Efficient Selective Frame Discard Algorithms for Stored Video
Delivery across Resource Constrained Networks

Zhi-Li Zhang!, Srihari Nelakuditi, Rahul Aggarwalt, and Rose P. Tsang!

t Dept. of Computer Science & Engineering

University of Minnesota
Minneapolis, MN55455

{zhzhang,srihari,raggarwa} @cs.umn.edu

Abstract—Video delivery from a server to a client across a network is an
important component of many multimedia applications. While delivering
a video stream across a resource constrained network, loss of frames may
be unavoidable. Under such circumstances, it is desirable to find a servcr
transmission schedule that can efficiently utilize the network resources
while maximizing the perceived quality-of-service (QoS) at the client. To
address this issue, in this paper we introduce the notion of selective frame
discard at the server and formulate the optimal selective frame discard prob-
lem using a QoS-based cost function. Given network bandwidth and client
buffer constraints, we develop an O(N log N) algorithm to find the mini-
mum number of frames that must be discarded in order to meet these con-
straints. The correctness of the algorithm is also formally established. Since
the computational complexity of the optimal algorithm for solving the op-
timal selective frame discard problem is prohibitively high in general, we
also develop several efficient heuristic algorithms for selective frame dis-
card. These algorithms are evaluated using JPEG video traces.

I. INTRODUCTION

The playback of stored video over a network is required by
several applications such as digital libraries, distance learning
and collaboration, video and image servers and interactive vir-
tual environments. Stored video typically has high bandwidth
requirements and exhibits significant rate variability [4], [7].
This is particularly the case when variable bit rate encoding
schemes are used. In a network where resources such as the net-
work bandwidth and buffering capacity are constrained, it is a
major challenge to design an efficient stored video delivery sys-
tem that can achieve high resource utilization while maximizing
users’ perceived quality-of-service (QoS).

Video smoothing techniques (see, e.g. [13], [3], [8], [15])
have been proposed for reducing the network bandwidth re-
quirement of bursty video streams by taking advantage of client
buffering capabilities. Similar techniques have also been de-
veloped when network bandwidth is constrained instead of the
client buffer [2], [10], [12]. In reality, however, both network
bandwidth and client buffering capacity are likely to be limited.
Under such circumstances, there may not be a feasible server
transmission schedule that can deliver video streams to clients
without incurring loss of data. Instead of being denied service,
clients may choose to receive lower quality video streams with
occasional frame losses. This may arise, for example, in the
case of constant-bit-rate (CBR) service, where for a client with
a limited buffer, the network may not have sufficient bandwidth
to support the peak rate of a smoothed video stream, or in the
case of renegotiated CBR (RCBR) service [5], where bandwidth

This work was supported in part by a University of Minnesota Graduate
Schoo! Grant-in-Aid grant, NSF CAREER Award grant NCR-9734428, and by
US Department of Energy grant DE-AC04-94-AL85000. Any opinions, find-
ings, and conclusions or recommendations expressed in this paper are those of
the authors and do not necessarily reflect the views of the funding agencies.

0-7803-5417-6/99/$10.00 ©1999 IEEE.

$ Sandia National Laboratories
PO Box 969, Mail Stop 9011
Livermore, California 94550
rtsang @ca.sandia.gov

renegotiation fails in the middle of a video transmission.

When delivering a video stream across a resource-constrained
network, a naive approach at the server may attempt to transmit
each frame with no awareness of the resource constraints. As
a result the network may drop packets causing frame losses.
In addition, the client may be forced to drop frames that ar-
rive too late for playback. This results in wastage of network
bandwidth and client buffer resources. In this paper, we in-
troduce the concept of selective frame discard' (SFD) at the
server which preemptively discards frames in an intelligent man-
ner by taking network constraints and client QoS requirements
into consideration. The proposed server selective frame discard
has two advantages. First, by taking the network bandwidth and
client buffer constraints into account, the server can make the
best use of network resources by selectively discarding frames
in order to minimize the likelihood of future frames being dis-
carded, thereby increasing the overall quality of the video de-
livered. Second, unlike frame dropping at the network or the
client, the server can also take advantage of application-specific
information such as information content of a frame and inter-
dependencies, in its decision in discarding frames. As a result,
the server optimizes the perceived quality of service at the client
while maintaining efficient utilization of the network resources.

In this paper we develop various selective frame discard al-
gorithms for stored video delivery across a network where both
the network bandwidth and the client buffer capacity are limited.
We begin by formulating the problem of optimal selective frame
discard using the notion of a cost function. The cost incorpo-
rates the QoS metrics of clients. Given network bandwidth and
client buffer constraints, we develop an O(N log V) algorithm
to find the minimum number of frames that must be discarded
in order to meet these constraints. The correctness of the algo-
rithm is also formally established. For a given cost function,
an optimal algorithm for solving the optimal selective frame
discard problem can be designed using dynamic programming.
Since the computational complexity of this optimal algorithm is
prohibitively high in general, we also develop several efficient
heuristic algorithms which take both resource constraints and
cost into consideration. These algorithms are evaluated using
JPEG video traces. Through the performance evaluation, we
find that the proposed minimum cost maximum gain heuristic
algorithm yields near-optimal performance for JPEG encoded

!In this paper we assume that frames are basic application-level data units for
server selective discard. This assumption is not necessary. The algorithms devel-
oped in the paper do not hinge on this assumption. In practice, other (preferably)
application-level data units such as slices, blocks or macro blocks in JPEG and
MPEG can also be used as the basis for server selective discard.

