
base station to the new one. This results in significantly higher
latency; for example, [2] reports I-TCP handoff latencies on
the order of hundreds of milliseconds in a WaveLAN-based
network.

B. Implementation Strategies for ELN

Section III-A described the ELN mechanism by which the
transport protocol can be made aware of losses unrelated to
network congestion and react appropriately to such losses. In
this section, we outline possible implementation strategies and
policies for this mechanism.



768 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 5, NO. 6, DECEMBER 1997

A simple strategy for implementing ELN would be to do so
at the receiver, as we did for the results presented in this paper.
In this method, the corruption of a packet at the link layer, indi-
cated by a CRC error, is passed up to the transport layer, which
sends an ELN message with the duplicate acknowledgments
for the lost packet. In practice, it may be hard to determine
the connection that a corrupted packet belongs to since the
header could itself be corrupted: this can be handled by
protecting the TCP/IP header using an FEC scheme. However,
there are circumstances in which entire packets, including
link-level headers, are dropped over a wireless link. In such
circumstances, the base station generates ELN messages to the
sender (in-band, as part of the acknowledgment stream) when
it observes duplicate TCP acknowledgments arriving from the
mobile host.

We expect explicit loss notifications to be useful in the
context of multihop wireless networks, and we are explor-
ing this in ongoing work. Such networks (e.g., Metricom’s
Ricochet network [21]) typically use packet radio units to
route packets to and from a wired infrastructure. Here, in
order to implement ELN, periodic messages are exchanged
between adjacent packet radio units about queue lengths,
and this information is used as a heuristic to distinguish
between congestion and packet corruption, especially when
entire packets (including headers) are corrupted or dropped
over a wireless link. This, coupled with a simple link-level
scheme to convey NACK information about missing packets,
is sufficient to generate ELN messages to the source.

C. Selective Acknowledgment Issues

Our experience with the IETF SACK scheme highlights
some weaknesses with it when sender window sizes are small.
This situation can be improved by enhancing the sender’s
loss recovery algorithm as follows. In general, the arrival of
one duplicate acknowledgment at the receiver indicates that
one segment has successfully reached the receiver. Rather
than wait for three duplicate acknowledgments and perform
a fast retransmission, the sender now transmits anewsegment
from beyond the “right edge” of the current window upon
the arrival of the first and second duplicate acks. This probes
the network for sustained congestion, and generates duplicate
acknowledgments. Note that we have not violated standard
congestion control procedures by doing this: we only send
out a segment when one has left the data pipe, following the
principle of conservation of packets [13]. This enhancement
can coexist with SACK’s to further avoid timeouts since the
arrival of an acknowledgment with a SACK block indicating
the reception of the newly transmitted segment is a strong
indicator that the original segment was lost, independent of
whether or not three duplicate acknowledgments arrive. Thus,
this mechanism will improve performance when the sender’s
window is small and losses occur, and is further explored and
described in [6].

VI. CONCLUSIONS

In this paper, we have presented a comparative analysis of
several techniques to improve the end-to-end performance of
TCP over lossy, wireless hops. We categorize these techniques

as end-to-end, link-layer, or split-connection based. We use the
end-to-end throughput, and the wired and wireless goodputs
as metrics for comparison.

Our results lead to the following conclusions.

1) A reliable link-layer protocol that uses knowledge of
TCP (LL-TCP-AWARE) to shield the sender from du-
plicate acknowledgments arising from wireless losses
gives a 10%–30% higher throughput than one (LL) that
operates independently of TCP and does not attempt
in-order delivery of packets. Also, the former avoids re-
dundant retransmissions by both the sender and the base
station, resulting in a higher goodput. Of the schemes
we investigated, the TCP-aware link-layer protocol with
selective acknowledgment performs the best.

2) The split-connection approach, with standard TCP used
for the wireless hop, shields the sender from wireless
losses. However, the sender often stalls due to timeouts
on the wireless connection, resulting in poor end-to-end
throughput. Using a SMART-based selective acknowl-
edgment mechanism for the wireless hop yields good
throughput. However, the throughput is still slightly less
than that for a well-tuned link-layer scheme that does
not split the connection. This demonstrates that splitting
the end-to-end connection is not a requirement for good
performance.

3) The SMART-based selective acknowledgment scheme
we used is quite effective in dealing with a high packet
loss rate when employed over the wireless hop or by a
sender in a LAN environment. In the WAN experiments,
the SACK scheme based on the IETF Draft resulted
in significantly improved end-to-end performance, al-
though its performance was not as good as in the
best link schemes. From our results, we conclude that
selective acknowledgment schemes are very useful in the
presence of lossy links, especially when losses occur in
bursts.

4) End-to-end schemes, while not as effective as local
techniques in handling wireless losses, are promising
since significant performance gains can be achieved
without any extensive support from intermediate nodes
in the network. The explicit loss notification scheme we
evaluated resulted in a throughput improvement of more
than a factor of two over TCP-Reno, with comparable
goodput values.

VII. FUTURE WORK

Our experiments with various SACK and ELN mechanisms
demonstrate the significant benefits of such schemes, as de-
scribed in Section V. We are in the process of evaluating
protocol enhancements based on these ideas in the presence of
both network congestion and wireless losses in different net-
work topologies, especially in networks with multiple wireless
hops. In addition, we are evaluating the performance of several
of the protocols described in this paper under other patterns
of loss derived from traces in [23].

We are investigating the impact of large variations in
connection round-trip times and the impact of bandwidth and
latency asymmetry on transport performance [5]. Large round-
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trip variations are common in networks like the Metricom
Ricochet wireless network [21], especially in the presence
of bidirectional traffic. Bandwidth asymmetry is prevalent in
many cable and satellite networks with low-bandwidth return
channels.
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