
IP Fast Reroute with Failure Inferencing

Junling Wang and Srihari Nelakuditi
Department of Computer Science and Engineering

University of South Carolina
{wang257,srihari}@cse.sc.edu

ABSTRACT
Five nines availability is being expected from IP networks
due to the growing popularity of IP telephony and the in-
creasing usage of the Internet for mission-critical applica-
tions. This necessitates enhancing the resiliency of IP net-
works against transient failures that are observed to happen
relatively frequently even in well-managed networks. To-
wards that end, we proposed failure inferencing based fast
rerouting (FIFR) approach that exploits the existence of a
forwarding table per line-card, for lookup efficiency in cur-
rent routers, to provide fast rerouting similar to MPLS,
while adhering to the destination-based forwarding paradigm.
Earlier, we have shown that FIFR can deal with either single
link or single node failures in a network consisting of point-
to-point links with symmetric link weights. In this paper, we
generalize FIFR to handle both link and node failures in net-
works with asymmetric link weights and multi-access links
too. Furthermore, we apply FIFR for protecting against
inter-AS failures also. With these extensions, we argue that
FIFR elevates the resiliency of any IP network with minimal
changes to the forwarding and routing planes.

Categories and Subject Descriptors: C.2.2 [Network
Protocols]: Routing Protocols
General Terms: Algorithms
Keywords: Fast Rerouting, Failure Protection

1. INTRODUCTION
With the increasing dependence on the Internet for de-

livering various critical services, it is expected to be always
available. In particular, applications such as Voice over IP
demand five-nines availability (99.999% uptime) from IP
networks as is the case with traditional telephone networks.
But it has been observed that transient failures happen rel-
atively frequently even in well-managed IP backbone net-
works [10]. The existing IGPs such as OSPF and IS-IS typi-
cally take several seconds to converge and resume forwarding
after a failure, whereas failure recovery within 50 ms is con-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-788-9/07/0008 ...$5.00.

sidered desirable for mission-critical applications [3]. Recent
studies have shown that the IGP convergence can be acceler-
ated to sub-second by tuning some parameters of these rout-
ing protocols [7], but bringing it down to sub-50ms level can
potentially cause instability in the network, particularly due
to hot-potato routing [13]. MPLS provides fast local rerout-
ing effectively with label stacking [12], but it is not scal-
able, as it requires a careful configuration of many backup
label-switched paths for protection. As an alternative, IP
fast reroute mechanisms have been proposed that make use
of loop-free alternates [2], u-turn alternates [1], not-via ad-
dresses [4], or multiple routing configurations [9], for local
rerouting upon a failure. While each of these mechanisms
have their relative strengths, they either do not reroute to
all destinations or rely on encapsulation or marking of data-
grams for rerouting. We are interested in an IP fast reroute
scheme that requires little or no changes to datagram for-
mat, forwarding process, or routing protocol while ensuring
forwarding continuity to all reachable destinations.

We proposed a failure inferencing based fast rerouting (FIFR)
approach earlier for handling transient failure of a link [11]
or a node [15] in an IP network, leveraging the existence of
a forwarding table per line-card of a router. Under FIFR,
routers prepare for failures by computing interface-specific
forwarding tables, i.e., a packet’s next hop depends on both
its destination address and incoming interface. A router,
without being explicitly notified of a failure, can infer it
from the incoming interface and destination address, and
precompute interface-specific forwarding entries excluding
the inferred failures. When a link/node fails, adjacent router
suppresses global advertisement and instead initiates local
rerouting of packets that were to be forwarded through the
failed link/node. All other routers simply forward packets
according to their precomputed interface-specific forward-
ing tables without relying on network-wide link-state adver-
tisements. The attraction of FIFR is that the only change
needed to the existing routers, with a line-card per inter-
face, for providing protection against single link/node fail-
ures, is to replace the Dijkstra’s algorithm for computing
interface-independent forwarding entries with an algorithm
to compute an additional interface-specific forwarding entry
per destination. However, our earlier approach to handle
node failures treats a link failure also as a failure of its tail
node. This presumption could result in no route to the des-
tination, even when there exists a path to it without the
failed link, if the tail node partitions the network. More-
over, our previous work assumes that the network consists
of point-to-point links with symmetric link weights only.

