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ABSTRACT
Modern wireless interfaces support a physical layer capability
called Message in Message (MIM). Briefly, MIM allows a re-
ceiver to disengage from an ongoing reception, and engage
onto a stronger incoming signal. Links that otherwise conflict
with each other, can be made concurrent with MIM. How-
ever, the concurrency is not immediate, and can be achieved
only if conflicting links begin transmission in a specific or-
der. The importance of link order is new in wireless research,
motivating MIM-aware revisions to link scheduling protocols.
This paper identifies the opportunity in MIM-aware reorder-
ing, characterizes the optimal improvement in throughput,
and designs a link layer protocol to achieve it. Testbed re-
sults confirm the performance gains of the proposed system.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Centralized Net-
works, Wireless communication; C.2.5 [Local and Wide-Area
Networks]: Access schemes

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
EWLANs, MIM, Interference-awareness, Scheduling

1. INTRODUCTION
Physical layer research continues to develop new capabilities
to better cope with wireless interference. One development in
the recent past is termed Message in Message (MIM). Briefly,
MIM allows a receiver to disengage from an ongoing signal
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reception, and engage onto a new, stronger signal. If the
ongoing signal was not intended for the receiver (i.e., inter-
ference), and if the new signal is the actual signal of inter-
est (SoI), then re-engaging onto the new signal is beneficial.
What would have been a collision at a conventional receiver
may result in a successful communication with MIM-capable
hardware. For a better understanding of MIM, we contrast it
with the traditional definition of collision. More importantly,
we differentiate MIM from the existing notion of physical layer
capture.

Collision was widely interpreted as follows: A signal of in-
terest (SoI), however strong, cannot be successfully received
if the receiver is already engaged in receiving a different (in-
terfering) signal. Most simulators adopt this approach, pro-
nouncing both frames corrupt. If, on the other hand, the
SoI arrives before the interference, and satisfies the required
SINR, the signal can be successfully decoded. The figure be-
low shows the two cases.
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Physical Layer Capture was later understood through the
systematic work in [1, 2]. Authors showed that capture al-
lows a receiver to decode a later-arriving SoI, provided the
start of both the SoI and the interference are within a pream-
ble time window. The figure below illustrates this. While
valuable in principle, the gain from capture is limited because
the 802.11 preamble persists for a short time window (20 µs
in 802.11a/g/n). If the SoI arrived later than 20 µs, both
frames will be corrupt.
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Message in Message (MIM) is empowering because it en-
ables a receiver to decode an SoI, even if the SoI arrives after
the receiver has already locked on to the interference [3]. Of
course, the required SINR is higher for re-locking onto the
new signal. Conversely, if the SoI arrives earlier than the in-
terference, MIM is same as traditional reception. The follow-
ing figure illustrates the MIM advantage.
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To summarize, unlike traditional receivers, an MIM-capable re-
ceiver can decode a strong signal of interest even if it arrives
later than the interference. Of course, the required SINR to de-
code the later packet is relatively higher (≈10 dB) compared to
when the packet arrives earlier (≈4 dB).

What makes MIM feasible? An MIM receiver, even while locked
onto the interference, “simultaneously searches” for a new
(stronger) preamble. If a stronger preamble is detected (based
on a high correlation of the incoming signal with the known
preamble), the receiver unlocks from the ongoing reception,
and re-locks on to this new one. The original signal is now
treated as interference, and the new signal is decoded. The
ability to extract a new signal, even if at a higher SINR, can
be exploited to derive performance gains. We motivate the
opportunity with an example.

Link Layer Opportunity
Consider the example in Figure 1. For R1, node AP1 is the
transmitter, while AP2 is the interferer (and the vice versa
for R2). When using MIM receivers, observe that the two
links can be made concurrent only if AP1→R1 starts before
AP2→R2. Briefly, since AP2→R2 supports a higher SINR of
11 dB, it can afford to start later. If that is the case, R2 will
begin receiving AP1’s transmission first, and later re-lock onto
AP2’s new signal which is more than 10 dB stronger than
AP1’s. However, in the reverse order, R1 will lock onto AP2’s
signal first, but will not be able to re-lock onto AP1, because
AP1’s signal is not 10 dB stronger than AP2’s (it is only 5 dB
stronger). Therefore, R1 will experience a collision. As a gen-
eralization of this example, MIM-aware scheduling protocols
need to initiate weaker links first, and stronger links later. Ap-
propriate ordering of the links can improve spatial reuse.

Controller
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Figure 1: AP1→R1 must start before AP2→R2 to ensure
concurrency. If AP2 starts first, R1 locks onto AP2 and
cannot re-lock onto AP1 later.

In a larger network, choosing the appropriate set of links from
within a collision domain, and determining the order of op-
timal transmission, is a non-trivial research problem. IEEE
802.11 is unable to ensure such orderings, failing to fully ex-
ploit MIM-capable receivers. Perhaps more importantly, graph
coloring based scheduling approaches are also inapplicable.
This is because graph coloring assumes symmetric conflicts
between links. MIM link conflicts are asymmetric (i.e., depend
on relative order), and may not be easily expressed through
simple abstractions. In response to this research problem,
this paper proposes Shuffle, an MIM-aware link layer solution
that reorders transmissions to extract performance gains. Our
main contributions are:

(1) Identifying the opportunities with MIM. We use MIM-
enabled Atheros 5213 chipsets, running the MadWiFi driver
to verify that transmission order matters.

(2) Analysis of optimal performance with MIM. We show
that MIM-aware scheduling is NP-hard, and derive upper
bounds on performance using integer programming. CPLEX
results show that the optimal gain from MIM is substantial,
hence, worth investigating.

(3) Design of an MIM-aware system, Shuffle, for enter-
prise wireless LANs. Links within the same collision domain
are suitably reordered to enable concurrency. A measurement-
based protocol engine coordinates the overall operation, and
copes with failures.

(4) Implementation and deployment within our univer-
sity building. Testbed results demonstrate practicality and
consistent performance improvements over 802.11 and order-
unaware TDMA.

