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I. INTRODUCTION

In recent years, one of the most popular Internet applications
is web-based audio and video playback, where stored video is
streamed from the server to a client on-demand. Rigid playback
deadlines coupled with constraints on resources such as network
bandwidth and client buffer make video delivery a challenging
task [2]. These resources could be limited in such a way that
it may not be possible to deliver full-quality video. In such a
situation, it is desirable to minimize the degradation in the video
quality while operating within the resource constraints [9]. Lay-
ered encoding is proposed to provide finer control on video qual-
ity: the video signal is split into layers and a subset of these
layers is chosen such that the resource constraints are met [5].
However it is not a trivial task to select layers such that bet-
ter but consistent quality playback is ensured when the network
conditions are constantly varying.

In our work, we address this layer selection problem in lay-
ered video delivery and show how smoother 1 quality video play-
back can be provided by utilizing the client buffer for prefetch-
ing. We first define smoothness criteria, design metrics for
measuring it, and then develop off-line algorithms to maximize
smoothness for the case where the network bandwidth is vary-
ing but known a priori. We then describe an adaptive algorithm
for providing smoothed layered video delivery that doesn’t as-
sume any knowledge about future bandwidth availability. The
results of our experiments for measuring and comparing the per-
formance these schemes are then presented. We conclude the
paper with a brief discussion on our future work.

II. SMOOTHNESS CRITERIA AND QUALITY METRICS

One of the problems in assessing the performance of a video
delivery scheme is the lack of a good metric that captures the
user’s perception of video quality. In general, the higher the
amount of detail in the played video, the better is its quality.
However, it is generally agreed that it is visually more pleasing
to watch a video with consistent, albeit lower, quality than one
with highly varying quality. Thus, a good metric should capture
both the amount of detail per frame as well as its uniformity
across frames.

Consider the example sequences of layers in a video stream
shown in Figure 1. The top two streams consume the same
amount of network resources, as the bottom two streams do.
However, the sequences on the right are “smoother” than the
ones on the left. In the first case, the degradation in quality is
more gradual in the “smoother” sequence. In the second case
the “smoother” sequence has fewer changes in quality. These
smoothness criteria can be captured in a metric by giving higher

1Here smoothing refers to the perceived video quality, not bandwidth.
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Fig. 1. Illustration of smoothness criteria

weight to lower layers and to longer runs2 of continuous frames
in a layer.

We propose a family of metrics that attempt to measure the
smoothness in the perceived quality of a layered video. They
represent the smoothness, M , of a video stream by a vector of
the form M = (m1;m2; : : : ;mL), where L is the total number
of layers and mi is the measure associated with layer i. Using
these metrics, two video streams can be compared by using lexi-
cographic ordering of the corresponding vectors. A stream with
smoothness measure M 1 is considered better than a stream with
M2 if 9i;m1

j = m2
j ; j < i and m1

i > m2
i . In other words,

the stream with a higher measure at a lower layer is considered
smoother.

Each metric in the family computes its mi differently. We
consider three such metrics in our work: avgrun, minrun, ex-
prun. The avgrun metric measures the mean length of a run in
layer i and minrun its minimum run. The exprun metric mea-
sures the expected run length in layer i. In other words, the ex-
prun metric gives the run length in layer i that can be expected
to be seen around an arbitrary frame in the layer.

These metrics can be computed as follows:

avgrun = n1+n2+:::+nk
k

minrun = minfn1; n2; : : : ; nkg

exprun =
n2
1
+n2

2
+:::+n2

k

N

where k is the total number of runs in a layer and n1; n2; : : : ; nk
are the lengths of these runs. These values are then normalized
by the length of the video sequence and presented as a value
between 0 and 1.

The following table lists the smoothness of each sequence in
Figure 1, as measured by each of the above metrics. It is as-
sumed that the length of the video is 12 frames.

2Hereafter run refers to a sequence of consecutive frames shown in a layer.
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top left top right
avgrun (1:00; 1:00; 0:50; 0:50) (1:00; 1:00; 0:67; 0:33)
minrun (1:00; 1:00; 0:50; 0:50) (1:00; 1:00; 0:67; 0:33)
exprun (1:00; 1:00; 0:25; 0:25) (1:00; 1:00; 0:44; 0:11)

bottom left bottom right
avgrun (1:00; 1:00; 0:15) (1:00; 1:00; 0:30)
minrun (1:00; 1:00; 0:08) (1:00; 1:00; 0:25)
exprun (1:00; 1:00; 0:10) (1:00; 1:00; 0:17)

Consider for example the bottom left sequence in Figure 1.
The total number of runs is 1; 1; 4 respectively for the layers
1; 2; 3. For layers 1 and 2 the average run length and mini-
mum run length is same as the length of the video. Hence their
normalized measures are each 1:0. The layer 3 has 4 runs of
length 1; 1; 2; 3 respectively. Thus the average run length is
1:75 and the corresponding avgrun measure is 1:75

12
= 0:145.

Similarly the minimum run length is 1 and the minrun mea-
sure is 1

12
= 0:083. The expected run length of layer 3 is

1
2
+1

2
+2

2
+3

2

12
= 1:25 and hence the corresponding exprun mea-

sure is 1:25
12

= 0:104. As can be seen, the relative smoothness
of the sequences in Figure1 is reflected by each of the metrics in
the above table.