268

We make several contributions in this paper to strengthen
FIFR and make it applicable to a broad range of IP net-
works. First, we revise FIFR to guarantee loop-free for-
warding to a destination if it is reachable, regardless of the
failure of a link or a node in the network. Second, we gen-
eralize FIFR to handle failures in networks of bidirectional
links with different link weights in each direction. This re-
quires revamping of the procedures for inferring potential
link/node failures and computing interface-specific forward-
ing entries. A noteworthy feature of the new version of FIFR
is that it works fine in a network with a mix of symmetric
and asymmetric link weights, and behaves exactly like the
earlier version when all links have symmetric weights. Third,
we show that FIFR is suitable even for networks with multi-
access links by modelling each such link as a virtual node
with an adjacency between it and each of the nodes adjacent
to that link. Finally, we apply FIFR for protection against
the failure of an AS peering link or an AS border node in case
of an AS with multiple egresses to a destination. With these
extensions, we believe FIFR would become a compelling al-
ternative to the existing IP fast reroute schemes.

2. LINK AND NODE FAILURES
In this section, we introduce the FIFR approach for han-

dling transient failures in a network consisting of point-to-
point links with symmetric link weights. First, we describe
the general framework of the FIFR approach. We then
present the details on how to handle link failures, followed
by node failures, and finally both link and node failures.

2.1 FIFR Framework
Under FIFR, a router usually forwards a packet to the

next-hop along the shortest path to its destination. But in
case of a failure, the router adjacent to it locally reroutes
packets that were affected by the failure to alternate next-
hops without notifying all other routers about the failure.
The central idea behind the FIFR approach is the ability
of a router to infer potential non-adjacent failures from the
incoming interface and the destination of a packet without
being explicitly informed of the failure. When a packet ar-
rives at a router through an unusual interface along the re-
verse shortest path1, due to local rerouting by the router
adjacent to the failure, through which it would never arrive
had there been no failure, that router can identify the cor-
responding set of potential individual failures. Since these
inferences can be made in advance, the forwarding entry as-
sociated with that interface and destination can be precom-
puted excluding the corresponding potential failures from
the network topology. Due to such failure inferencing and
interface-specific forwarding, in case of a single failure, FIFR
can achieve both loop-freedom and destination-reachability,
the two fundamental objectives of any fast rerouting scheme.

The packet forwarding under FIFR can be summarized as
follows. Each router i under FIFR maintains a routing table
entry Rd

i per each destination d. In addition, it keeps a for-
warding table entry Fd

j→i and a backwarding table entry Bd
i→j

per each neighbor j and destination d. A packet originating
at i to destination d is forwarded to Rd

i . A packet destined

1Since FIFR operates within AS, we do not expect it to
interfere with unicast reverse path filtering (uRPF) [6] de-
ployed at network ingress nodes for defeating denial of ser-
vice attacks which employ IP source address spoofing.

Table 1: Notation
V set of all vertices
E set of all edges
E(n) set of all edges adjacent to node n
Rd

i set of next hops from i to d
Fd

j→i set of next hops from j→i to d.
Bd

i→j set of back hops from i→j to d.
KLd

j→i key link corresponding to j→i and d.
KN d

j→i key node corresponding to j→i and d.
SPT(i,V ′, E ′) shortest path tree at i w.r.t. (V ′, E ′)
rSPT(i,V ′, E ′) reverse SPT rooted at i w.r.t (V ′, E ′)
N(d, T) next hops to d from root of SPT T
P (d, T) previous hops from d to root of rSPT T

for d arriving at i through neighbor j is forwarded to Fd
j→i.

When an adjacent link i−j fails or adjacent node j fails,
router i locally reroutes a packet destined for d to Bd

i→j , if it
were to be forwarded to j had there been no failure.