2. VERIFYING MIM
We validate the existence of MIM capabilities in commodity
hardware using a testbed of Soekris embedded PCs, equipped
with Atheros 5213 chipsets running the MADWiFi driver. The
experiment consists of two transmitters with a single receiver
placed at various points in-between (Figure 2). This subjects
the receiver to varying SINRs. To ensure continuous packet
transmissions from the transmitters, we modify the MADWiFi
driver to disable carrier sensing, backoff, and the inter-frame
spacings. To time-stamp transmissions, a collocated monitor
is placed at each transmitter. Each monitor is expected to re-
ceive all packets from its collocated transmitter, while the in-
between receiver is expected to experience some collisions.
Merging time-stamped traces from the two monitors and the
receiver, we were able to determine the relationship between
transmission order and collision.

Figure 2 shows delivery ratios for different order of packet
arrivals, at different positions of the receiver. For all these
positions, the interference was strong, i.e., in the absence of
the SoI, we verified that the interfering packets were received
with high delivery ratio. Under these scenarios, observe that
when the receiver is very close to the transmitter (positions
1, 2, and 3), it achieves a high delivery ratio independent of
the order of reception. This is a result of achieving a large
enough SINR such that both SoI-first (SF) and SoI-last (SL)
cases are successful. However, when the receiver moves away
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Figure 2: Testbed confirms MIM. Rx receives from Tx (at
5 positions) in presence of Interference (Intf).

from the transmitter (positions 4 and 5), the SINR is only suf-
ficient for the SF case, but not the SL case. Hence, at position
4, only 4% of the late-arriving packets get received, as op-
posed to 68% of the early-arriving packets. This validates the
existence of MIM on commercial hardware, and confirms that
enforcing the correct order among nearby transmissions can
be beneficial.

3. MIM: OPTIMALITY ANALYSIS
A natural question to ask is how much gain is available from
MIM? Characterizing the optimal gain will not only guide our
expectations, but is also likely to offer insights into MIM-
aware protocol design. Towards this, we first prove that MIM-
aware scheduling is NP-hard, and use integer programming
methods to characterize the performance bounds for a large
number of topologies. We compare the results with an MIM-
incapable model.

THEOREM 1. Optimal MIM Scheduling is NP-hard.
PROOF. Consider the problem of Optimal Link Scheduling

with MIM-capable nodes. An optimal schedule consists of a
link selection and a corresponding MIM-aware ordering, that
together maximizes the network throughput. Assume a
polynomial time algorithm exists to provide the optimal MIM
link scheduling from known network interference relation-
ships. Conventional (no-MIM) link scheduling is a known
NP-complete problem, reduced from Maximum Independent
Set [4]. Therefore, if our assumption is true, then it would be
possible to find the optimal MIM-incapable link schedule in
polynomial time, just by restricting the SoI-Last SINR thresh-
old to infinity in our algorithm (i.e., ensuring later-arriving
signals are never decoded). This contradiction proves that
optimal MIM link scheduling is NP-hard.

3.1 Optimal Schedule with Integer Program
To quantify the performance gains from MIM, we model MIM-
capable and MIM-incapable networks, and compare their op-
timal throughput over a variety of topologies. The networks
consist of multiple access points (APs), each associated to a
number of clients. Each transmission produces an interfer-
ence footprint derived from a path loss index of 4. With MIM-
capable receivers, the SoI-First (SF) SINR requirement is 4 dB,

while the SoI-Last (SL) requirement is 10 dB [3]. With MIM-
incapable receivers, the SINR requirement for reception is
uniformly 4 dB, and later-arriving packets cannot be received.
We construct linear (binary integer) programs to compute the
maximum number of concurrent links meeting the required
SINR thresholds. The linear program also produces the order.
Fairness is not considered in this analysis. To make our model
solvable within reasonable execution time, we make the fol-
lowing simplifying assumptions. (1) All clients are associated
to the AP with the strongest signal strength. (2) A frame is
always pending on any AP-to-client link. (3) Only a single
data rate r is used throughout the network. In section 4.2 we
consider MIM scheduling with rate control.

Let a and b be arbitrary nodes in a wireless network and N
be the set of all such nodes. We define the boolean relation
RANGE(a → b) = true ⇐⇒ b is within the transmission
range of a. Let L denote the set of wireless links lab such that
RANGE(a→ b) = true.

Let Slba denote the SoI strength received on link l (by node
a from an active transmission by node b), measured in units
of power. Equivalently, let I(mcd → lab) denote interference
received on link l (by node b) due to a concurrent transmis-
sion on link m (from node c). The following table summa-
rizes the parameters and variables. Under an assumption of
additive multiple interference and non-fading channels, the
maximum link concurrency of a given wireless network under
MIM-aware MAC can be found using the IP presented below.

Parameter Meaning
N Set of all nodes.
L Set of al links lab s.t. RANGE(a→ b)
Sl Signal strength on link l.

I(m→ l) Interference on link l from link m.
τSF Sender First capture threshold.
τSL Sender Last capture threshold.

Variable Value Meaning

xlab

1 Link l (a→ b) in use.
0 Otherwise.

ylm
1 Link l starts before link m.
0 Otherwise.

Maximize:
X
∀l∈L

xl

Subject To:
∀a ∈ N

X
∀b∈N|lab∈L

xlab +
X

∀b∈N|lba∈L

xlba ≤ 1 (1)

∀l,m ∈ L|l 6= m

xl + xm − 1 ≤ ylm + yml ≤ min(xl, xm) (2)

∀l,m, n ∈ L|l 6= m ∧ l 6= n ∧m 6= n

xl + xm + xn − 2 ≤ ylm + ymn + ynl ≤ 2 (3)

∀l ∈ L
X

∀m∈L|m 6=l

yml · I(m→ l) ≤ Sl

10(τSLC/10)
(4)

X
∀m∈L|m 6=l

(yml + ylm) · I(m→ l) ≤ Sl

10(τSF /10)
(5)

Aggregate network throughput may be computed as r·
P
∀l∈L xl.
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Figure 3: MIM can provide large concurrency gains.

THEOREM 2. Any 0/1 solution to the above IP satisfies the
following:

1. xl = 1 encode the active links.