The metrics avgrun and minrun are easy to understand and
each measure a different statistic on the runs present. But they
fail to take into account the absence of runs. For example, given
a sequence of runs of a layer, by dropping all the runs except the
longest run we can generate a new sequence with larger avgrun
and minrun values. Such a new sequence may not necessarily
be perceptually better than the original sequence. In order to
address this we also need to consider the absence of a frames
in a run. The exprun metric captures this notion by taking both
the sum of all runs and the length of each individual run into
account.

We now proceed to formulate the layer selection problem in
video delivery and develop algorithms that choose layers such
that the smoothness of the resulting sequence is maximized as
measured by these metrics.

III. PROBLEM FORMULATION

The objective of a layer selection scheme is to optimize the
perceived video quality, as measured by metrics described ear-
lier, given the resource constraints. In formulating this problem,
we consider a discrete-time model at the frame level. Each time
slot represents the unit of time for playing back a video frame.
For simplicity of exposition, we assume startup delay of one
slot, i.e., the server starts video transmission one time slot ahead
of the time the client starts playback. In other words, server
starts transmission at time 0 and the client starts displaying the
frame 1 at time 1. We also ignore the network delay. Table I
summarizes the notation we introduce in this section.

Consider a video stream with N frames and L layers. The
size of jth layer of ith frame is denoted by f

j
i . Let Ĉj =

(Ĉ
j
0 ; Ĉ

j
1 ; : : : ; Ĉ

j
N ) and B̂j = (B̂

j
0; B̂

j
1; : : : ; B̂

j
N ), where Ĉj

i de-
note network bandwidth and B̂

j
i client buffer capacity during

time slot i at a layer j. Let S = (S1; S2; : : : ; SN ); 0 � Si � L

be a layer sequence.
Let D(S) = (D0(S); D1(S); : : : ; DN (S)) where Di(S) =
Pi

k=0

PSi
j=0 f

j
k , and let U(S) = (U0(S); U1(S); : : : ; UN (S))

where Ui(S) = Di(S) + B̂1
i . We refer to D(S) as the (client)

TABLE I

NOTATION

N : length of video in frames
L : number of layers of video
f

j
i

: size of jth layer of ith frame
B

j
i

: buffer occupancy by layer j at slot i
B̂

j
i

: buffer constraint during slot i layer j
Ĉ

j
i

: bandwidth constraint during slot i layer j
S : a layer sequence
Ŝ : an optimal feasible layer sequence
A(S) : a transmission schedule w.r.t. sequence S
Ai(S) : cumulative data sent by server over [1; i]
ai(S) : amount of data sent by server in slot i
D(S) : underflow curve w.r.t sequence S
Di(S) : cumulative data consumed by the client over [1; i]
U(S) : overflow curve w.r.t sequence S
Ui(S) : maximum cumulative data that can be received

by the client over [1; i]

buffer underflow curve with respect to S, and U(S) as the
(client) buffer overflow curve with respect to S. A server trans-
mission schedule A(S) associated with S is a schedule which
only transmits layers of frames included in S, namely, layer j
of frame i is transmitted under A(S) if and only if j � S i.
Let ai(S) be the amount of video data transmitted during time
slot i, i = 1; : : : ; N 3. The schedule A(S) is denoted by
A(S) = (A0(S); A1(S); : : : ; AN (S)) where A0(S) = 0 and
Ai(S) =

Pi

k=0 ak(S).
A server transmission schedule A(S) is said to be feasible

with respect to S if and only if for i = 0; 1; : : : ; N , 1) rate
constraint is not violated, i.e., ai(S) � C1

i ; 2) buffer constraint
is not violated, i.e.,Ai(S) � Ui(S); and 3) playback constraints
are not violated, i.e,Di(S) � Ai(S). For a given rate and buffer
constraints (Ĉ; B̂), we denote the collection of all feasible layer
sequences by FLS(Ĉ; B̂).

Now the optimal layer selection problem can be stated as fol-
lows: find a feasible sequence Ŝ that maximizes the associated
metric quality(Ŝ), formally
Find a sequence Ŝ such that Ŝ 2 FLS(Ĉ; B̂) and
quality(Ŝ) = maxfquality(S) : S 2 FLS(Ĉ; B̂)g.

IV. OPTIMAL LAYER SELECTION

In this section, we discuss the potential approaches to design-
ing optimal layer selection algorithms for maximizing each of
the metrics defined earlier. We first make some simplifying as-
sumptions about the problem setting. We then describe a generic
layer selection procedure which uses a metric-specific procedure
for selecting frames within a layer. The frame selection pro-
cedures for these metrics namely, MAXAVGRUN, MAXMIN-
RUN, and MAXEXPRUN are then presented.