The computation ofRd
i and Bd

i→j is straightforward whereas

the computation of Fd
j→i is intricate but captures the essence

of FIFR approach. Based on the notation in Table 1,

Rd
i = N(d, SPT(i,V, E))

The computation of Bd
i→j depends on whether the adjacent

failure is treated as a link or a node failure. Assuming only
link failures, for ease of illustration, we have

Bd
i→j = N(d, SPT(i,V, E \ {i−j}))

Again, assuming only links fail, before computing Fd
j→i, we

need to infer KLd
j→i, a key link failure among all the potential

failures that would cause a packet to destination d arrive at
node i through neighbor j. We can then compute Fd

j→i by

removing KLd
j→i from the network topology as follows.

Fd
j→i = N(d, SPT(i,V, E \ {KLd

j→i}))

2.2 Identifying Key Links
We now describe how a key link is identified for each in-

terface and destination. A link u→v is considered to be a
candidate key link w.r.t. interface j→i and destination d, if
it satisfies both of the following conditions:

1. with u→v, j is a next hop from i to d.

2. without u→v, shortest path from u to d contains j→i.

In other words, u→v is a candidate if it is along the shortest
path from i via j to d, and it’s failure causes a packet for
d to arrive at i through j along the reverse shortest path.
Since these candidate links are common to all the shortest
paths from i to d [11], we can find the one closest to the
destination, referred to as the key link KLd

j→i. Once the key
link is identified, the forwarding entry can be computed as
shown earlier by excluding it from the network topology. We
have shown that if there exists a path from i to d without
the failed link, there exists a path without the key link [11].

Consider the topology shown in Fig. 1 where each link is
labelled with its weight. When a packet destined to F arrives
at A via B, router A can infer that either B−E or E−F must
have been down. Therefore, the key link corresponding to
interface B→A and destination F, KLF

B→A is E−F since it

269

is closer to F than B−E. Consequently, FF
B→A is H, i.e., A

forwards the packet to H ensuring that it reaches destination
F without actually knowing whether B−E or E−F failed.

2.3 Identifying Key Nodes
Analogous to key link inferencing, we can also identify key

nodes assuming only node failures. A node v is considered to
be a candidate key node w.r.t. interface j→i and destination
d, if it satisfies both of the following conditions:

1. with v, j is a next hop from i to d.

2. without v, the shortest path from a parent node of v
(w.r.t. SPT(i,V, E)) to d contains j→i.

Among all the candidates, the one closest to d is referred to
as the key node, KN d

j→i. Hence, for handling node failures,
the forwarding and backwarding table entries would be

Bd
i→j = N(d, SPT(i,V \ {j}, E \ E(j)))

Fd
j→i = N(d, SPT(i,V \ {KN d

j→i}, E \ E(KN d
j→i)))

Consider the previous illustration based on Fig. 1 where a
packet destined for F arrives at A via B. For the sake of con-
venience, let us refer to the link version of FIFR as FIFRL

and the node version as FIFRN . Under FIFRN , A would
identify E as the key node, KNF

B→A, and forward the packet
to H as before. Now imagine a scenario where a packet is
being forwarded from A to D when node H failed. Under
FIFRL, A treats it as the failure of A−H and reroutes the
packet to G which in turn reroutes it back to A, resulting in
a forwarding loop. In contrast, under FIFRN , A reroutes the
packet to D along the path A−B−E−F−D. But in another
scenario, when link H−D is down, a packet from A to D is
successfully forwarded by FIFRL while it is discarded un-
der FIFRN by H incorrectly assuming that node D is down.
This is referred to as the last-hop problem with FIFRN [9].