2. The ylm = 1 variables encode a total ordering on the ac-
tive links where m is made active after l. (Constraints (2)
and (3)).

3. The set of active links along with their ordering satisfies
the interference constraints, and is hence feasible. (Con-
straints (4) and (5)).

The optimal solution to the IP is therefore precisely the optimal
solution of interest.

PROOF. Consider constraints (2) and (3). Suppose first
that all the xl = 1. Then, constraints (2) and (3) are equiv-
alent to: ylm + yml = 1, and 1 ≤ ylm + ymn + ynl ≤ 2. We
interpret the variable ylm as follows: ylm = 1 if m follows l in
the ordering, and 0 otherwise. Note that the constraints ex-
actly encode the following information: In any ordering, for
every l,m, either l appears after m or the other way around;
and for every l,m, n, it cannot happen that l follows m, m
follows n, and n follows l. It is shown in literature that these
constraints are necessary and sufficient to encode a complete
ordering.

Now suppose the xl are not all 1. In that case, ylm = 1 only
if m follows l in the ordering and both l and m are active, so
that xl = xm = 1. In this case, the constraints (2) and (3) are
meaningful only if all the corresponding x variables are all 1,
which means all the corresponding links are active. For these
links, the constraints (2) and (3) encode a total ordering.

The constraints (4) and (5) encode the interference constraints.
For any l, the only yml that contribute to constraint (4) are
those with yml = 1, which are precisely the m that are active
and precede l. Further, the LHS of the constraint is non-zero
only if l itself is active. A similar reasoning shows the validity
of constraint (5).

3.2 Results
We used CPLEX to solve many instantiations of the IP. In Fig-
ure 3, we present results for topologies of grid-aligned access
points and randomly-placed clients. All clients associate to
the the AP from which it receives the strongest signal. Each
data point is sampled as the arithmetic mean of 15 trials.
Results show that ideal concurrency gains can be large with
MIM-capable receivers. This provides a sound motivation for
designing and implementing MIM-aware protocols.

4. SHUFFLE: SYSTEM DESIGN
We propose Shuffle, an MIM-aware link layer solution that re-
orders transmissions to improve concurrency. Shuffle targets
enterprise WLAN (EWLAN) environments, such as universi-
ties, airports, and corporate campuses [5, 6]. In EWLANs,
multiple access points (APs) are connected to a central con-
troller through a high speed wired backbone (Figure 1 and
7). The controller coordinates the operations of APs. The APs
follow the controller’s instructions for packet communication.

The reason to target EWLAN architectures is two-fold. (1)
EWLANs are becoming popular in single administrator envi-
ronments [6–10]. Developing this platform on sound physical
and link layer technologies can further drive its proliferation.
(2) MIM-aware scheduling is hard, and a systematic approach
should perhaps start from a more tractable system. EWLANS
present a semi-centralized platform, amenable to experimen-
tation. Exploiting MIM on this architecture is itself a rich,
unexplored, research area, that could lay the foundation for
decentralized systems.

4.1 Protocol Design
We first sketch the three main operations of Shuffle. Figure 4
illustrates their interactions.

1. Conflict Diagnosis: Shuffle characterizes the interfer-
ence relationships between links. In the steady state,
links that have been concurrent in the past are sched-
uled concurrently, while those in conflict (across both
orders) are serialized. With link failures, the interfer-
ence relationships are appropriately revised. Over time,
this continuously learned knowledge base becomes an
interference map against which future transmissions may
be scheduled.

2. Packet Scheduling: From the learned interference rela-
tionships, an MIM-aware scheduler (running at the con-
troller) computes batches of concurrent links and their
relative transmission order.

3. Schedule Execution: After scheduling batches of con-
current packets, the controller notifies relevant APs when
transmissions should occur. APs maintain precise time
synchronization with the controller so that expected trans-
mission orderings may be accurately executed.
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Figure 4: Flow of Shuffle operations. Data packets arrive
from the network gateway and are enqueued at an AP. The
AP notifies the controller of the waiting outbound packet.
The controller inserts the corresponding AP-client pair
into a network-wide link queue, and eventually schedules
this link as part of a concurrent batch. The AP dequeues
and transmits the packet according to the controller’s pre-
scribed schedule, and subsequently notifies the controller
of all failures. The controller utilizes this feedback for loss
recovery and conflict diagnosis.

(1) Conflict Diagnosis
Scheduling algorithms require knowledge of link conflicts.
MIM increases the difficulty of inferring conflicts because it
introduces a dependency on transmission order. Shuffle over-
comes this difficulty by admitting some inaccuracy in the in-
terference map. The main idea is to speculate that some per-
mutations of links are concurrent, maintain their delivery ra-
tios over time, and use these delivery ratios to infer conflict re-
lationships. The learnt relationships can be used to speculate
better, and schedule future transmissions. In the steady state,
learning aids scheduling which in turn aids learning, thereby
sustaining a reasonably updated interference map. Of course,
failures happen when the interference map becomes inconsis-
tent with the time-varying network conditions. Shuffle copes
through retransmissions.

Speculating and Verifying Concurrency: While bootstrap-
ping, the central controller assumes (optimistically) that any
set of links formed by distinct APs may be scheduled con-
currently. Upon link failure, detected by per-client acknowl-
edgments, APs request the controller to reschedule the lost
packet. The controller revisits the unsuccessful schedule to
determine all the active APs in that schedule; it reduces the
delivery ratio of the failed link against each of these APs.
When no rescheduling request is received, the controller as-
sumes successful delivery, and appropriately updates the de-
livery ratio for each link, against all interfering APs. For ex-
ample, when link li, belonging to a schedule S, is successful,
the controller gains confidence that li is truly concurrent with
all other APs in S. More precisely, it gains confidence that li
can sustain earlier-arriving interferences from APs that started
before li, and later-arriving interference from APs that started
after li. The delivery ratios for each link-AP pair are main-
tained for both orders, and are updated appropriately. Fig-
ure 5 shows the data structures maintained at the controller.
When the delivery ratio between li and an interfering AP falls
below a threshold, the controller will either enforce schedules
where li starts first, or, (depending on the severity) will pro-
nounce li and the interfering AP to be in complete conflict.