We assume that each layer in the video is of CBR, i.e., all
frames in a layer are of the same size. This enables us to maxi-
mize the given metric for each layer in isolation. For simplicity
of exposition, we further assume that all layers of equal bit rate 4.
Now, without loss of generality, all the units can be scaled such

3When optimizing avgrun and minrun metrics, to account for the absence of
runs, we need to add an additional constraint that a transmission schedule has to
be work-conserving, i.e., ai(S) = min(B̂1

i �

PL

j=1
B

j
i
; Ĉ

1
i )

4Note that the algorithms described here do not hinge on this assumption
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1. PROCEDURE OPTLAYERS(Ĉ; B̂)
2. Initialization : Ĉ1 = Ĉ; B̂

1 = B̂

3. For j = 1 to L
4. (Ĉj+1; B̂j+1

; Ŝ
j) = maxanyrun(Ĉj ; B̂j )

5. END PROCEDURE

Fig. 2. The generic optimal layer selection procedure
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Fig. 3. Optimal layer sequences: (a) buffer=0; (b)(c)(d) buffer=3

that size of each frame in a layer is 1, i.e., f j
i = 1 and buffer and

bandwidth values are all integers.
The generic optimal layer selection procedure shown in Fig-

ure 2 can be described as follows. Consider each layer j from
lower to higher starting with layer 1. Select an optimal subset,
Ŝj , as measured by the metric, of all frames at that layer j treat-
ing it as the only layer of the video. A metric-specific procedure
is used in place of maxanyrun to perform the selection of frames
in a layer. This optimal selection has to satisfy the resource con-
straints given by the residual bandwidth, Ĉj and residual buffer,
B̂j that is available after considering all the layers up to j � 1.
Since it is always preferable, according to our metrics, to select
lower layer frames and also because all frames are of equal size,
with optimal selection of frames at each layer, the resulting layer
sequence would also be optimal.

The Figure 3 shows an example unsmoothed sequence and
the corresponding smoothed sequences that would result after
applying the MAXAVGRUN, MAXMINRUN, and MAXEX-
PRUN algorithms. The maximum available buffer is assumed
to be 3. While the unsmoothed sequence has 5 runs, all the
smoothed sequences have only 2 runs and thus longer runs.
However, the run lengths are different in each case so as to op-
timize the respective metrics. In the following subsections we
explain these algorithms in detail.

A. Maximizing the average run length

The average run length in a sequence can be maximized by
minimizing the number of runs while keeping the sum of all the
runs as high as possible. We propose MAXAVGRUN algorithm
that achieves this by delaying the start of a run as late as possible
and stretching its end as far as possible. Intuitively, a new run is
not initiated unless the buffer is accumulated adequately and it
is not terminated until the buffer is drained completely.

The Figure 4 shows the details of this algorithm operating
at a layer j. It consists of two scans across the length of the

1. PROCEDURE MAXAVGRUN(Ĉj ; B̂j )
2. Initialization : Bj

0
= 0;� = 0

3. For i = 1 to N

4. Update buffer: Bj
i
= B

j
i�1

+ Ĉ

j
i
��

5. If Bj
i
> B̂

j
i

, i.e., buffer overflow?
6. Select phase: � = 1;Bj

i
= B̂

j
i

7. Else If Bj
i
< 0, i.e., buffer underflow?

8. Discard phase: � = 0; Bj
i
= 0

9. Else
10. Continue same phase
11. Note frame status: Ŝj

i
= �

12.
13. Initialization : �

B

j

N
= 0

14. For i = N to 1

15. If Bj
i
>

�
B

j
i

, i.e., buffered enough?
16. Select frame: Ŝj

i
= 1

17. Residual buffer limit: B̂j+1
i

= B̂

j
i
� �
B

j
i

18. If Ĉj
i
>

�
B

j
i
+ Ŝ

j
i

, i.e., bandwidth enough?
19. Residual bandwidth: Ĉj+1

i
= Ĉ

j
i
�

�
B

j
i
� Ŝ

j
i

20. Buffer not needed for future: �
B

j
i�1

= 0

21. Else

22. Adjust future buffer: �
B

j
i�1

= �
B

j
i
� Ĉ

j
i
+ Ŝ

j
i

23. No residual bandwidth: Ĉj+1
i

= 0
24. END PROCEDURE

Fig. 4. The algorithm for maximizing average run length

video: one in forward direction (lines 2-11) and one in backward
direction (lines 13-23). The forward scan can be viewed as a
step that identifies the end of each run and the minimal number
of runs. The backward scan essentially extends each run towards
the front of it while at the same time maximizing the residual
buffer made available to higher layers.

The algorithm during a forward scan switches between select
phase in which frames are selected (line 6) and discard phase
in which frames are discarded (line 8). It starts with empty
buffer and in discard phase (line 2). In each slot, the buffer oc-
cupancy, Bj

i is updated (line 4) such that bandwidth constraint
is not violated. It enters select phase if the buffer is full even
after consuming a frame (line 5) and switches to discard phase
if the buffer is empty even before consuming a frame (line 7).
If the buffer occupancy stays within the bounds, the same phase
is continued (lines 9-10). The current frame is either selected or
discarded based on the current phase (line 11).

At the end of a forward scan it is possible that accumulated
buffer is not completely drained. Furthermore, before each run
the buffer may be filled up too early and hence rendered unus-
able by higher layers. The backward scan addresses these con-
cerns by accumulating the buffer as late as possible and only
when needed. It keeps track of the buffer requirement at a frame
i, �Bj

i , for the selected frames beyond i in future. Since no buffer
is required beyond frame N , it is initialized to 0 (line 13). The
current frame is selected whenever the current buffer occupancy
is more than the future buffer requirement (lines 15-16). The
residual buffer available for layer j + 1 is set by subtracting the
buffer required for layer j from the the total amount available
to it (line 17). If enough bandwidth is available at slot i to sat-
isfy the future buffer requirements of layer j, then some residual
bandwidth is made available to layer j+1 and the buffer require-
ment beyond slot i�1 is also adjusted accordingly (lines 18-23).
Thus by filling the buffer closer to where it is consumed, larger
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Fig. 5. Illustration of MAXAVGRUN sequence

residual buffer is made available to higher layers and longer runs
are made possible at each layer.