2.4 Merging Key Links and Nodes
Due to the discrepancy in the preparation and the occur-

rence of the type of failures, there could be a forwarding loop
in case of a node failure, if we prepare only for link failures
as in FIFRL. On the other hand, some destinations may
not be reachable in case of a link failure if it is treated as
a node failure like in FIFRN . Note that the latter happens
only when the failure of a single node partitions the network
or a link adjacent to the destination, i.e., last-hop, is down.
Therefore, we propose to remedy this by having a router un-
der FIFR treat an adjacent failure as a node failure, unless
doing so causes the destination to be unreachable, in which
case it will be treated as a link failure. Thus, we have

Bd
i→j = N(d, SPT(i,V \ {j}, E \ E(j)))

If Bd
i→j is ∅, then

Bd
i→j = N(d, SPT(i,V, E \ {i−j}))

The other nodes non-adjacent to the failure identify both
the key node KN d

j→i and the key link KLd
j→i. If KN d

j→i is ∅,

Fd
j→i = N(d, SPT(i,V, E \ {KLd

j→i}))

Otherwise,

Fd
j→i = N(d, SPT(i,V \ {KN d

j→i}, E \ E(KN d
j→i)))

1

1

1

2 2

1

C

A E F

1

D

3

G

2

H

1

B

Figure 1: Topology with symmetric link weights

1

A

C

D

GFE

B

5

1

5

5
1

1

1

1 2

2
5 2

1

1

1

6

1

Figure 2: Topology with asymmetric link weights

One final wrinkle is that whenever a failure adjacent to
node i is treated as the failure of link i−j, to avoid forward-
ing loops when node j indeed failed, node i needs to encap-
sulate the packet with destination d, using generic routing
encapsulation [5], in another packet with destination j be-
fore rerouting to Bj

i→j . When the packet arrives at j, it is
decapsulated and forwarded to destination d. FIFR dictates
that no more than one-level of encapsulation is done per
packet. Consequently, when node j is indeed down, the en-
capsulated packet would arrive at another node adjacent to
j, which would discard it since it has already been rerouted
as indicated by the encapsulation. We understand that en-
capsulation/decapsulation add additional burden on routers.
Note that a packet is encapsulated under FIFR only when
the failure of a node renders its destination to be unreach-
able, which happens rarely in practical topologies. Thus,
the revised FIFR forwards successfully to all reachable des-
tinations while being agnostic to the type of failure.

3. ASYMMETRIC LINK WEIGHTS
All the versions of FIFR presented above assume that the

network consists of links with symmetric weights only. They
all share the property that a non-adjacent router infers key
failure and performs unusual forwarding only when a packet
arrives through an unusual interface of the router along the
reverse shortest path w.r.t. the destination. Otherwise, if
the packet arrives through any other interface, the router
just forwards it to the usual next-hop to its destination. Sim-
ilarly, a router adjacent to the failure determines backward-
ing table entries by simply excluding the failed link/node, as
it would compute the usual routing table entries if the adja-
cent link/node is permanently down. While these relatively
simple operations suffice to handle failures in networks with
symmetric link weights, forwarding loops can occur due to
local rerouting, when link weights are asymmetric. In the
following, we illustrate the problem and present the fix by
redesigning backwarding and forwarding table computation.

Suppose the network is as given in Fig. 2 where each
directed link is labelled with its weight. For ease of il-

270

lustration, consider the forwarding of a packet from C to
D, under FIFRL, when link C−D is down. Upon detect-
ing the failure, node C recomputes the alternate path as
C→B→A→E→F→D and forwards the packet to B. Node
B infers the failure of link C−D and forwards the packet to
node A according to its precomputed interface-specific for-
warding table entry. Node A in turn forwards the packet to
its usual next-hop E. When node E receives the packet from
A, however, it will not be able to infer any failure, since in-
terface A→E is a usual interface from A via E to reach D.
Therefore, E forwards the packet to its usual next-hop B,
which in turn forwards it to its usual next-hop C, resulting
in a forwarding loop C→B→A→E→B→C→B· · · .

The shortest path from node s to node d in an asymmetric
network is not the exact reverse of that from d to s. For
example, in Fig. 2, node E reaches B directly while B reaches
E through A. This leads to forwarding loops in asymmetric
networks since link weights used during usual forwarding
and local rerouting upon failures are inconsistent. To enforce
consistency, upon a failure adjacent to s, we require that a
packet from s to d is forwarded along rrSP(s, d), i.e., the
reverse path of the shortest path from d to s. Note that
rrSP(s, d) equals the shortest path from s to d when all
links in the network are symmetric. In order to compute
rrSP, a router can build the reverse shortest path tree rSPT,
where each path from the root represents a rrSP. Similarly,
non-adjacent routers infer failures and compute forwarding
entries for unusual interfaces using rSPT as described below.
Note that rrSP is only used for local rerouting upon a failure
to affected destinations, while the conventional shortest path
is still used for failure-free forwarding.