Link-AP pairs in complete conflict are scheduled in separate
batches thereafter.

Link l AP1 AP2 AP3 AP4 AP5

Before-AP
After-AP

* ...

Estimated 
Delivery 

Ratio

X
X

i

Figure 5: Per-link data structure at controller. AP2 is the
transmitter for link li.

Reviving Concurrency. Link-AP pairs in complete conflict
may become concurrent in the future. Unless such concur-
rency is revived, the network may degenerate to a very con-
servative (serialized) schedule. To this end, Shuffle uses a
“forgetting” mechanism. Over time, the controller assumes
that conflicting link sets and orderings may have become con-
current and artificially improves recorded delivery ratios.
When delivery ratios rise above the threshold requirements,
previously conflicting link sets and orderings are attempted
anew.

Opportunistic Learning. To update the interference map more
frequently, Shuffle takes advantage of opportunistic overhear-
ing. For instance, a client C3 that overhears a packet from AP5
at time ti, can piggyback this information in an ACK packet
that it sends in the near future. The controller has a record
of which other APs were transmitting at ti. Assuming AP7
was, the controller can immediately deduce that link (AP5→
C3) can be concurrent with a transmission from AP7. The ex-
act order for this concurrency can also be derived since the
controller also remembers the relative transmission order be-
tween AP5 and AP7, from past time ti. Continuous overhear-
ing of packets and piggybacking in ACKs can considerably in-
crease the refresh rate of the interference map. Convergence
time can reduce, facilitating better scheduling.

(2) Packet Scheduling
Given the interference map of the network, the MIM-aware
scheduler selects an appropriate batch of packets from the
queue and prescribes their order of transmission. To maxi-
mize throughput, it should schedule the largest batch of pack-
ets that can be delivered concurrently without starving any
client. As noted earlier, optimal MIM-aware scheduling is NP-
hard and graph coloring approaches are not applicable be-
cause MIM conflicts are asymmetric in nature. Thus, new
algorithms are required for effective MIM-aware scheduling.
In this section, we consider packet scheduling with fixed rate.
In section 4.2, we discuss how the Shuffle controller incorpo-
rates active rate control into its scheduling decisions.

Feasibility of a Schedule. An MIM-aware concurrent link
schedule S consisting of ordered links l1 through ln may be
considered feasible if and only if for all li ∈ S, all AP(li) are
unique; all Client(li) are unique; li can sustain earlier-arriving
interference from all APs starting before li; and li can sus-
tain later-arriving interferences from from APs starting after
li. Given Q, a network-wide queue of all packets waiting for
download transmissions, one possible brute-force scheduling
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technique would be to generate all B ⊂ Q such that B is
feasible. Assuming a fixed data rate, the highest throughput
schedule would be the feasible subset of Q with maximum
cardinality. While this approach may be plausible with small
queue sizes, it is imperative that we develop more computa-
tionally efficient heuristics for wider applicability. To this end,
we present two sub-optimal but practical (greedy) heuristics.

Greedy Algorithm. A simple greedy algorithm would be to
consider the packets in the FIFO order for inclusion in the
batch. Initially, the batch B is set to empty. Then, each packet
is attempted in turn to check if it is feasible to add it to the
batch. Since the ordering of packets in the batch may af-
fect its feasibility, a packet may need to be tried at differ-
ent positions. Once a feasible ordering is found, the packet
is inserted in that position in the batch. While this greedy
scheme may not achieve optimal concurrency, it protects the
clients against starvation. In every round, the first packet in
the queue is guaranteed to get scheduled, and hence, every
conflicting packet will progress by at least one position in the
queue. As a result, it is guaranteed to get transmitted within
a bounded number of batches. A reasonable fairness is also
achieved through this simple scheme. The worst-case time
complexity of the basic greedy algorithm is O(n2), where n is
the number of packets in the queue. Pseudocode is presented
in Algorithm 1.

Algorithm 1 Greedy.
1: Let Q be the first L packets in the queue.
2: B := ∅
3: for all Packets p ∈ Q do
4: for j = 0 to |B| do
5: if noConflict(p, j, B) then
6: Add p to B in position j
7: Return B

Least-Conflict Greedy. A conflict-oriented greedy metric may
offer higher concurrency. The basic idea, with the pseudocode
given in Algorithm 2, is as follows. Each of the packets in the
queue can be checked to see the type of pair-wise conflict it
has with all other packets in the queue (line 3). Each packet
can be assigned a score based on such conflicts. For example,
while computing the conflict of packet Pi, it is compared with
every other packet Pj in the queue. If Pi and Pj are found to
be concurrent, irrespective of their temporal order, then Pi’s

conflict score remains unchanged. However, if Pi must begin
earlier than Pj , then the conflict score for Pi is incremented
by one (line 5). If Pi can begin later, then again, Pi’s conflict
score remains unchanged. The controller computes the con-
flict score for each packet, and sorts the packets in increasing
order of this score (line 6). Then, the controller performs the
basic greedy algorithm on this order of packets (line 7). The
intuition is that packets with fewer conflicts will be inserted
early in the batch, potentially accommodating more concur-
rent links. The time complexity of Least-Conflict Greedy is
also O(n2).

Without the hard scheduling guarantee of first packet inclu-
sion in every batch, clients may encounter unfairness, and
even starve. To cope with this, an aging factor can be intro-
duced along with the conflict scores (line 2). Packets that
experience prolonged queuing delay receive a proportional
score reduction. Over time, the packet is likely to have a low
score, and hence will be certainly scheduled by the controller.
This is likely to achieve better concurrency compared to the
simple greedy scheme at the expense of higher unfairness.

Algorithm 2 Least-Conflict Greedy(Q).
1: for all Packets p ∈ Q do
2: score[p] := −age(p)
3: for all Packets p, q ∈ Q do
4: if source(p) 6= source(q) ∧ dest(p) 6= dest(q) ∧

p.mustStartBefore(q) then
5: score[p] := score[p] + 1
6: Sort Q by increasing score
7: Return Greedy(Q)

Comparison with Optimal. Figure 6 compares the concur-
rency of proposed heuristics to that of the optimal with and
without MIM (derived from the integer program). Least-Conflict
Greedy scheduling achieves near-optimal concurrency and pro-
vides substantial improvement over the naive heuristic.