472

Disk System

=

SERVER CLIENT

Server
Network

Processing

Client Buffer

Continuous Playback at Client
Selective Frame Discard

Fig. 1. Overview of the problem setting

video.

Packet discarding schemes which take advantage of
- application-specific information have been used in many differ-
ent contexts (see, e.g., [9], [11], [6]). Our problem setting, how-
ever, is considerably different from these existing studies. In de-
signing efficient server selective frame discard algorithms, we
leverage application-specific information to optimize the client
QoS while at the same time taking both network bandwidth and
client buffer constraints into account.

The rest of this paper is organized as follows. Section II de-
scribes the problem setting and formulates the optimal selec-
tive frame discard problem. The minimum frame discard algo-
rithm is described and its correctness is proved in Section IIL
Section IV introduces several efficient selective frame discard
heuristics and presents performance evaluation based on JPEG
traces. We conclude with Section V.

II. PROBLEM FORMULATION

In this section we provide an overview of the stored video de-
livery system and motivate the notion of selective frame discard
at the server for a resource constrained network. The idea of
a cost function is introduced to incorporate QoS metrics and is
used to formulate the selective frame discard problem.

Figure 1 depicts a server transmitting a stored video stream
to a client across a network. The video data is retrieved from
the disk subsystem into the server memory and moved onto the
network as per some server transmission schedule. The client
has a buffer which can be used for the work ahead of video data
by the server. The client plays back the video frames periodi-
cally as determined by the frame rate. Each video frame has a
playback deadline associated with it. Since the frames are being
played back at a periodic rate, the frame has to be available at
the client when the decoding process attempts to display it. If
the frame is not available, the playback is paused, resulting in a
playback discontinuity.

In a resource constrained system, there may not be sufficient
resources to ensure the continuous playback of the video at the
client. We consider two specific resource constraints: rate con-
straint and client buffer constraint. While the rate constraint
regulates the amount of data that can be transmitted in one time
unit, the client buffer constraint limits the amount of work ahead
by the server into the client buffer. In the presence of both rate
and buffer constraints, a feasible server transmission schedule
which satisfies both constraints simultaneously may not exist.
Hence in these circumstances, frame dropping is unavoidable.

TABLE 1
NOTATION
N : length of video in frames.
fi : size of it* frame.
B . client buffer capacity for storing unplayed frames.
(& : network bandwidth.
N 1 setof all frames, ie, {1,...,N}
S : asubset of frames, ie.,, S C N.
A(S) a transmission schedule w.r.t. set S
Ai(S) cumulative data sent by the server over [1, i)
ai(S) amount of data sent by the server in slot ¢
D(S) underflow curve w.r.t set S
D;(S) cumulative data consumed by the client over [1,]
U(S) overflow curve w.r.t set S
U;(S) maximum cumulative data that can be received
by the client over [1, i}
B;(S) buffer occupancy at the end of time slot 3.
A(S) greedy transmission schedule w.r.t set S
Ai(S) cumulative data sent by the server over [1, 7]
according to the greedy schedule
ai(S) amount of data transmitted in slot { under A(S).

A naive approach at the server may attempt to transmit each
frame with no cognizance of the resource constraints. This may
cause packet loss and delay in the network or buffer overflow at
the client. As a result the client may receive incomplete frames
which cannot be played back. Also the client may be forced to
drop a frame if it arrives late. The system resources consumed
by these dropped frames are effectively wasted.

Selective frame discard aims at optimizing the utilization of
the network resources by preemptively discarding frames at the
server. A frame is transmitted only if it can meet its playback
deadline. Otherwise the frame is discarded thereby increasing
the likelihood of other frames meeting their playback deadlines.
By effectively utilizing the resources, selective frame discard
improves the playback continuity.

In formulating the selective frame discard problem, we con-
sider a discrete-time model at the frame level. Each time slot
represents the unit of time for playing back a video frame. For
simplicity of exposition, we assume zero startup delay, i.e., the
time the server starts video transmission and the time the client
starts playback is the same. We also ignore the network delay.
Table I summarizes the notation we introduce in this section.

Consider a video stream with N frames. Fori € N =
{1,...,N}, the size of i*" frame is denoted by f;. Let
C denote the bandwidth of the network (i.e., server trans-
mission rate is limited by C' per unit of time), and B is
the client buffer size. For S C N, 1yes} is the indica-
tor function: 1lyjesy = 1if j € Sand 0if j ¢ S.
Let D(S) = {Do(S),D1(S),...,Dn(S)} where D;(S) =
Z;=0 fj l{jES}v and let U(S) = {Uo(S), Ul(S), o ey UN(S)}
where U;(S) = D;(S) + B. We refer to D(S) as the (client)
buffer underflow curve with respect to S, and U(S) as the
(client) buffer overflow curve with respect to S. A server trans-
mission schedule A(S) associated with S is a schedule which
only transmits frames included in S, namely, frame ¢ is trans-
mitted under A(S) if and only if i € S. Let a;(.S) be the amount
of video data transmitted during time slot ¢,¢ = 1,...,N. In
accordance with the notation for D(S) and U(S), the sched-
ule A(S) is denoted by A(S) = {40(S), 41(S),...,An(S)}

473

where Ao(S) = 0 and A;(S) = 3°_;a;(S). Examples of
D(S), U(S) and A(S) are shown in Figure 2.