Let us consider the previous example again where a packet
is being forwarded from C to D. The shortest path from
D to C without C−D is D→G→F→E→B→C. Therefore,
rrSP(C,D) excluding C−D is C→B→E→F→G→D. Node
B, which is not adjacent to the failed link C−D, can infer
the failure associated with the corresponding reverse usual
interface by computing the rrSP to D, and forward it to E
instead of A as before. Node E would also infer similarly as
B and forward the packet to F. Since E is not the usual next
hop of F to D, F would forward the packet to its usual next-
hop which is node D itself. Thus, a packet from C arrives
at D along a loop-free path C→B→E→F→D.

The computation of backwarding and forwarding table en-
tries have to be done differently to accommodate asymmetric
link weights. First, backwarding entries would be,

Bd
i→j = P (d, rSPT(i,V \ {j}, E \ E(j)))

If Bd
i→j is ∅, then

Bd
i→j = P (d, rSPT(i,V, E \ {i−j}))

The computation of forwarding entries involves redefining
the conditions for identifying candidate key links and nodes.
A link u→v is a candidate key link w.r.t. j→i and d, if

1. with u→v, j is a next hop from i to d.

2. without u→v, rrSP(u,d) contains j→i.

A node v is a candidate key node w.r.t. j→i and d, if

1. with v, j is a next hop from i to d.

2. without v, the rrSP from a parent node of v (w.r.t.
SPT(i,V, E)) to d contains j→i.

The key node KN d
j→i and key link KLd

j→i will still be those
closest to d among the corresponding candidates. Now,
if KN d

j→i 6= ∅,

Fd
j→i = P (d, rSPT(i,V \ {KN d

j→i}, E \ E(KN d
j→i)))

else if KLd
j→i 6= ∅,

Fd
j→i = P (d, rSPT(i,V, E \ {KLd

j→i}))

otherwise,

Fd
j→i = N(d, SPT(i,V, E))

When all links are symmetric, the above formulation yields
the same backwarding and forwarding entries as before.

4. MULTI-ACCESS LINKS
The description of FIFR so far assumed that the network

consists of only point-to-point links such that each router
knows the neighbor attached to the incoming interface of a
packet, enabling it to infer failures. It is not obvious whether
FIFR can be generalized to work with broadcast LANs and
non-broadcast multi-access (NBMA) links where multiple
neighbors are attached to a router through the same inter-
face. It appears as if FIFR can not be employed in such
networks, since a router seems not to know which neighbor
is forwarding it the packet. However, in the following, we
argue that it is still possible to infer non-adjacent failures
even in the presence of multi-access links.

4.1 Failure Detection
Compared to point-to-point links where a failure is either

a link or a node failure, broadcast links have more possible
scenarios of failures. We consider, w.r.t. a node i and a next-
hop node j, the failure of one of the following: 1) interface
of i to LAN; 2) LAN itself; 3) interface of j to LAN; 4) node
j. We treat the first two as LAN failure and the last two
as node failure. We assume that the linecard hardware of a
router attached to a broadcast LAN can detect the failure
of its connection to LAN, as in SDH/SONET and Gigabit
Ethernet, which could signal either the LAN failure or the
interface failure. In order to handle the failure promptly,
we consider it as the LAN failure without further diagnosis.
However, in general there is no easy way for a router to
learn from the hardware about the failure of another router
on the broadcast LAN. Bidirectional Forwarding Detection
(BFD [8]), an implementation of faster hello, can be used in
this case to detect the individual router failure.