(3) Schedule Execution
The controller repeatedly runs the scheduling heuristic on
the queue of wireless-bound packets, and selects batches of
ordered packets. Packets are actually queued at the respec-
tive APs, while the controller is only aware of <AP, packet-
destination> link identifier tuples. For each link in the batch,
the controller notifies the corresponding AP of the precise
duration of stagger. By maintaining tight time synchroniza-
tion with the controller (discussed in Section 5), APs are able
to execute the staggered transmission schedule, illustrated in
Figure 7. In this example, transmissions are staggered in the
order AP1→C13 before AP3→C32 before AP2→C21. Back-
off durations and RTS/CTS handshakes are not necessary be-
cause the scheduler accounts for link conflicts based on the
interference map. Of course, transmission losses will still oc-
cur due to a variety of unpredictable reasons. Loss detection
and recovery are certainly necessary.

Loss Detection and Recovery. Shuffle requires client acknowl-
edgments for loss recovery and delivery ratio estimation. Shuf-
fle schedules periodic upload time windows (UTW), reserved
for ACKs and other client upload traffic. At the expiration of
a UTW, the AP can deduce reception failures for the packets
transmitted in the preceding download period. For each failed
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Figure 7: Packet batch with staggered transmission times.
AP1 starts first, followed by AP3, then AP2.

reception, APs place the packet on a high-priority retransmis-
sion queue, and send a negative acknowledgment (NACK) to
notify the controller of the loss. The controller adjusts the
corresponding delivery ratios and schedules a retransmission.
The AP retransmits the failed packet prior to any new packet
to the same client, reducing out-of-order packet delivery.

4.2 Design Details
Practical considerations arise while translating the Shuffle pro-
tocol into a functional system.

Rate Control. In the preceding discussion on packet schedul-
ing, we assume for simplicity that all network links operate
at a fixed rate. A link’s tolerance to an interference source
is dependent on its operating data rate and channel quality.
A practical approach must jointly consider link concurrency
decisions with rate control. In view of implementation com-
plexity, Shuffle adopts a simple strategy based on recent de-
livery ratios of a link at different data rates. The approach is
adapted from the popular SampleRate protocol [11], as fol-
lows.

Shuffle maintains independent rate control state for each link-
interferer pair. With knowledge of delivery ratios at each link,
the controller runs a rate control algorithm RateControl(l, i)
to select the best rate for link l in presence of interfering AP
i. Observe that this rate is the best known rate at which link
l and AP i have been successful in the recent past. Not all
rates may have been attempted recently, hence, this is only
a heuristic. In the presence of more APs in the concurrent
batch, the rate assigned to the link is conservatively chosen as
the minimum among the best known rates for each AP. Once a
batch of links have been formed, the controller sorts the rates
in increasing order. Lower rates imply weaker links, suggest-
ing that it is beneficial to start them earlier. Shuffle staggers
each of the links to match the sorted order of the rates. Where
two links share the same rate, they are staggered in order of
increasing delivery ratio (offering the weaker link a greater
chance of success). As time progresses, the controller gradu-
ally increases the rates of links that attain high delivery ratios.
When delivery ratios go down, the rates are reduced [11].

Upload Traffic. The controller must account for client-to-
AP transmissions in its schedules. For loss detection and up-
load traffic, the controller frequently reserves a network-wide
upload time window (UTW). During each UTW, clients con-
tend for channel access using CSMA (for simplicity). APs no-
tify their clients about the periodicity and duration of UTWs

through beacons. Thus, the controller may dynamically adapt
the UTW schedule once per beacon interval, in response to
changes in the relative bidirectional traffic load. Given that
UTWs may be scheduled frequently, each in the order of a
few packets, division of time into upload and download win-
dows is not expected to substantially impact latency. Since
Shuffle achieves time synchronization on the order of 20 µs
(Section 5), such division is practical.

Controller Placement. A number of placement options exist
for installing the controller into the network. The controller
may be collocated with the network gateway, allowing it to
create MIM-aware schedules as the packets pass through the
gateway. In reality, proprietary router software and adminis-
trative restrictions may impose practical constraints on collo-
cation. To circumvent this, we propose to run our controller
module on any one of the APs. Because of our lightweight
scheduling heuristics, we find relatively low CPU utilization
for the controller process (≈20%). When an AP receives a
packet destined for its client, it sends a notification to the con-
troller over the wired ethernet segment. The AP queues the
packet until it receives a reply from the controller containing
the corresponding transmission schedule.

5. SHUFFLE: IMPLEMENTATION

Testbed Platform
We evaluated our fully-functional Shuffle implementation on
a testbed consisting of laptops, running Linux kernel 2.6.27
and equipped with Atheros chipset D-Link DWA-643 Express-
Card interfaces, Soekris embedded PCs running Metrix Pyra-
mid Linux with Atheros 5213 chipset Mini PCI interfaces, and
a high performance Lenovo server. The laptops served as APs,
clients, and the controller. Soekris devices were used as ad-
ditional clients. The server functioned as a high-volume data
source, representing the network gateway.

Shuffle’s functional logic (including conflict diagnosis, MIM
scheduling, and loss recovery) are implemented through el-
ement extensions to the Click Modular Router. Our tests as-
sume the wireless link to be the bottleneck for all flows. Thus,
in the steady state, our gateway module injects CBR UDP traf-
fic (in 1500B datagrams) to each AP at a rate just exceeding
the maximum theoretical wireless bandwidth. This ensures
that APs are always backlogged with wireless-bound traffic.