A server transmission schedule A(S) is said to be feasible
with respect to S if and only if fori = 0,1,..., N, 1) rate con-
straint is not violated, i.e., a;(S) < C, 2) buffer constraint is
not violated, i.e., A;(S) < U;(S); and 3) playback constraints
are not violated, i.e, D;(S) < A;(S). In other words a trans-
mission schedule is feasible if it lies within the buffer underflow
curve D(S) and the buffer overflow curve U(S), having slope
no more than C (see Figure 2 for an illustration). A set S C N
is said to be feasible if and only if there exists a feasible trans-
mission schedule A(S) with respect to S. For a given pair of
rate and buffer constraints (C, B), we denote the collection of
all feasible sets by SFD(C, B).

Given a schedule A(S), the buffer occupancy at the end of
time slot ¢ (namely, immediately after frame ¢ has been retrieved
from the client buffer if ¢ € S) is denoted by B;(S). B;(S)
satisfies the following recurrence relation:

Bi(S) = max{min{B;_i(S) + ai(5), B} - filjiesy,0}

where By (S) = 0.

If B;_1(S) +ai(S) > B, the buffer overflow occurs at time 3.
If B;—1(S) + a;(S) < fi, then buffer underflow occurs at time
t. Clearly for a feasible schedule, B;(S) = B;.1(S) + a;(S) —
filgiesy.

Associated with each S, we define a special schedule A(S),
referred to as the greedy transmission schedule with respect to
S. Under A(S), the amount of data transmitted in time slot ,
i =1,...,N, is given by a,(S) = min{B — B;_1(S),C),
where By (S) = 0 and B;(S) = B;-1(S) + ai(S) - filges)-
Hence A(S) = {4¢(S), 4i(S),..., AN(S)}, where 4;(S) =
Z;=0 @;(S). Itis clear that A(S) transmits at the rate C when-
ever possible without overflowing the buffer (see Figure 2 for
an example). In other words, it attempts to keep the buffer as
full as possible. By definition A(S) always lies below the buffer
overflow curve U(S). Hence A(S) is feasible if it stays above
the underflow curve D(S), i.e.,if A; > Di(S),i=0,1,...,N.
The greedy schedule A(S) has the following property, the proof
of which is straightforward.

Proposition 1: For any S C N, if A(S) is a schedule con-

forming to the rate constraint, then A4;(S) < A;(S), i =
0,1,...,N.
Since A(S) bounds the amount of data that can be transmit-
ted from the above, any feasible transmission schedule has to
stay below A(S). Hence if A(S) is not feasible, then any other
schedule A(S) is not feasible. As aresult, forany S C N, S is
a feasible set if and only if A(S) is feasible with respect 1o S.

For a given pair of rate and buffer constraints (C, B), there
are in general more than one feasible set. For example, trivially
S = 0 is always a feasible set. Obviously the perceived quality
of the playback at the client would depend on the frames trans-
mitted by the server. It is likely that the greater the number of
frames dropped, the lesser the perceived video quality. In ad-
dition, consecutive losses of frames or a cluster of lost frames
in near proximity would have a more pronounced impact on the
perceived video quality than dispersed losses of frames. In order
to reflect the perceived video quality at the client, we introduce

474

u(s)

DS, .

infeasible schedule
N feasible schedule
D(S)

butter full
¢ frame drop

buffer underflow

(a) Infeasible schedule (b) Feasible schedule

Fig. 2. Relation of D(S), U(S) and a server transmission schedule A(S).

the notion of a cost function, $(S), to quantify the “desirability”
of different feasible sets. The cost of a feasible set ¢(S) is the
cost associated with the frames that are not part of the set, i.e.,
the discarded frames. For an appropriately defined cost func-
tion, ¢(.S) should reflect the perceived quality of playing back
the set S. Thus minimizing the cost is equivalent to optimizing
the QoS at the client.

For a given cost function ¢, the optimal selective frame dis-
card problem therefore is to find a feasible set S* which mini-
mizes the associated cost ¢(S*), formally
Find a set S* such that S* € SFD(C,B) and ¢(S*) =
min{¢(S) : S € SFD(C, B)}.

S* is referred to as an optimal feasible set with respect to ¢.

For a given cost function ¢, a general optimal algorithm to de-
termine S* can be designed using dynamic programming. The
optimal algorithm proceeds in stages, where stage 7 corresponds
to the ¢th frame, ¢ = 1,2,..., N. In each stage, a set of appro-
priate states is maintained. A transition from a state in stage i —1
to another state in stage i represents whether frame ¢ is included
or discarded at stage ¢ while no constraints are violated. The in-
curred cost of the transition is computed accordingly using the
cost function. The optimal selective frame discard problem can
thus be reduced to a shortest path problem and solved using dy-
namic programming. The computational complexity of the al-
gorithm is O(N BW), where W is the largest size of the states
in each stage, which in the worst can be as large as 2. Due
to the space limitation, we leave the detailed description of this
dynamic programming based optimal alogrithm to the extended
version of this paper [16].

III. UPPER BOUND ON THE SIZE OF FEASIBLE SETS

In this section, we consider the following fundamental ques-
tion: What is the minimum number of frames to be discarded
so that the remaining frames that are transmitted by the server
can meet their respective playback deadlines under the known
network bandwidth (rate) and client buffer constraints? The
solution to this question is not only of interest in its own right,
but, as we will see, also sheds light on the design of efficient
selective frame discard algorithms in Section IV. We present
an algorithm for solving this problem and establish its correct-
ness. This algorithm is referred to as minimum frame discard
algorithm, in short MINFD.