4.2 Modeling Broadcast Links
Instead of modeling the connectivity between each pair of

routers in a broadcast LAN as a point-to-point link, OSPF
represents a LAN as a virtual node in the link state database
and elects a designated router (DR) for the LAN. Only the
DR forms the adjacency between the virtual node and the
other routers in the LAN, and is responsible for generating
LSAs for the LAN itself. Fig. 3 illustrates a simple example
of a routing domain that contains a LAN connecting three
routers, C, E and F. Under OSPF, the LAN is modeled as
a virtual node N in the link state database with the cost of
edges from N to routers as 0 as shown in Fig. 4. By repre-
senting the LAN as a virtual node in the topology graph, the
LAN interfaces are modeled as point-to-point links between

271

G
1 2

C

F

1

1

1

1

E

A

D
6

7

2

2

B

Figure 3: A network with routers on a LAN

G

1

A C

F

1

1

2

1

1

0

0

0

N

D

E

6

7

B

2

2

Figure 4: A representation of the LAN

the routers and the virtual LAN node, and the topology be-
comes a graph with asymmetric links. Thus, FIFR described
in the previous section can be applied without any hitches.
The following details how non-adjacent nodes infer failures
in a routing domain with broadcast LANs.

4.2.1 Inference of LAN Failure
As explained earlier, an adjacent router treats the failure

associated with a LAN as if the LAN itself failed. The other
non-adjacent routers can infer the LAN failure using the
usual key node definition described in the previous section.
Since the LAN is modeled as a virtual node, FIFR does not
infer the link failure for all links between the routers and
the LAN node. For example, in Fig. 4, links C−N, F−N and
E−N are not considered to fail separately and therefore they
can not be the key links for any interface and destination.

4.2.2 Inference of LAN Router Failure
When a router does not receive a BFD response from an-

other LAN router, it treats the failure as a node failure if
its failure does not partition the routing domain. For exam-
ple, without any failure, C would forward a packet destined
for D to F over the LAN. When C does not receive BFD
response from F, it simply considers it as the failure of F.
Node C then computes the alternate rrSP, which would be
C→B→A→D and forwards the packet to B. Again, the other
routers can infer the node failure through the usual defini-
tion of the key node whose failure will cause its parent node
to reroute the packet through the reverse usual interface.
We want to stress that when FIFR is applied to LANs, the
parent node of a router on LAN can not be the virtual LAN
node as suggested by the topology, since the LAN node itself
can not make rerouting decisions. In the previous example,
the shortest path from B to D is B→C→N→F→D. How-
ever, when B infers the key node, C should be considered
the parent of node F instead of N. Otherwise, if N is treated
as the parent, the failure of F causes N to reroute the packet
through E to D, not through C→B. Thus, F would not be
the key node for interface C→B and destination D. So, when
B receives a packet from C, it infers only the LAN failure
and forwards the packet to G, causing the packet to oscillate
between G and C. Except for taking care of this, FIFR can

AS1

A B

AS2

P

C D
E

(a) Multiple peering links

AS1

A B

P

AS3 AS4

C D
E

(b) Peering with multiple ASes

Figure 5: AS with multiple egress nodes to a prefix

be applied as is to networks with multi-access links.
When the failure of a router on a LAN partitions the rout-

ing domain or specifically the router itself is the destination,
it is not appropriate to treat it as the node failure. In this
case, the router adjacent to the failure attempts to deliver
the packet to its destination by encapsulating the packet in
another packet with the next-hop before the failure as its
destination and forwards it along an alternate path after
excluding the virtual LAN node. This is similar to the pro-
cedure we discussed in the previous section on merging key
links and nodes. For example, if C has a packet destined for
F, when it does not get BFD response from F, C finds an
alternate path through B to F after excluding the LAN. In
case node F indeed failed, the other adjacent node G will dis-
card the encapsulated packet as it indicates that the packet
has already encountered a failure before. In summary, the
generalized version of FIFR protects against both link and
node failures in an IP network with point-to-point/multi-
access links with symmetric/asymmetric weights.

5. INTER-AS FAILURES
The discussion of FIFR thus far has been about dealing

with failures inside an autonomous system (AS). We now
explain how FIFR approach is applicable for dealing with
not only intra-AS failures but also inter-AS failures.