To implement Shuffle and TDMA schedule execution, we cus-
tomized the MadWiFi 802.11 (madwifi-hal-testing, revision
3879) driver. By modifying the MadWiFi txcont configura-
tion command, a driver ioctl call, we can selectively disable
hardware carrier-sense, virtual carrier sense, backoff, and
DIFS/EIFS/SIFS intervals on the wireless interfaces. This al-
lows Shuffle to schedule its own stream of packets without
802.11-specific timing constraints. To allow precise trans-
mission timing, we provide a mechanism inside the MadWiFi
driver that transmits a packet on the basis of the 802.11 Tim-
ing Synchronization Function (TSF) clock. For synchroniza-
tion between APs and controllers, we modified the Sky2
(v1.22) ethernet driver to include the 802.11 TSF timestamp
in ethernet packets. With extensive optimization, we have
been able to achieve synchronization in the order of 20 µs.
We report the relevant details next.
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Figure 8: AP-to-controller clock synchronization error and
transmission deviance from assigned schedule, relative to
local clock. AP and controller were separated by approx-
imately 20 m of CAT-5 cable, 1 switch, and 1 hub. Mea-
surements in µs. Margin of error ≤ 5 µs, attributable to
802.11 TSF inaccuracy.

Time Synchronization and Stagger
To enforce transmission staggers on the order of preamble
durations (tens of µs), we need equally precise time synchro-
nization between AP and controller. The 802.11 TSF clock is
used for synchronizing all stations in a BSS. To synchronize
APs with the Shuffle controller, we insert 802.11 TSF time-
stamps into ethernet packets by modifying the Sky2 ethernet
driver. These time-stamped control packets are exchanged
bidirectionally between the controller and APs. When a con-
troller receives a TSF timestamped packet from the AP, it
computes the offset between the timestamp and its local TSF
clock. This offset includes wire propagation delays, ethernet
switching latencies, processing time, and the clock difference
between the controller and the AP. The same offset is also
computed at the AP, and exchanged between the two par-
ties. The AP averages the two offsets and deduces an esti-
mate of the actual instantaneous difference between the con-
troller’s clock and its own TSF. Propagation delays and pro-
cessing latencies in the ethernet driver are reasonably sym-
metric, hence, the clock difference estimation can be accurate
on the order of microseconds. The clock difference is cached
and exposed to Click through a sysctl interface.

Figure 8 presents the empirical CDF of the AP/controller syn-
chronization error achieved by our implementation. We es-
timate this error by spatially collocating the AP and the con-
troller, which then get synchronized by the same TSF clock
on their wireless interfaces. The TSF clock now acts as the
reference clock, allowing us to quantify our synchronization
precision over the AP/controller wired connection. We con-
sistently achieved a median error of 20 µs. Since the Atheros
TSF implementation is accurate to ± 5 µs (verified in a sepa-
rate experiment by comparing packet reception times at mul-
tiple receivers from a single transmitter), we believe that our
total margin of error is within 25 µs.

Upon receiving a packet from the controller, APs busy-wait on
their TSF clocks to transmit the packet at the scheduled in-
stant. We measure the inconsistency between the scheduled
time of transmission, ts, and the actual time it was transmit-
ted, ta. This measurement was performed by assigning an
AP to transmit packets with a precise spacing of 20 ms. At
a collocated receiver, we measure error as 20 ms minus the
observed inter-packet arrival times. The dashed line in Figure
8 plots the CDF of this deviation. Mean timing error is 4 µs.

Coordination and Dispatching
For every wireless-bound packet, the AP places the packet on
a per-client queue and sends a notification packet to the con-
troller. Once MIM-scheduling selects the packets to schedule,
the controller broadcasts the schedule in the form of <AP,
client, start time> tuples. Observe that the controller does
not specify which exact packets must be transmitted – it only
specifies the links that must be activated. Upon receiving a
schedule, the AP dequeues a packet to the specified client and
passes it to MadWiFi, along with the exact local TSF clock
at which transmission must start. The MadWiFi driver busy
waits on the TSF clock, and hence, can transmit the packet at
the precise time. Transmissions continue until the controller
schedules an upload window, at which point the clients re-
spond with batch acknowledgments. The batch ACK contains
a bit vector that marks the failed transmissions in the pre-
ceding upload window. The AP places the failed packets on
a highest-priority retransmission queue, and informs the con-
troller. The highest-priority queue ensures that the AP will not
transmit any new packet to the same client before all retrans-
missions have been satisfied. In the subsequent download
window, the controller accounts for the failed packets, and
generates new ordered schedules. The process continues.

6. EVALUATION
Our testbed evaluation aims to demonstrate the feasibility of
Shuffle on commodity hardware, and to characterize the per-
formance improvements with MIM-aware scheduling. Com-
parison with IEEE 802.11 MAC confirms gains from central-
ized scheduling. To highlight the gains attributable to order-
awareness, independent of centralized scheduling, our eval-
uation focuses on comparison with a capture-aware TDMA
(running on MIM hardware, but without imposed ordering).
We begin our analysis with results using a fixed data rate,
showing how correct ordering improves the delivery proba-
bility on weaker links. Next, we compare Shuffle and TDMA
operating with full 802.11g rate control. We summarize our
main findings below.

• We begin with 4 simple 2-AP topologies. Shuffle out-
performs 802.11 by 40% and TDMA by 20% (Fig. 9).
Shuffle’s Jain Fairness Index is close to 1, while 802.11
and TDMA are around 0.95 and 0.93, respectively.

• Incorrect order of transmissions considerably degrades
performance. In 2-AP topologies, the difference between
the correct and wrong order is almost 30% (Fig. 9).

• The importance of order is more pronounced in 3 AP
topologies (Fig. 10 and 11). More concurrency oppor-
tunities offer higher gains with Shuffle – up to 100%
over 802.11, and 20% over TDMA. Fairness improves
too. Results from 10-link topologies also attain around
70% gain over 802.11, and 20% over TDMA (Fig. 12).
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Figure 9: Concurrency gains with only two links.

• Fully-functional Shuffle including 802.11g rate control
show 29% gains over TDMA in a favorable topology
(Fig. 13) and yields 17% when different client positions
are systematically tested (Fig. 14, 15).