Consider a video stream encoded using an intra-frame encod-

PROCEDURE MINED(C, B)
Initialization (i = 0): S¥ =0, B; = 0,40 = 0.

1

2

3 For i = 1 to N

4, a; =C

5. 1f B;_1 + C > B, i.e.,is buffer full?

6 di=B—B,-..1andig=i

7 Else

8 If Bi—l +C< fi, i.e.,

0. is deadline of frame i violated?

10. For j = ig+1 to i

11. Compute the gain A

12. Choose frame k with largest gain max A;
13. Discard frame k and include frame 4, i.e.,
14. S# = (S* U {(i}) \ {k}

15. Update buffer occupancy at B;, i.e.,

16. B;:=B;_1 +C +maxA; - f;

17. Update ¢ if necessary

18. Else

19. S#* .= S* U {i}

20. Output S#
21. END PROCEDURE

Fig. 3. The minimum frame discard (MINFD) algorithm.

ing scheme such as JPEG. Hence there is no inter-frame depen-
dency among the frames. Following the notation introduced
in Section 11, f; denotes the size of the i** frame of the video
stream. Let C denote the available network bandwidth (i.e. the
rate constraint) and B, the size of the client buffer.

The following observations play a key role in the development
of the MINFD algorithm.

1. As long as the buffer constraint is not violated, always try to
send as much data as possible (i.e., send at rate C)

2. Whenever the buffer is full, delay transmission until the
buffer is no longer completely filled and then resume transmis-
sion at rate C. Note that it is never necessary to discard frames
because of buffer overflow.

3. Whenever a playback deadline cannot be met, either the cur-
rent frame or an earlier frame must be discarded. This is because
the total size of the currently included frames is more than that
can be transmitted using the available bandwidth subject to the
buffer constraint. In deciding the frames to be discarded, we
should choose those that would optimize the likelihood of the
deadlines of future frames being met.

The first two observations state that we should follow the greedy
schedule in transmitting the video data. Based on the third ob-
servation, we devise a strategy which discards the frame that
maximizes the buffer occupancy at the time when a playback
deadline is violated. In Theorem 3, we show that this strategy is
optimal in the sense that it minimizes the total number of frames
discarded.

The MINFD algorithm is presented in pseudo-code in Fig-
ure 3. It proceeds in stages, ¢ = 0,1,..., N, and constructs a
feasible set S# iteratively.

At stage 0 (line 2 in the algorithm), we start with S# = 0. At
this point, the buffer occupancy By = 0. The variable 7g is used
to keep record of the most recent buffer full point if any, and is
initialized to 0.

At any stage i (lines 3-17), ¢ = 1,..., N, we follow the
greedy schedule A, and transmit as much data as possible,
namely, G; = min{C, B — B;_1} (lines 4-6). If the buffer is
full at this point, set 59 = 7. Otherwise (lines 7-17), we check
to see whether the playback deadline of frame i is met by the
greedy schedule A with respect to the current feasible set S#
(line 8). If B;_; + C < fi, the playback deadline of frame i is
violated, a frame needs to be discarded. In order to decide which
frame to discard, for each 7, 1 < j < ¢, we introduce the notion
of gain in the buffer occupancy at time ¢ if frame j is discarded.
We denote this gain by A%; its definition will be given shortly.
The frame discarded, say, frame k, is thus the one which yields
the largest gain, namely, A} = max;<;<; A}. This is done in
lines 9-12.

Formally, let S';# 1 denote the feasible set constructed at stage

i — 1. Recall that D;(S*.), U;(S*,) = D;(S¥,) + B
and A j (S;’f 1) respectively represent the buffer underflow curve,
buffer overflow curve and the amount of data transmitted by
the greedy schedule up to time j with respect to S?‘f_l. For
j=1,...,i—1,define

Vi= min 1{Uz(quil) - Ai(st)}

i<I<i-

1

V; represents the minimal difference between the buffer over-
flow curve U(Si#_l) and the greedy schedule A(Sfil) in the
time interval [, 7 — 1]. Intuitively, it is the maximal amount that
we can shift the segment {j, 7] of U(Sﬁl) downwards towards
A(S¥) without crossing A(SE) (see Figure 4).

Now we are in a position to define A}.

i fi7 .7 = ia
Ai“{ min{f;, Vi}, j=1,...,i-L @
‘We now show that Aj- is the gain in the buffer occupancy at time
1 if frame j is discarded. More precisely,

Bi_1(SE L\ {5)) = Biea(SE)) + AL 3
This is shown pictorially in Figure 4 where the two cases: (a)
fi £ V;- and (b) f; > V;» are depicted. As a result of discard-
ing frame j, the segment [j + 1, 7 — 1] of the new buffer overflow
curve U(S?il \ {7}) and underflow curve D(Sz"i1 \ {7}) are the
original ones (U (S¥ ,) and D(S¥ ,)) shifted f; amount down-
wards. Consider the case where f; < V; This can only occur
if j > 4o where 1 is the last time before 7 the buffer is full. The
greedy schedule can transmit exactly the same amount of data as
the original schedule, i.e., (i — 1 — 7)C, during the time interval
[7+1,i—1]. Therefore, (3) holds at time ¢— 1. On the other hand,
if f; > Vi, the amount of data transmitted by the greedy sched-
ule during the same interval is only (i — 1 — j)C — (f; — V%).
This is because the buffer becomes full at some point. Hence
the greedy schedule needs to stop transmission for a duration of
(fj — V%)/C time. Thus (3) also holds at time i — 1.