Figure 5 shows the MAXAVGRUN algorithm in operation
at layer 3 on the example unsmoothed sequence in Figure 3(a)
while generating the smoothed sequence in Figure 3(b). The top
curve represents the rate constraint corresponding to the resid-
ual bandwidth available at layer 3 as given by unsmoothed se-
quence. The bottom curve gives the buffer constraint which is
essentially the rate constraint shifted down by the buffer size
which is 3 in this example. It is assumed that data transmitted in
a slot is added to the buffer only at the end of the slot. The mid-
dle curve is the consumption curve corresponding to the frames
selected by the MAXAVGRUN procedure. The crossover of
consumption curve and the buffer constraint curve implies a
buffer overflow while that of consumption and rate constraint
curves means a buffer underflow.

The MAXAVGRUN algorithm, as described earlier, starts in
discard phase and continues dropping frames till the 5 th frame
where upon it enters select phase. Otherwise, i.e, if we had
dropped frame 5 also, it would have caused a buffer overflow.
Once in select phase it continues selecting frames up to 9 at
which point it is forced to switch to discard phase lest buffer
would underflow. It then selects another run of frames 12-14,
even before the overflow point, during the backward scan.

We now illustrate the operation of the MAXAVGRUN algo-
rithm using an example. Consider a layered video clip of length
20 frames with 3 layers. Let us assume that client can buffer
up to 2 units of the video. Suppose that the curve given in Fig-
ure 6(a) represents the available bandwidth in each frame slot.
The bandwidth used to transmit layer 1 and the residual band-
width after processing layer 1 are marked differently in the fig-
ure. Since the available bandwidth in each slot is greater than 1,
the layer 1 can be delivered completely without using any buffer
for prefetching.

Figure 6(b) shows the buffer occupancy in each frame slot as
computed during the forward scan at layer 2. In slot 1, it uses the
2 units of bandwidth available for building the buffer for layer
2. In slot 2, since the buffer is full and bandwidth is available, it
initiates a run and starts selecting frames. The run is terminated
at slot 18 beyond which it can not be continued due to lack of
bandwidth and buffer size limitation. In this scan, the buffer is
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(a) available bandwidth for layer 2
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(c) buffer occupancy after backward scan at layer 2
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(f) buffer occupancy after forward scan at layer 3
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(g) buffer occupancy after backward scan at layer 3
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(h) selected frames up to layer 3

Fig. 6. Illustration of the operation of MAXAVGRUN algorithm
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filled whenever additional bandwidth available and kept as full
as possible.

There are two improvements possible to the sequence gener-
ated by forward scan. First, the length of each run may be ex-
tended at the front since in forward scan buffer might have been
built up earlier than necessary. In this example, the run of layer
2 can be started at slot 1 itself instead if at slot 2. Second, larger
residual buffer can be made available to higher layers by buffer-
ing frames of a layer only when needed. The layer 2 requires
2 units of buffer only at the end of slot 16 which can be built
up in that slot instead of building it too early by slot 10. This
would increase the residual buffer for layer 3. This is precisely
what is done during a backward scan. The buffer occupancy and
the selected layer sequence after the backward scan on layer 3
are shown in Figures 6(c) and 6(d) respectively. The bandwidth
utilized by layer 2 and the residual bandwidth for layer 3 are
shown in Figure 6(e).

Figures 6(f) and 6(g) give the buffer occupancy at the end of
forward scan and backward scan respectively on layer 3. Once
again the run of layer 3 is extended at the front during the back-
ward scan. It can also be seen that by making larger amount
of residual buffer available to layer 3, its run is continued for
longer period. Otherwise, without the backward scan on layer
2, layer 3 would have two shorter runs of length 1 and 3 instead
of a single run of length 7. The final resulting layer sequence
given by MAXAVGRUN algorithm is shown in Figure 6(e).

It is quite obvious from the description and illustration that
this algorithm ensures that neither buffer nor bandwidth con-
straint is violated at each slot. Hence it selects only feasible
subset of frames. Furthermore, since during the forward scan
a run is started only after the buffer is full and it is ended only
when the buffer is empty, the length of is each run (except the
very last run) is guaranteed to be at least buffer size. The back-
ward scan attempts to further extend the length of each run. It
can be easily shown that MAXAVGRUN algorithm minimizes
the number of runs and hence maximizes the average run length.

B. Maximizing the minimum run length

The algorithm described above yields the minimum number
of runs with the length of each run being at least the size of
buffer. However there could be some variation in relative lengths
of these runs. One way to maximize the minimum run length
would be to reduce the variance among the runs. In other words,
we can pull up the minimum run length in the overall sequence
by growing the shorter runs while shrinking their longer neigh-
boring runs.