Throughput with 2 Access Points
To understand the primitives of MIM-aware scheduling, we
begin with topologies of 2 APs, each associated with a single
client. We characterized the interference relationships, as co-
ordinated by the Shuffle controller, finding the proper stagger
order for maximal concurrency. To understand the ramifica-
tions of incorrect ordering, we forced the controller to sched-
ule transmissions in correct and incorrect orders. For fair-
ness towards 802.11, we disabled RTS/CTS protection and
ensured that the topologies under test did not include hidden
terminals. Figure 9 presents our results.

Evident from the graphs, MIM-aware transmission reordering
consistently yields higher throughput than both 802.11 and
order-unaware TDMA scheduling. When ordered correctly,
strong links allow weaker links to start first, and then extract
their own signal of interest from the channel (recall the notion
of re-locking). In the absence of explicit ordering in TDMA,
concurrent packets may naturally achieve “good” and “bad”
link orderings due to clock synchronization error. For some
packets, the “right” AP will transmit first, and for others, it
will start too late and fail. Thus, for any pair of links, we
expect a TDMA schedule to result in the correct order (and
thereby gain) approximately half of the time. Our results
support this intuition. Fairness, computed as Jain’s Fairness
Index, also improves. We discuss this more later.

Throughput with 3 Access Points
The notion of ordering becomes more complex with 3 clients,
each associated with a distinct AP. Figures 10 and 11 show
the throughput and fairness comparisons. Since more concur-
rent links are feasible, Shuffle outperforms 802.11 and TDMA
by larger margins. However, of greater interest is the sen-
sitivity of performance to the different transmission orders.
The variation in throughput between different orders is evi-
dently large, indicating that gains from MIM reordering may
not be extracted blindly. Use of the incorrect order lowers
throughput below that of a TDMA schedule. Interestingly,
even suboptimal orderings provide gains over 802.11. This is
an attribute of overly conservative carrier sense mechanisms

in 802.11, leading to exposed terminal problems [12]. Shuf-
fle overcomes these problems through centralized scheduling
and overlapping transmissions.

Fairness
Centralized MIM-aware scheduling does not degrade fairness
among clients (recall that our scheduling algorithms account
for fairness and starvation). Shuffle improves fairness over
802.11 and TDMA. In Figure 11, we characterize these gains
using Jain’s Fairness Index. The 802.11 backoff mechanism
preferentially treats links which experience fewer losses. Thus,
802.11 exacerbates the already disproportionate bandwidth
allocation to stronger links. The Shuffle controller attempts to
ensure that sufficient transmission opportunities are extended
to all links, reducing this effect.

Performance on Larger Topologies
We tested Shuffle on larger topologies with 3 APs each con-
nected to up to 4 clients. One of the link topologies with
10 links is illustrated in Figure 12(a). For this experiment,
equal traffic is generated for each client. Based on their in-
terference relationships, not all scheduled batches can consist
of 3 concurrent links. As a result, Shuffle sometimes sched-
ules batches of 2 concurrent links (especially in view of fair-
ness). Figure 12(b) compares the throughput between Shuf-
fle, TDMA, and 802.11. Performance improvements in this,
and other topologies are reasonable and consistent. Fairness
among the links proves to be high, as illustrated in Figure 12.

Throughput by Stagger Order of Links A, B, C

  0.5

  1

  1.5

  2

A−B−C A−C−B B−A−C B−C−A TDMA C−A−B 802.11

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Link Initiation Order (ordered by throughput)
  0

Figure 10: Multiple Shuffle orders provide higher
throughput than TDMA and 802.11.

Fairness by Stagger Order of Links A, B, C

  0.2

  0.4

  0.6

  0.8

  1

A−B−C A−C−B B−A−C B−C−A TDMA C−A−B 802.11

Ja
in

’s
 F

ai
rn

es
s 

In
de

x

Link Initiation Order (ordered by throughput)
  0

Figure 11: Shuffle scheduling improves fairness.
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(b) Throughput and fairness on entire Shuffle testbed.

Complete Shuffle with Rate Control
We evaluate the benefits of MIM-aware ordering with rate
control enabled. Our rate control mechanism is similar in
principle to SampleRate and utilizes all 802.11g rates. Rate
control and MIM-aware ordering decisions are made holisti-
cally by the controller, as part of the scheduling heuristic.

With aggressive rate control mechanisms, channel fluctua-
tions can cause dramatic changes in throughput between tests
as the ideal rate changes with time. To ensure that Shuffle
gains relative to TDMA are attributable to ordering and not
testing artifacts, we measure throughput for Shuffle
and TDMA simultaneously. Our controller alternates between
scheduling batches of concurrent packets with and without
ordering to effectively time-share the channel. In this way,
our comparison is unbiased if channel behavior is coherent for
longer than a single packet duration. By maintaining separate
interference maps and rate control state for both Shuffle and
TDMA, Shuffle’s order-aware conflict learning is not impacted
by failures due to TDMA naiveté. To compare throughput, the
controller records the number of packets scheduled, the num-
ber of failed transmissions, and the amount of time scheduled
on the channel, independently for Shuffle and TDMA. Given
that Shuffle and TDMA run identical algorithms for central-
ized scheduling and rate control, with the one exception of

imposed ordering through stagger, we believe this to be a
highly fair comparison. Since 802.11 is not compatible with
centralized scheduling, and thus with this testing methodol-
ogy, results for 802.11 are not reported in this section.
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Figure 13: Throughput for Shuffle versus TDMA using
802.11g with 6-54 Mbps rate control enabled.

In Figure 13, we present results from one topology consisting
of two mutually-interfering links, similar to that presented in
Figure 1. One link strong and relatively unaffected by the
interferer. The other link is far more susceptible. With Shuf-
fle, the weaker link successfully maintains a higher data rate
than it can under TDMA. We plot a CDF of our results over 50
trials (the system starting from a ground state for each trial)
to show that the Shuffle conflict interference mechanism can
reliably deduce the proper ordering. Mean gain is 29%.

Although the potential for gains with MIM ordering is topol-
ogy dependent, it is not highly sensitive. As depicted in Figure
14, we deployed a two AP topology. One AP was positioned
to serve a classroom and another just outside, a strong in-
terference source. We collocated a receiver with the outside
AP, creating a strong link. By systematically moving the other
client between each of the 54 seating positions, we create a
diverse set of channel conditions. Figure 15 presents a CDF
of our results. Mean throughput is 31.6 and 27.0 Mbps for
Shuffle and TDMA, respectively (a Shuffle gain of 17.1%).