From (1), V;'- = 0 for any j < ig. Therefore, discarding
any frame before time ip will resuit in zero gain, i.e., A; = 0.
In other words, discarding any frame before the last buffer full
point will not help meet the playback deadline of frame i. This

475

Fo--
overflow curve (before)

overflow curve (after) --

i
Y .
N ’»"

greedy schedule
(before & after)

p_——

underflow curve (after)

@ f; < Vi

overflow cugve (before) :' ="
\]—:
overflow curve (after) - -
1
\\I L

reedy schedule
& (gefoxe)

N

greedy schedule
(after)

T underflow curve (after)
frame j

(b) f; > Vi

Fig. 4. Effect of discarding a frame j on D, U and A

is the reason in line 10 of the algorithm in Figure 3, we only
search in the range of [ig + 1, %] for a frame to discard. Let &,
t0+ 1 < k < ibe such that A}, = max,4+1<;<i Af. Hence
discarding frame k yields the maximal gain at time 2. Denote
this maximal gain by max A, i.e., max A; = AL As Al = f;,
we have max A; > f;. Hence from (3)

Bi_1i(SE\ {k}) > Bioa(SE) + fi.

Therefore, if k& # 4, discarding frame & will help meet the
playback deadline of frame 7. As a result of discarding frame
k from Sfil and including frame ¢ at stage ¢, i.e., setting

Sl-# = Sﬁl U {z} \ {k} (lines 13-14), we have

B,(Sl#) = B,-_I(Sfil) +C+ maxAi - f,‘. (4)

Note that the above equation also holds when k = i.

In lines 15-17 of the algorithm, the buffer occupancy B; is
updated using (4), and g is set to k£* if discarding k results in
a full buffer at time k*. If the deadline of frame ¢ is met, it is
included in S¥ by setting S¥ := S¥ U {i} (line 19). The
algorithm stops after stage N and outputs the set S¥#.

The feasible set S,# constructed at stage of the MINFD algo-
rithm has the following important property, the proof of which
can be found in [16].

Lemma 2: Let S be any feasible set, i.e., S € SFD(C, B).
Then IS,‘#| > |8n{1,2,...,7}|, where | - | denotes the car-
dinality of a set. Moreover, for any j = 1,2,...,1, if]Sl# N
{L,...,5} =1SN (1,..., 5}, then B;(SF) 2 B;(S).

Intuitively, Lemma 2 states that the number of frames in-
cluded in the (partial) feasible set Si# constructed at stage ¢ is
at least as large as the number of frames (up to time 7) that are
included in any other feasible set. Moreover, among all fea-
sible sets that discard the same number of frames up to time
s S,# maximizes the buffer occupancy at time j. Hence, Si#
maximizes the chance of future frames meeting their playback
deadlines. As a consequence of this lemma, the transmission
schedule S# produced by the MINFD algorithm results in the
minimum number of discarded frames for any cost function, or
equivalently, |S#| is maximized.

PROCEDURE JITFD(N)
For i =1 to N
Increment the buffer by a;
I£ buffer occupancy > f;
Decrement the buffer by f; and display frame i
Else
Discard frame i
END PROCEDURE

PNANHWN

Fig. 5. The JITFD selective frame discard algorithm.

Theorem 3: Let S# be the feasible set produced by the
MINFD algorithm. Then |S#| = max {|S| : S € SFD(C, B)}.

Finally, we remark that by using a clever data structure
for maintaining and updating the gain A;-, we can design an
O(N log N) algorithm to construct S#¥. We can also modify
the MINFD algorithm described in Figure 3 to handle video
streams with inter-frame dependencies such as those encoded
using the MPEG encoding scheme. The modification needed is
fairly elaborate. Due to space limitation, we will not describe it
here.

IV. HEURISTIC SELECTIVE FRAME DISCARD ALGORITHMS

As mentioned earlier the computational complexity of the op-
timal selective frame discard algorithm is O(BNW). For large
values of B and N, this can result in very high complexity. In
this section we design a set of efficient heuristic algorithms that
aim at minimizing the cost associated with the discarded frames.
Most of these heuristics are designed based on the MINFD al-
gorithm and hence have a low computational complexity.

Recall that the MINFD algorithm finds the minimum number
of frames that must be discarded for a feasible schedule. How-
ever it may tend to discard consecutive frames if large frames are
clustered together. Hence the playback discontinuity at the client
may be very high. In order to provide a measure of this playback
discontinuity, we define a cost function, ¢(.5), that takes two as-
pects of playback discontinuity into consideration: the length of
a sequeince of consecutive discarded frames and the spacing or
distance berween two adjacent but non-consecutive discarded
Sframes.

476

PROCEDURE DISTD.Select(i, A)
Set k =1; pr, = min(dg, \)
For j = ¢9g+1 to i-1

PROCEDURE MINCD._Select(i)
Setk=1

1.
2. L
3. 2.
4. Do not consider j if j € S 3. For j = dig+1 to i-1 1. PROCEDURE MCMGD._Select(i)
5. pj =min(d;, \) 4. Do not consider j if j & S; 2. Setk=i
6. Ifp; > pk 5. Ifc; <c 3. For j = ip+1 to i-1
7. Setk=j .) 6. Setk=j 4, Do not consider j if j & S;
8. Else Ifpj =piand A > A 7. Else If c;'. =ci andA;- > AL 5. If A;/c; > A} /e
9. Setk=j 8. Setk=j 6. Setk=3j
10. END PROCEDURE 9. END PROCEDURE 7. END PROCEDURE
(@ (b) ©)

Fig. 6. Heuristic procedures to select the frame to discard.