Given a MAXAVGRUN sequence, it is not possible to grow a
run at the end since the buffer is empty at that point. However a
run can be made longer by selecting a chunk of frames just be-
fore the run and discarding an equal number of frames from the
end of a previous run. The extent of growth is limited obviously
by the maximum buffer and also the buffer accumulation pattern
right before the run. It should be noted that though a sequence
with higher than the minimum number of runs may also have
the largest minimum run length, it is possible to find a sequence
that has the same minimum run length but with lesser number of
runs. So starting with a MAXAVGRUN sequence we can find a
MAXMINRUN sequence by readjusting the lengths of each run

without increasing the number of runs.
The MAXMINRUN algorithm first applies the MAXAV-

GRUN algorithm on the unsmoothed sequence to generate a se-
quence that has the minimum number of runs. It then considers
each pair of consecutive runs in order and tries to bring their
lengths as close as possible. Lets say their lengths are nk and
nk+1. Also, let xk+1 is the limit on the length by which run k+1

can be grown. If nk � nk+1, continue with the next pair. Oth-
erwise select min((nk � nk+1 +1)=2; xi+1) number of frames
before the beginning of run i + 1 and discard same number of
frames from the end of run k. Accordingly adjust the counter
xk+1. We are not done with just one iteration. This procedure is
somewhat similar to bubble sort. It proceeds with another iter-
ation if there was any change to any of the runs in the previous
iteration. Otherwise the procedure terminates.

Figure 3(c) shows the resulting MAXMINRUN sequence for
a simple case of unsmoothed sequence given in Figure 3(a) and
the corresponding MAXAVGRUN sequence in Figure 3(b). By
applying the above procedure the minimum run length at layer
3 is increased from 1 in unsmoothed sequence, 3 in MAXAV-
GRUN sequence to 4 in MAXMINRUN sequence. While this
heuristic algorithm works towards maximizing the minimum run
length, further investigation is needed to develop a provably op-
timal algorithm.

C. Maximizing the expected run length

It is quite clear that the longer the runs are in a sequence, the
higher it’s expected run length is. So in order to maximize the
expected run length we need to make each run as long as possi-
ble. Furthermore, extension of a longer run contributes more to-
wards the expected run length than that of a shorter run. Hence,
a reasonable heuristic approach for maximizing the expected run
length is to start with a MAXAVGRUN sequence and to make
the longer sequences even longer while further shortening the
shorter runs.

The MAXEXPRUN algorithm first applies the MAXAV-
GRUN algorithm. It then considers each pair of consecutive
runs in order and tries to grow the longer run even more. Let the
length of two consecutive runs be nk and nk+1. Also, let xk+1
is the limit on the length by which run k + 1 can be grown. If
nk � xk+1 > nk+1 + xk+1, continue with the next pair. Other-
wise select xi+1 number of frames before the beginning of run
i+1 and discard same number of frames from the end of run k.
Unlike in MAXMINRUN case, MAXEXPRUN terminates with
just one scan over each of the runs given by MAXAVGRUN.
Figure 3(d) shows the sequence with maximum expected run
length corresponding to the unsmoothed one in Figure 3(a).

V. ADAPTIVE LAYER SELECTION

The algorithms discussed so far assume that the bandwidth
availability for the entire duration of the video is known a priori.
Based on the insights gained from these algorithms, in this sec-
tion we develop an adaptive scheme for layer selection that as-
sumes no knowledge about future bandwidth availability. How-
ever, we assume the presence of a bandwidth estimator that gives
the precise current bandwidth in each frame slot.

The key questions that needs to be addressed by any layer se-
lection scheme for smoother quality are: 1) which layers and
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2) which frames of a layer be prefetched; when to initiate a run
for a layer and where to position the run. The off-line 5 algo-
rithm addresses these issues by taking advantage of the complete
knowledge about future bandwidth availability. With the aid of
a forward scan and a backward scan for each layer, it prefetches
the frames of layers from lower to higher as late as possible and
only when needed. But when future availability of bandwidth
is not known, the decision on which layer and frame to trans-
mit next has to be made in an online fashion. In such a case it
is not possible to precisely compute the buffer needed for each
layer and prefetch just in time. In the following we present an
adaptive algorithm to predict the buffer requirements of a layer
to tide over the potential future bandwidth droughts and to posi-
tion the runs of a layer to accumulate sufficient cushion before
it is displayed.

The adaptive algorithm attempts to estimate future bandwidth
availability based on the past history. It associates a target buffer
cushion ( ~Bj) with each layer j and adjusts this value dynam-
ically based on the bandwidth availability. The target buffer
cushion of a layer j corresponds to the number of frames of
layer j that need to be prefetched in order to continue a run at
layer j under the current bandwidth conditions. If the amount
of cushion is too less, even small dips in available bandwidth
could cause discontinuity of a run at this layer. If it is too much,
this may result in inefficient use of buffer which otherwise could
help cushion other layers. In the case of off-line algorithm, the
forward scan ensures that the prefetched amount is not too less
and the backward scan ensures that it is not too much. In the
absence of knowledge about future bandwidth availability, the
key task of an adaptive algorithm is to estimate the minimum
amount of buffer cushion that is sufficient for a layer.