First, let us examine how the forwarding entry is com-
puted currently at a node inside an AS to a destination
prefix outside that AS. Consider the scenario illustrated in
Fig. 5 where AS1 can reach destination prefix P via its egress
nodes C and D through the same AS (5(a)) or different ASes
(5(b)). The corresponding BGP NEXT-HOPs are A and B
respectively. One of them may be chosen as the best NEXT-
HOP according to BGP policies based on attributes such as
LOCAL PREF or MED. If there is a tie, the closest node
in terms of IGP distance is chosen as the best NEXT-HOP,
as per hot-potato routing principle. Once the best BGP
NEXT-HOP is chosen for each destination prefix, then the
IGP next-hop to that BGP NEXT-HOP is computed based
on IGP metrics. In other words, a forwarding entry for a
destination prefix P at a node E is determined by first map-
ping from P to a BGP NEXT-HOP (A or B) and then from
BGP NEXT-HOP to an IGP next-hop (C or D).

Now, we describe how FIFR computes forwarding entries
to the destination prefix P at node E to protect against the
failure of any one of the AS border nodes A, B, C, D, and the
inter-AS links A−C, B−D. We require that, for each prefix,
apart from the best (primary) NEXT-HOP, FIFR is made

272

aware by BGP of at least one more (secondary) NEXT-HOP.
Suppose A is the primary and B the secondary NEXT-HOP
to P. The core idea is then to assign an appropriate IGP costs
to the “virtual links” A−P and B−P, as in Fig. 5, only for
the purpose of computing forwarding table entries at a node.
If A is chosen as primary based on LOCAL PREF or MED,
then a small cost of 1 is assigned to A−P, while assigning
a sufficiently large cost to B−P. Otherwise, when primary
is chosen based on IGP distance, an equal cost is assigned
to both the virtual links, i.e., cost(A−P) = cost(B−P) = 1.
Note that the view of the topology including these virtual
links is specific to the prefix, but is consistent across all the
nodes within an AS. It may appear that the number of such
views will be too many, but all the prefixes that have the
same set of primary and secondary NEXT-HOPs share the
same view. For example, in an AS such as AS1 in Fig. 5
with two egress nodes, at most three such topology views
are needed regardless of the number of prefixes.

Given the topology view corresponding to a destination
prefix P, FIFR can then be applied as is to determine interface-
specific forwarding entries to P at a node such as E. Based
on this view, the failure of primary NEXT-HOP node A or
primary egress node C or primary peering link A−C, is in-
ferred by E as the failure of node A, when the packet arrives
through an interface along the reverse shortest path from
E to A, i.e, A is the key node for that interface for desti-
nation P. Therefore, E will forward the packet towards the
secondary NEXT-HOP B via egress node D. Since the topol-
ogy view is consistent at all routers within the AS, the packet
under FIFR gets rerouted consistently from a node adjacent
to the failure to the destination via secondary egress D.

Occasionally, FIFR may reroute packets to the secondary
egress on a few intra-AS failures even when the primary
inter-AS link is still up. This is because failure inferencing
in FIFR is inclusive and intra-AS failures can cause some
nodes to infer the inter-AS failure. It may be undesirable
that FIFR switches to the secondary even when there exists
a path via the primary to the destination. But it only lasts
for a short period of time after the failure while it is being
suppressed. In the other case where there is only one BGP
path to the destination, the key node then can not be the
primary NEXT-HOP. For example, assume that AS4 does
not exist in Fig. 5(b). In this case, node A can not be the key
node to P for any interface, since its failure would not cause
the packet to be rerouted but to be discarded. Therefore, on
all intra-AS failures within a stub AS, FIFR would attempt
to find an alternate route to its only egress node.

This problem of recovering from BGP peering failures is
addressed in [3] by relying on the provisioning of protec-
tion tunnels between the primary egress and the secondary
egress or the NEXT-HOP. In contrast, FIFR does loop-free
local rerouting upon any single intra-AS or inter-AS failure
without setting up of additional protection tunnels.