The cost function ¢(S) assigns a cost ¢; to a discarded frame
1 depending on whether it belongs to a sequence of consecutive
discarded frames or not. If frame ¢ belongs to a sequence of
consecutive discarded frames, then the cost ¢; is defined to be
l;, if frame i is the I¢" consecutively discarded frame in the se-
quence. Otherwise, the cost ¢; is defined based on its distance
d; to the previous discarded frame and given by the formula
¢ =1+ #. Therefore, for a set S € N, the total cost of

Sis ¢(S) = 2o en\s G

Obviously there are many other ways to define a cost func-
tion. We believe that the two aspects of playback discontinuity
considered by ¢(.S), namely the cost due to consecutive discard
and that due to spacing between discarded frames, are impor-
tant measures of the perceived quality. Any other cost function
should reflect these two aspects of playback discontinuity in one
way or another. More study is needed in this area to come up
with a more realistic cost function based on perceptual quality
of video playback [14]. In the rest of this section we will de-
scribe a set of heuristic algorithms based on the cost function
¢(S) defined above and results of performance evaluation are
then presented. Our algorithms can be easily modified to incor-
porate the specifics of other cost functions.

A. Heuristic Algorithms for JPEG Video

The heuristic algorithms aim at finding a low cost feasible set
S by taking either the cost of discarding a frame directly into
consideration or indirectly. They differ in the criteria used in
selecting a frame to discard. All the heuristics use the greedy
schedule to determine the amount of data to be transmitted in
each time slot.

As a simple baseline algorithm, we first introduce the just-in-
time selective frame discard heuristic, JITFD. JITFD is perhaps
the simplest and most intuitive selective frame discard approach.
It always discards the current frame whenever its playback dead-
line cannot be met, irrespective of its cost. The algorithm is
shown in Figure 5. At each time 4, the buffer is increased by
a; = min(B — B;_1, C) (line 3), as per the greedy transmission
schedule. If the buffer occupancy is smaller than the size of the
current frame ¢, i.e. B; + a; < f;, the frame is discarded as
in lines 4-7. The computational complexity of this algorithm is
linear in V.

The distance based selective frame discard algorithm,
DISTD(A), uses a parameter A to indirectly control the cost of
discarded frames. The basic structure of the algorithm is the
same as the MINFD algorithm. For any given A > 1, DISTD())
attempts to space the discarded frames A distance apart by in-

corporating a distance based priority in selecting a frame to dis-
card. The procedure to select a frame to discard is presented in
Figure 6(a). At each time ¢, if the playback deadline of frame
1 is violated, the procedure is invoked. This procedure finds a
frame, k, with highest priority py, among all frames selected for
transmission since the last buffer full point 9. Here the priority
pi of a frame is defined based on its distance dy from the pre-
viously discarded frame: p; = min{A,di} (line 2). Hence all
frames with a distance at least A are treated with the same prior-
ity. Frames are considered for discarding in the order of decreas-
ing priority. Frames with highest priority, namely, p; = A, are
considered first. If such a frame cannot be found, all frames with
distance A -1 are considered, and so forth. Among the frames
with the same priority, the frame with the largest gain A} is
chosen (line 8). Finally, the selected frame k is chosen for dis-
carding only if its gain A% is bigger than the size of the current
frame, f; (this criterion is not shown in Figure 6(a)). Otherwise,
the current frame 1 is discarded.

The minimum cost based selective frame discard algorithm,
MINCD, takes the cost of discarding a frame directly into con-
sideration. The procedure for selecting the frame to discard is
given in Figure 6(b). At time ¢, if the playback deadline of frame
i is violated, a frame k with lowest incurred cost ci, is chosen for
discarding. Let S;_1 be the feasible set constructed at time ¢ — 1.
The incurred cost ¢, is defined to be the cost incurred if frame k
is discarded at time , i.e., ¢ = #(Si—1)—d((Si—1U{t})\ {k}).
As shown in lines 3-6, a frame with the smallest incurred cost
is chosen for discarding. If two frames have the same incurred
cost, the one that yields larger gain Aj- is chosen (lines 7-8).

The last heuristic we consider is the minimum cost maximum
gain based selective frame discard heuristic, MCMGD. In se-
lecting a frame to discard, it takes both the gain Aj- from dis-
carding a frame and the cost c} incurred thereof into considera-
tion. The procedure for selecting the frame to discard is shown
in Figure 6(c). It discards a frame k with the largest gain to the
incurred cost ratio, i.e., A /c§ (lines 5-6). By discarding frames
with the largest gain to cost ratio, the MCMGD heuristic uses in
effect the steepest gradient search for an optimal solution.

The computational complexity of the DISTD, MINCD and
MCMGD heuristics is O(/N2). This is much smaller than the
computational complexity of the optimal algorithm.

B. Performance Evaluation

In this section we evaluate the performance of the heuristic
selective frame discard algorithms using JPEG video traces. For
given bandwidth and client buffer size constraints, the number of

477

TABLEII
CHARACTERISTICS OF JPEG VIDEO TRACES
Title | Length | No.of [Ave. Rate Peak Rate Peak Rate
(min) Frames (Mbps) (Unsmoothed) | (Smoothed)
SS 101 181457 2.28 3.99 3.30
BB 80 143442 3.04 7.29 6.54
JP 122 220061 2.73 5.73 478

frames discarded and the cost incurred by these algorithms are
compared. The impact of each constraint on the performance of
these algorithms is also studied by varying one constraint while
keeping the other constraint fixed. We present the results for
three representative traces, Sleepless in Seattle (SS), Beauty and
the Beast (BB) and Jurassic Park (JP). Table 11 lists the charac-
teristics of these traces [3], where among other things, the av-
erage rate, the peak rate of the video traces are shown. Also
included is the peak rate of the optimal smoothed schedule [13]
using a client buffer size of 1 MB and zero startup delay.