A run of layer j can be sustained only if the average available
bandwidth is greater than j and the amount of buffer available
for layer j is sufficient to cushion the variations in bandwidth.
It is possible to estimate the buffer requirements for an uninter-
rupted run of a layer j by keeping track of how often the avail-
able bandwidth goes below j and how long it stays below j.
By monitoring the fluctuations in available bandwidth, we can
identify a critical layer (ĵ), i.e., the highest layer that can be sub-
scribed but may not have sufficient buffer available to cushion
the bandwidth fluctuations. Given a critical layer ĵ, ideally we
would like to protect the runs of all the lower layers up to ĵ � 1

from bandwidth droughts and extend the run at layer ĵ as long
as possible. We may not initiate a run at layer ĵ unless it can
be sustained for a certain minimum period. In the following, we
present a simple adaptive algorithm that addresses these issues
in an indirect way and adjusts the target buffer cushion for each
layer by tracking only buffer usage.

The adaptive algorithm dynamically adds layers and allocates
the buffer among them based on how buffer is built and drained.
The target buffer cushion for a layer is increased if the cur-
rent target cushion was found to be inadequate to avoid dis-
continuity in the run due to a bandwidth drought period. It
is decreased if the current target buffer cushion was filled and
remained undrained for a certain observation window period.
Figure 7 shows the procedure for adjusting cushion at slot i.

5Hereafter we refer to the MAXAVGRUN algorithm described in the previous
section as the off-line algorithm.

1. PROCEDURE ADJUST-CUSHION(i)
2. If Bk = B̂, i� � + 1 � k � �

3. For j = 1 to ĵ

4. ~
B
j = �

~
B
j , i.e., decrease target cushion

5. X
j = i

6.
7. For j = 1 to ĵ

8. If Bj
i
< Æ

~
B
j and Bj

k
>= ~

B
j for some k, Xj

< k < i

9. ~
B
j = �

~
B
j , i.e., increase target cushion

10. X
j = i

11. END PROCEDURE

Fig. 7. The cushion adjustment at time i

1. PROCEDURE ADD-LAYER()
2. If Bj

�
~
B
j , 1 � j � ĵ and �

C � ĵ + 1

3. If ~
B
ĵ+1

<
~
B
ĵ

4. ~
B
ĵ+1 = ~

B
ĵ

5. �
ĵ+1 = i+ ~

B
ĵ+1

6. ĵ = ĵ + 1
7. END PROCEDURE

Fig. 8. The procedure to add a new layer

The target buffer cushion for all the active layers is decreased
by � if the buffer was full for a certain duration � (lines 2-5).
There are two reasons for doing this. First, the buffer being full
for sustained period indicates that bandwidth is certainly suffi-
cient to accommodate ĵ layers and hence the lower layers can
be protected with much less cushion. Second, it also implies
that buffer is scarce and hence we need to use it more efficiently
by prefetching less conservatively for lower layers. The target
buffer cushion ~Bj for an active layer j is increased by � if the
current target cushion was filled earlier after the last cushion up-
date time Xj and then gets drained below a threshold Æ (lines
7-10). This way we react in advance for any onset of drought
period by conservatively increasing the target cushion even be-
fore it is drained completely.

The adaptive algorithm starts a new run at an higher layer ĵ+1

only if there is sufficient cushion for all the lower layers up to ĵ

and sufficient bandwidth to accommodate one more layer. The
procedure to determine whether to add a new layer and where
to start the run is given in Figure 8. A new run at a layer ĵ + 1

is initiated only if the target buffer cushion is already filled for
all the layers up to ĵ and the long term bandwidth is sufficient
to accommodate layer ĵ + 1 also (line 2). The long term mean
bandwidth ( �C) is measured by exponential averaging the current
and past bandwidth values. The target buffer cushion for ĵ + 1

is ensured to be at least as large as the layer below it (lines 3-4).
This is because higher layers need more cushion to sustain a run
than lower layers. The new run is positioned at frame � ĵ+1, i.e.,
a distance of ~Bj away from the current frame slot i (line 5). This
is intended to allow sufficient time for the cushion buffer to be
filled before the new layer gets played back at the client. The
new layer ĵ + 1 thus becomes the critical layer (line 6).

The adaptive scheme determines which layer to be transmit-
ted next based on the target buffer cushion and the current buffer
cushion values for each layer. The corresponding procedure is
given in Figure 9. A frame of a layer j 0 is transmitted only if the
current prefetched amount for each layer up to j 0 � 1 is greater
than the corresponding target buffer cushion value (line 2-5). In
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1. PROCEDURE NEXT-TO-XMIT()
2. For j = 1 to ĵ

3. If Bj
<

~
B
j

4. j
0 = j

5. Return
6.
7. Bmin = B̂

8. For j = 1 to ĵ

9. If Bj
� ~
B
j
< Bmin

10. Bmin = B
j
�

~
B
j

11. j
0 = j

12. END PROCEDURE

Fig. 9. The procedure to determine the layer for transmission

other words the lowest layer with cushion less than its target is
chosen for transmission. If all the active layers have their tar-
get cushions built up, one more layer may be added using the
procedure described in Figure 8. When there is additional band-
width available even after filling up target cushions of all the
active layers, the layer with the least additional cushion above
its target buffer cushion is chosen for transmission (lines 7-11).
In other words the extra bandwidth is shared fairly between all
the active layers.