6. CONCLUSIONS
In this paper, we revised a previously proposed FIFR ap-

proach for local rerouting around failed links and nodes with-
out explicit link state updates. We generalized FIFR to
guarantee protection against any single failure of intra-AS
or inter-AS, link or node, in a network with point-to-point
or multi-access links with symmetric or asymmetric weights.
Due to space limitation, no proofs on the correctness or com-
plexity of FIFR are included here but can be found in [14].

7. ACKNOWLEDGEMENTS
We thank Amund Kvalbein and Audun Fosselie Hansen

from Simula Research Laboratory for their valuable sugges-
tions on extending the FIFR approach to handle inter-AS
failures. We also acknowledge the support of the National
Science Foundation under CAREER Award CNS-0448272
and CRI grant CNS-0551650. The opinions and findings in
this paper are those of the authors and do not necessarily
represent the views of the National Science Foundation.

8. REFERENCES
[1] Atlas, A. U-turn Alternates for IP/LDP

Fast-Reroute. IETF Internet Draft, Feb. 2005.
draft-atlas-ip-local-protect-uturn-02.txt.

[2] Atlas, A., et al. Loop-Free Alternates for IP/LDP
Local Protection”. Internet Draft(work in progress),
May 2005. draft-atlas-ip-local-protect-loopfree-00.txt.

[3] Bonaventure, O., Filsfils, C., and Francois, P.
Achieving Sub-50 Milliseconds Recovery Upon BGP
Peering Link Failures.

[4] Bryant, S., Shand, M., and Previdi, S. IP Fast
Reroute using Not-via Addresses. Internet Draft(work
in progress), Mar. 2006.
draft-bryantshand-IPFRR-notvia-addresses-02.txt.

[5] Farinacci, D., Li, T., Hanks, S., Meyer, D., and
Traina, P. Generic Routing Encapsulation (GRE).
RFC 2784, Mar. 2000.

[6] Ferguson, P., and Senie, D. Network Ingress
Filtering: Defeating Denial of Service Attacks which
employ IP Source Address Spoofing. RFC 2827, May
2000.

[7] Francois, P., Filsfils, C., Evans, J., and
Bonaventure, O. Achieving Sub-Second IGP
Convergence in Large IP Networks. ACM SIGCOMM
Computer Communications Review 35, 2 (July 2005),
35–44.

[8] Katz, D., and Ward, D. Bidirectional Forwarding
Detection. draft-ietf-bfd-base-06.txt, Mar. 2007.

[9] Kvalbein, A., Hansen, A., Cicic, T., Gjessing, S.,
and Lysne, O. Fast IP Network Recovery using
Multiple Routing Configurations. In Proc. IEEE
Infocom (Apr. 2006).

[10] Markopulu, A., Iannaccone, G., Bhattacharya,
S., Chuah, C.-N., and Diot, C. Characterization of
failures in an IP backbone. In Proc. IEEE Infocom
(Mar. 2004).

[11] Nelakuditi, S., Lee, S., Yu, Y., Zhang, Z.-L.,
and Chuah, C.-N. Fast Local Rerouting for Handling
Transient Link Failures. IEEE/ACM Trans.
Networking 15, 2 (Apr. 2007), 359–372.

[12] Sharma, V., and Hellstrand, F. Framework for
MPLS-based Recovery. RFC 3469, Feb. 2003.

[13] Teixeira, R., Shaikh, A., Griffin, T., and
Rexford, J. Dynamics of Hot-Potato Routing in IP
Networks. In Proc. ACM Sigmetrics (June 2004).

[14] Wang, J., and Nelakuditi, S. IP Fast Reroute with
Failure Inferencing. Tech. Rep. TR-2007-006,
University of South Carolina, June 2007.

[15] Zhong, Z., Nelakuditi, S., Yu, Y., Lee, S., Wang,
J., and Chuah, C. Failure Inferencing based Fast
Rerouting for Handling Transient Link and Node
Failures. In GI (Mar. 2005).

273