Table III compares the performance of various selective frame
discard algorithms. The rate constraint C' in each case is set to
the average rate of the video trace, while the client buffer size
B is set to 1 MB. As shown in Table II, the peak rate of the op-
timal smoothed schedule is considerably higher than the chosen
rate constraint. Hence continuous playback is not possible, forc-
ing the server to discard frames. Consider the performance of
the heuristic algorithms when applied to the video trace Sleep-
less in Seattle. JITFD discards 10538 frames with a cost of
15720. DISTD(2) drops 10272 frames, while DISTD(S) drops
10414 frames, larger than that of DISTD(2). However, the cost
of DISTD(S) is 15373, lower than that of DISTD(2), which is
15696. This is due to the fact the discarded frames in DISTD(S)
are more distributed than those of DISTD(2), incurring a lower
cost despite a larger number of discarded frames. For the same
trace, MINCD discards 10473 frames with a cost of 15332, and
MCMGD incurs a cost of 15246 by discarding 10455 frames.
All the heuristic discard schemes that take cost into considera-
tion incur less cost than JITFD does. Among them, MCMGD
performs best, as expected. It is also worth pointing out that
MINFD indeed gives the lowest number of discards. However,
the incurred cost is quite high as it tends to discard consecu-
tive large frames. Clearly, there is a trade-off between reducing
the total number of discarded frames and distributing discarded
frames in a video stream.

We now study the impact of varying buffer size while fix-
ing the rate constraint on the performance of the selective frame
discard algorithms. Figure 7 shows the number of discarded
frames as well as the incurred cost as a function of buffer size
for the trace Sleepless in Seattle. The bandwidth C is fixed at
2.28 Mbps, and the client buffer size B is increased from 0.5
MB to 2.5 MB. It can be seen that all the other four heuristic
algorithms perform better than JITFD. The difference in per-
formance among the heuristics widens as the buffer size in-
creases. This phenomenon can be explained as follows. Recall
that frames which come before a buffer full point are not consid-
ered for discarding for a deadline violation after the buffer full
point. Hence with increased buffer size, the number of frames

TABLE 11l
COMPARISON OF SELECTIVE FRAME DISCARD ALGORITHMS FOR JPEG.

SFD SS BB JP

Algo. Drops Cost Drops Cost Drops Cost
JITFD 10538 15720 8778 13356 | 13457 | 20270
DISTD(2) | 10272 15696 8602 13371 13141 | 20263
DISTD(5) | 10414 [15373 8692 13196 13294 19909
MINCD 10473 15332 8742 13170 | 13384 | 19845
MCMGD | 10455 15246 8712 13131 13342 19747
MINFD 9907 | 128798 | 8183 | 106951 | 12516 | 148922

from which a frame can be selected for discarding increases.
It therefore enhances the effectiveness of the selection criteria
used in the heuristics such as MINCD and MCMGD. Among all
the heuristics, it is quite evident that MCMGD performs best at
all buffer sizes.

Figure 8 shows the impact of bandwidth variation for the trace
Sleepless in Seattle. The bandwidth is varied from 2.96 Mbps
to 3.12 Mbps with the client buffer size fixed at 1 MB. As the
bandwidth increases, the difference in performance between the
JITFD and the other four heuristic algorithms narrows slightly.
This is because at a higher bandwidth, the playback deadline
of fewer frames are violated. As a result, discarded frames are
more likely to be distributed and the advantage of more sophis-
ticated heuristics is less pronounced. The MCMGD algorithm
still has the best performance across the bandwidth range,

We have run the heuristic algorithms on other JPEG traces.
The results obtained are very similar. We conclude that the pro-
posed heuristic algorithms work well in improving the perceived
quality as measured by the proposed cost function. Among
them, the MCMGD heuristic has the best performance.

V. CONCLUSIONS

In this paper, we have developed various selective frame dis-
card algorithms for stored video delivery across a network where
both the network bandwidth and the client buffer capacity are
limited. We began by formulating the problem of optimal se-
lective frame discard using the notion of a cost function. The
cost function captures the perceived video quality at the client.
Given network bandwidth and client buffer constraints, we de-
veloped an O(N log N) algorithm to find the minimum number
of frames that must be discarded in order to meet these con-
straints. The correctness of the algorithm is also formally es-
tablished. An optimal algorithm for solving the optimal selec-
tive frame discard problem can be designed using dynamic pro-
gramming, which due to space limitation is not presented here
(interested readers are referred to [16]). Since the computational
complexity of the optimal algorithm is prohibitively high in gen-
eral, we also developed several efficient heuristic algorithms for
selective frame discard. These algorithms are evaluated using
JPEG video traces. We found that the minimum cost maximum
gain algorithm performs best for JPEG encoded video. Ex-
tensions to these algorithms for handling MPEG videos can be
found in [16].