VI. EXPERIMENTAL RESULTS

We conducted simulations to study the performance of off-
line and adaptive algorithms described above. As mentioned in
Section IV we assume that the video is CBR with linearly spaced
layers, i.e., the size of all frames is the same and is scaled to be
1 unit. Correspondingly the client buffer and the network band-
width are scaled to be integers. The video consists of 4 layers.
The length of the sequence is 30000 frames. The playback rate
is set to 30 frames/sec and hence the whole video lasts for a
period of 1000 secs.

The bandwidth is varied such that the mean bandwidth was
3.5 during the first 10000 frame slots, 2.5 during the next 10000
slots and 4.5 during the last 10000 slots. The faster time scale
variation around these mean values is modeled using a Markov
chain. The resulting bandwidth curve used in our experiments
is shown in 10(a).

We study the performance of off-line and adaptive schemes
under the above bandwidth conditions by varying the amount
of client buffer. The configurable parameters for the adaptive
scheme were set as follows. The target cushion increase and de-
crease factors � and � were set to 2:0 and 0:75 respectively. In
other words, the target cushion is doubled whenever the current
target was found to be too less and is decreased by a quarter if
it was found to be too much. The threshold Æ to trigger cushion
increase was set to 0:5, i.e., whenever the current buffer for a
layer drains below half its target buffer, the target cushion is in-
creased. The observation window period � is set to 300, i.e., the
target cushion values are decreased if the buffer was full for 10
secs. These values are set such that the adaptive scheme is con-
servative in protecting the lower layers by maintaining higher
cushions.

Figure 10 compares the number of layers selected, and hence
the corresponding smoothness achieved by the off-line and
adaptive schemes. The output of the off-line scheme with a
small client buffer of 30 is shown in Figure 10(b). We expect

that this relatively unsmoothed stream is similar to one gener-
ated by a greedy layer selection scheme that adds a new layer as
and when bandwidth is available. Clearly such a sequence with
frequent transitions between layer levels is undesirable. Figures
10(c) and 10(d) show the layer selection by off-line and adap-
tive schemes respectively when the client buffer is 300. It is very
reasonable to expect a buffer at the client that can accommodate
up to 10 secs of one layer of the video. Even with not so large a
buffer the off-line algorithm yields a considerably smoother se-
quence. Though the adaptive scheme generates a less smoother
sequence than the off-line scheme, it is still significantly better
than the result of a greedy selection scheme.

When the buffer is increased to a size of 900 that can accom-
modate 10 secs of 3 layers of the video, both the schemes pro-
duce much smoother sequences as shown in Figures 10(e) and
10(f). In particular, the output of the off-line algorithm is very
smooth. This is because it has complete knowledge and utilizes
the buffer in the most efficient manner. The output of adaptive
scheme, while it resembles that of the off-line algorithm in terms
of layer subscription level, is not as smooth: there is fluctuation
about the critical layer. However, the increased buffer does im-
prove the output sequence of the adaptive scheme. In particular,
the segment between 10000 and 20000 is much smoother and
displays more layers.

It is worth noting that the sequence in Figure 10(f) would ap-
pear much smoother if the fluctuations about the critical layer
could be avoided. For example, consider the segment between
frame slots 21000 and 25000. This could have been improved by
not selecting layer 4 when its run cannot be sustained for a cer-
tain minimum duration. Currently the adaptive scheme, though
it attempts to fill the cushion for a layer before the start of a run,
still does not attempt to avoid potentially short runs. We need
to further improve the algorithm to estimate the length of a run
and initiate one only when it is likely not to be short-lived.

The off-line algorithm also exhibits a similar behavior in that
it doesn’t explicitly avoid short runs. For example, in Fig-
ure 10(c) at around frame slot 12500, layer 4 is chosen briefly.
This would not contribute to quality viewing and discarding that
run would make the sequence smoother. This behavior can be at-
tributed to the work-conserving nature of the off-line algorithm:
available bandwidth is always utilized and thus higher layers
are selected momentarily when the buffer is already full. The
algorithm needs to be modified to avoid shorter runs even by re-
sorting to not being work-conserving. Further, we need to alter
the exprun metric to discount runs shorter than a certain length.

We now describe the operation of the adaptive scheme given
the bandwidth curve shown in Figure 10(a). Since the adap-
tive scheme is not aware of future bandwidth availability it has
to dynamically adjust the target buffer cushion for each layer
based on past history on the variability in available bandwidth.
This cushion adaptation process is illustrated in Figure 11(a). It
shows how the target buffer cushion is adjusted over time for
the layers 1 and 2. It also gives the ideal amount of buffer re-
quired for these layers as computed by the off-line algorithm.
Figure 11(b) shows the actual buffer occupied by layers 1 and 2

in the adaptive scheme. It also shows the total buffer occupied
by all the layers.

By contrasting the Figures 11(a) and 11(b) we can see the
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Fig. 11. The illustration of cushion adaptation process

times when the adaptive scheme changes the target buffer cush-
ion values. For example, at around frame slot 10350, the actual
buffer occupied by layer 1 frames is less than half its target cush-
ion of 38. In response to this, the adaptive scheme doubles the
target cushion of layer 1 . Similarly the layer 2 target cushion
is also doubled. At around 20400, the actual buffer stayed full
for at least 300 frame slots, hence causing the target cushion for
both layers to be decreased. It can be seen that target buffer
cushion values in the adaptive scheme have the same trend as
the ideal buffer cushions of the corresponding layers. However,
the adaptive scheme is more conservative while being reactive.