SoI

Interferer

AP

AP

Figure 14: A classroom environment with 54 seats. Leav-
ing the AP and one client fixed, we tested with a client
placed on the desk in front of each chair.



0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Aggregate Throughput (Mbps)

Em
pi

ric
al

 C
D

F

CDF, Classroom Throughput

Shuffle
TDMA

Figure 15: CDF of throughput for classroom test.

Simulation
We performed QualNet simulations to evaluate performance
in larger topologies – we report them briefly in the interest
of space. We recorded actual AP placements across multi-
ple buildings, and used them for simulation. Each AP was
associated with 6 clients approximately placed in the rooms
of the building. Figure 16(a) shows 4 topologies – Shuffle
consistently outperforms NoMIM (i.e., TDMA) under all fad-
ing models. Figure 16(b) shows the results of synthetically
increasing the AP density. The performance difference is con-
sistent.
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Figure 16: (a) Throughput for real-life AP placements. (b)
Higher AP density increases concurrency.

7. LIMITATIONS AND DISCUSSION
We discuss some limitations with Shuffle, and identify av-
enues of further work.

External Network Interference. We assume that all WiFi
devices are associated to the same enterprise network. Put
differently, no other WiFi transmission occurs that is not ac-
counted for by the central controller. In reality, electronic de-
vices such as microwaves may interfere in the 2.4 GHz band.
Wireless devices from “neighboring” networks may interfere
at the periphery of a Shuffle deployment. Shuffle’s loss re-
covery mechanism will be able to cope with sporadic interfer-
ence. However, if the losses are frequent, carrier sensing may
need to be selectively enabled for the peripheral APs, limiting
the controller’s ability to schedule for those clients.
Latency. Shuffle introduces some end-to-end delivery latency.
When a packet is received at an AP, it cannot be forwarded to
the intended client until the AP notifies the controller and re-
ceives a scheduled slot for the packet. Assuming no queuing
at the AP or client, the added latency is only due to propaga-
tion, switching, and processing of two control messages. As a
design alternative, this latency may be eliminated if the con-
troller is collocated with the network gateway, so that sched-
ules may be forwarded to APs in tandem with the outbound
packet. While this provides no improvement for retransmis-
sions, recall that retransmissions assume higher priority than
new packets to the same client. This may make the retrans-
mission delay tolerable.

Client Mobility. As a client moves, interference relationships
may change dramatically. While Shuffle’s concurrent link se-
lection, rate control, and transmission ordering mechanism
do adapt to changes in channel conditions, we have not yet
characterized convergence time for continuous-mobility sce-
narios.

Transport Layer Interactions. We have not yet character-
ized TCP interaction behavior. A potential point of concern is
division of time into upload and download periods, possibly
impacting TCP round-trip time estimation and ACK timeouts.
However, we believe that upload periods may be scheduled
frequently enough (every few download packets) to limit this
effect.

Compatibility. Shuffle is not immediately compatible with
existing deployments. Clients must be protocol compliant
so as to remain silent during download periods and provide
ACKs during upload windows.

Small-scale Testbed. We tested our Shuffle implementation
on topologies consisting of up to three concurrent links. Larger
topologies is a part of our future work.

8. RELATED WORK
Capture and MIM. Theoretical models have been proposed
to explain physical layer capture [13]. The first empirical evi-
dence of capture was presented in [1]. The recent study in [3]
quantifies SINR threshold requirements for 802.11a networks
under different packet arrival timings. Capture awareness has
been used for collision resolution in [14]. BER models for
capture were proposed in [15].

Spatial Reuse. Schemes like [16, 17] make use of power
control and carrier sense tuning to achieve improved spatial
reuse. Prior work has considered RTS/CTS variants to sched-
ule non-conflicting links [18]. However, most existing deploy-
ments do not use RTS and CTS [12], even with RTS/CTS do



not exploit concurrency well. In CMAP [12], the authors pro-
pose a distributed scheme which makes use of partial packet
decoding to determine if a concurrent transmission is possi-
ble. This distributed approach makes use of the delivery ra-
tios of concurrent transmissions to determine whether they
can be successful. CMAP can benefit from MIM-capable hard-
ware, but is not MIM-aware. In contrast, our work explicitly
orders transmissions to take advantage of MIM. In [19], the
authors propose MIM-aware transmission reordering.

Enterprise Wireless LANs and Scheduling. Enterprise wire-
less LAN architecture is increasingly becoming popular to im-
prove throughput, monitoring and management. SMARTA [9]
utilizes a centralized server to build a conflict graph and fine
tune the AP’s transmit power and channel selection mecha-
nisms. Several scheduling mechanisms for single and multi-
hop radio networks like [4] were proposed and in the context
of EWLANs. Our controller-AP interaction is similar to the one
proposed in a recent work [20]. The speculative scheduling
solution in [6] proposed a conflict graph based centralized
scheduling mechanism to improve spatial reuse.

Characterizing and Measuring Interference. In [21,22] the
authors analyze the effects of combined interference. A capture-
aware linear order algorithm for estimating link state inter-
ference in multihop wireless networks was presented in [23].
In [24] the authors show how signal strength conditions vary
transiently in real networks and they quantify the affects of
received signal strength on delivery probability. In this work
we use a decision making scheme based on concurrent deliv-
ery ratios similar to [12].

9. CONCLUSION
Message in Message (MIM) in modern wireless cards allows a
receiver to disengage from an ongoing reception, and engage
onto a new stronger signal. The rewards from this physical
layer capability cannot be fully realized unless link layer pro-
tocols are explicitly designed with MIM-awareness. Specifi-
cally, links that conventionally conflict with each other may
be made concurrent if they are initiated in a specific order.
This paper presents Shuffle, a system that reorders transmis-
sions to improve spatial reuse. Theoretical analysis shows
that the optimal improvements with MIM can be significant. A
functional testbed validates that MIM-awareness is practical,
while results of experimental evaluation confirm consistent
performance improvements.
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