In this paper, we have considered a network model where the
network bandwidth is fixed and is known a priori, as is the case
in a network with CBR service. We can easily extend our work
to the case where the network bandwidth can vary, but the band-
width variation is known to the server beforehand. To address

478

12000

11500 g
Ho &
10500 |

10000

discards

9500 |

SO0

K500 |

KO L a 4
0.5 1 (R 2 25
buffer (MB)

(a) buffer size vs. number of discarded frames

17500

17000 £
16500 +
16000

15500

cost

15000 |

14500 |-

14000

13500 ¢

13000 = 4
oS 1 LS 2 25
buffer (MB)

(b) buffer size vs. cost

Fig. 7. Performance under varying buffer sizes with C fixed at 2.28 Mbps for Sleepless in Seattle.

14000

13000 |

12000

11000

discards

10000

Y000

ROOO T

7000 N N N N " s
pAT 22 222 224 226 2 23 232 23 236
handwidth (Mbps)

(a) bandwidth vs. number of discarded frames

20000

19000

18000 |

17000

16000 |

cost

15000 |

14000 |

13000 |

12000 |

11000 N N . . N N L .
218 22 2 224 226 2 23 232 234 236
handwidth (Mbps)

(b) bandwidth vs. cost

Fig. 8. Performance under varying bandwidth with B fixed at IMB for Sleepless in Seattle.

the case where the network bandwidth is unknown, we are cur-
rently working on adaptive selective frame discard schemes us-
ing feedback-based bandwidth estimation mechanisms. Initial
work in this direction is reported in [1]. We are currently con-
ducting experiments to evaluate our schemes across a real net-
work. Evaluation of server selective frame discard algorithms
based on the actual QoS perceived by clients will then be car-
ried out.

m

(5]

[6]

(7

REFERENCES

R. Aggarwal, S. Nelakuditi and Z.-L. Zhang, “Adaptive Stored Video De-
livery using Selective Frame Discard across Resource Constrained Net-
works”, Technical Report, Department of Computer Science, University
of Minnesota, June 1998.

W.-c. Feng, “Rate-constrained Bandwidth Smoothing for the Delivery of
Stored Video”, SPIE Multimedia Computing and Networking 1997.

W.-c. Feng, “Video-on-Demand Services: Efficient Transportation and
Decompression of Variable Bit Rate Video”, Ph.D. Thesis, Univ. of Michi-
gan, April 1996.

M. Garrett and W. Willinger, “Analysis, Modeling and Generation of Self-
Similar VBR Video Traffic”, Proc. ACM SIGCOMM, pp. 269-280, Aug.
1994.

M. Grossglauser, S. Keshav and D. Tse, “RCBR: A Simple and Efficient
Service for Multiple Time-Scale Traffic”, Proc. ACM SIGCOMM, pp.
219-230, Aug 1995.

C. Hsu, A. Ortega and A. Reibman, “Joint Selection of Source and Chan-
nel Rate for VBR Video Transmission under ATM Policing Constraints”,
IEEE Journal on Selected Areas in Communication, 1997.

T.V. Lakshman, A. Ortega and A.R. Reibman, “Variable Bit-Rate (VBR)

Video: Tradeoffs and Potentials,” Proceedings of the IEEE, vol. 86, May
1998.

(8]

(9]

[10]

{1

(12}

[13

—

[14]

[15]

{16]

479

J.M. McManus and K.W. Ross, “Video on Demand over ATM: Constant-
rate Transmission and Transport”, Proc. [IEEE INFOCOM, pp. 1357-1362,
March 1996.

S. Ramanathan, P.V. Rangan and H.M. Vin, “Frame-Induced Packet Dis-
carding: An Efficient Strategy for Video Networking”, In Proceedings of
the Fourth International Workshop on Network and Operating Systems
Support for Digital Video and Audio, Lancaster, UK, pp. 175-187, Novem-
ber 1993.

J. Rexford and D. Towsley, “Smoothing Variable-Bit-Rate Video in an In-
ternetwork,” in Proc. SPIE Symposium on Voice, Video, and Data Com-
munications: Multimedia Networks: Security, Displays, Terminals, and
Gateways, November 1997.

L.A.Rowe, K.D. Patel, B.C. Smith and K. Liu, “MPEG Video in Software:
Representation, Transmission and Playback®, IS&T/SPIE, Symp. on Elec.
Imaging Sci. & Tech., San Jose, CA, February 1994.

S. Sahu, Z.-L. Zhang, J. Kurose and D. and Towsley, “On Efficient Re-
trieval of VBR Video in a Multimedia Server”, In Proc. IEEE Intema-
tional Conference on Multimedia Computing and Systems’97, pp. 46-53,
June 1997, Ottawa, Ontario, Canada.

J.D. Salehi, Z.-L. Zhang, J. F. Kurose and D. Towsley, “Supporting Stored
Video: Reducing Rate Variability and End-to-End Resource Requirements
through Optimal Smoothing”, Proc. ACM SIGMETRICS, May 1996.

D. Wijesekera and J. Srivastava, “Quality of Service (QoS) Metrics for
Continuous Media”, Multimedia Tools and Applications, Vol 2, No 3, Sept
1996, pp. 127-166.

J. Zhang and J. Y. Hui, “Traffic Characteristics and Smoothness Criteria in
VBR Video Traffic Smoothing”, IEEE International Conference on Multi-
media Computing and Systems, June 1997.

Z.-L. Zhang, S. Nelakuditi, R. Aggarwal and R.P. Tsang, “Efficient Selec-
tive Frame Discard Algorithms for Stored Video Delivery across Resource
Constrained Networks”, Technical Report, Department of Computer Sci-
ence, University of Minnesota, July 1998.