We also measured, using the average run length and expected
run length metrics, the relative smoothness of sequences result-
ing from these algorithms. Figure 12 shows the performance
of these schemes, as measured by these metrics, under various
buffer settings. The average run lengths for layers 1, 2 and 3 are
shown in Figure 12(a) and expected run lengths in Figure 12(b).

It can be observed that metrics for layer 1 under both the algo-
rithms approach unity even at very small buffer sizes. With the
off-line algorithm, the metrics for layer 2 also approach unity for
moderate buffer sizes. On the other hand, the metrics for layer
2 in the adaptive scheme increase up to a point as the buffer in-
creases and stagnate after a certain buffer size. This is because
the discontinuity at around frame 10350 in the run of layer 2
persists even with large buffer sizes (as evident in Figure 10(f)).
This discontinuity is an artifact of the adaptive scheme. Though
the adaptive schemes reacts in advance to an onset of conges-
tion, it still may not be able to build sufficient cushion to tide
over a sudden but prolonged dip in available bandwidth. Fur-
ther, in an attempt to use the buffer and bandwidth more effec-
tively, the adaptive scheme chooses not to be too conservative in
prefetching and thus may not build a larger cushion even with a
larger available buffer. This does not, however, fully explain the
decrease in the metrics with increased buffer sizes beyond 900

and requires further investigation. The effect of larger buffers is
less pronounced with higher layers since their selection is lim-
ited more by the lack of bandwidth than the lack of buffer space.

It is evident that metrics improve faster with the off-line
scheme, reflecting its efficient use of buffer. As can be seen,
both metrics capture the relative smoothness: the sequences
generated by the off-line algorithm score higher than the cor-
responding sequences from the adaptive algorithm. Moreover,
the graphs of both the metrics appear quite similar. This indi-
cates that a work conserving algorithm that maximizes average
run length would also come close to maximizing the expected
run length metric.

VII. RELATED WORK

The problem of layer selection for delivering layered video
has received a lot of attention recently. One of the earliest works
in this area presented in [5] proposes a receiver-driven layered
multicast (RLM) protocol for transmitting layered video to het-
erogeneous receivers. The number of layers subscribed by a
receiver is dynamically varied based on the perceived loss rate
and thru join experiments. The later studies [3] have shown that
receiver-driven schemes such as RLM exhibit significant insta-
bility. There were some proposals [1], [4] on addressing this
problem inside the network by assigning higher priority to lower
layers and providing priority based dropping at routers in case of
congestion. These approaches introduce some additional com-
plexity at core routers.

In [8] the available bandwidth is modeled as a stochastic pro-
cess and optimal allocation of bandwidth between base and en-
hancement layers is studied. It was assumed that client buffer is
unlimited. The work most relevant to ours was reported in [7].
They assume that TCP-friendly congestion control [6] was em-
ployed and hence the available bandwidth curve has a sawtooth
shape. They address the problem of buffer allocation between
layers such that it is used efficiently in absorbing the short-term
fluctuations in bandwidth. Though our work is quite similar in
spirit to theirs, our approach has been quite different. Our focus
has been on designing metrics to capture smoothness criteria and
on developing algorithms to maximize these metrics.
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Fig. 12. The performance of off-line and adaptive schemes

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the issue of layer selection for
maximizing the perceived video quality under given resource
constraints. We defined smoothness criteria and designed met-
rics namely, avgrun, minrun, and exprun for measuring smooth-
ness. We then developed an optimal offline algorithm MAXAV-
GRUN to find a sequence with maximum average run length
when the network conditions are known a priori. We also
presented heuristic algorithms, MAXMINRUN and MAXEX-
PRUN for maximizing the minimum and expected run lengths
respectively. We then described a simple adaptive algorithm for
providing smoothed layered video delivery that doesn’t assume
any knowledge about future bandwidth availability. We con-
ducted simulations to study the performance of these schemes
and shown that even with a small client buffer it is possible to
provide significantly smoother quality video playback.

There are several simplifying assumptions made in this pre-
liminary work on providing smoother quality layered video
stream. Specifically, in the adaptive layer selection scheme,
we assume the presence of a bandwidth estimator that gives the
precise current bandwidth in each frame slot. It is likely that
there would be some amount of error in the estimation of avail-
able bandwidth. This could lead to packet losses. The packet
losses can be handled using retransmissions. Since the frames
are prefetched there is sufficient time for error recovery through
retransmissions. The trade-off between retransmission of the
lost packets and the prefetching of new frames should be inves-
tigated.

The schemes, as presented, provide smoother video by favor-
ing longer runs in a layer. They need to be enhanced to further
smoothen the video streams by also avoiding short runs. Simi-
larly, the exprun metric also needs to be refined to discount short
runs. Real experiments need to be conducted to ascertain the rel-
ative merit of the proposed metrics and effectiveness of the pro-
posed algorithms. Finally, the schemes presented here work on
layered CBR video streams, and need to be extended for VBR

video streams too.
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