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near the edges, where link bandwidth is limited. Perhaps wireless links,
with their limited capacity, will be a major reason to implement mul-
tiple packet classes. Some wireless links, and some data streams are
time varying with large time scales. Such time variations, coupled with
the limitations imposed by large round trip times in congestion control
loops, may forever insure that queuing delay, along with bandwidth,
has to be explicitly addressed, pointing to a need for multiple packet
classes.

Our goal for fairness is the following: provide at least the same level
of satisfaction to throughput sensitive users when there are two packet
classes as when there was only one class. An interesting question is
how we can accommodate a multidimensional QoS profile within the
notions of network-wide fairness. Another question is how to imple-
ment congestion pricing for multiple class networks. Progress in this
direction was recently reported in [5] and [11].

In practice, the expectations and requirements of network users al-
most always involve delay and loss, whether or not explicitly stated in
a service level specification or agreement. Perhaps increasing network
resources in a timely fashion, relying on statistical multiplexing, and
controlling admission to networks will someday make throughput the
only relevant QoS measure. However, if some users are more tolerant to
delay and loss than others, and if burstiness of aggregate traffic streams
in some links cannot be avoided, the use of multiple packet classes can
typically improve the margin of protection against unexpected or un-
avoidable stresses on the network. Similar conclusions are reached in
[2].
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On Localized Control in QoS Routing
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Abstract—In this note, we study several issues in the design oflocalized
quality-of-service (QoS) routing schemes that make routing decisions based
on locally collectedQoS state information (i.e., there is no network-wide in-
formation exchange among routers). In particular, we investigate the gran-
ularity of local QoS state information and its impact on the design of local-
ized QoS routing schemes from a theoretical perspective. We develop two
theoretical models for studying localized proportional routing: one using
the link-level information and the other using path-level information. We
compare the performance of these localized proportional routing models
with that of a global optimal proportional model that has knowledge of the
global network QoS state. We demonstrate that using only coarser-grain
path-level information it is possible to obtain near-optimal proportions. We
then discuss the issues involved in implementation of localized proportional
routing and present some practical schemes that are simple and easy to im-
plement.

Index Terms—Localized proportional routing, quality-of-service (QoS)
routing.

I. INTRODUCTION

In quality-of-service (QoS)-based routing [2], [6], [23], paths for
flows are selected based upon knowledge of the resource availability
(referred to asQoS state) at network nodes (i.e., routers) and the QoS
requirements of the flows. This knowledge, for example, can be ob-
tained through (periodic) information exchange among routers in a
network. Under this approach, which we refer to as theglobal QoS
routing approach, each router constructs a global view of the network
QoS state by piecing together the QoS state information obtained from
other routers, and performs path selection based on this global view
of the network state. Examples of the global QoS routing approach
are various QoS routing schemes [4], [23] based on QoS extensions
to the OSPF routing protocol as well as the ATM PNNI routing pro-
tocol. Global QoS routing schemes work well when each source node
has a reasonablyaccurateview of the network QoS state. However, as
the network resource availability changes with each flow arrival and
departure, maintaining an accurate network QoS state is impractical,
due to the prohibitive communication and processing overheads en-
tailed by frequent QoS state information exchange. In the presence of
inaccurateinformation regarding the network QoS state, global QoS
routing schemes may suffer degraded performance as well as potential
instability [22], [14].

As a viable alternative to the global QoS routing approach, in [15]
we proposed a novellocalizedapproach to QoS routing. Under this
localized QoS routing approach, instead of (periodically) exchanging
information with other routers to obtain a global view of the network
QoS state, asourcerouter attempts toinfer the network QoS state
from locally collected flow statisticssuch as flow arrival/departure rates
and flow blocking probabilities, and performs path selection based on
this local information. As a result, the localized QoS routing approach
avoids the drawbacks of the conventional global QoS routing approach
such as degraded performance in the presence of inaccurate routing in-
formation. Furthermore, it has several important advantages:minimal
communication overhead,no processing overhead atcorerouters, and
easydeployability.
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In this note, we investigate an important and fundamental issue in
the design of localized QoS routing schemes—thegranularity of lo-
cally collected QoS state information and its impact on the convergence
process of these schemes and their performance. We consider flow sta-
tistics collected at two different granularity levels:link level andpath
level. At the (finer) link level, a source node collectsboththe blocking
statistics (i.e., whether a flow is blocked or not) of flows routed along
a path from the source node to a destination nodeand, in the case of
a blocked flow, the identity of the link where the flow is blocked. The
latter information can be gathered, for example, by attaching the iden-
tity of the link in the flow setup failure notification sent back to the
source node. At the (coarser) path level, a source node collectsonly
the flow blocking statistics for each path between the source node and
a destination node. Clearly, the path-level flow statistics are easier to
collect and maintain, but they also convey less precise information re-
garding the (global) network QoS state.

Using the flow blocking statistics collected at link and path levels,
in this note we propose theoretical models to study the impact of gran-
ularity. These models are developed based on the notion ofvirtual ca-
pacity of a link or a path asperceivedby a source node. The virtual
capacity of a link or a path is computed as a function of the amount of
offered load and the corresponding observed blocking probability on
that link or path. Through numerical investigation, we show that it is
possible to design localized proportional routing schemes that converge
to a stable point. We find that though granularity of information does
have impact on the rate of convergence and the equilibrium blocking
probability, the performance penalty due to coarser path-level informa-
tion is not significant. Based on these theoretical results, we proceed to
develop practical localized proportioning strategies that are simple and
easy to implement.

The remainder of the note is organized as follows. In Section II, we
introduce the notion of virtual capacity as well as the (ideal) global
optimal proportional QoS routing model. In Section III, we present
the two theoretical localized QoS routing models, one using the link-
level flow blocking statistics, and the other using the path-level flow
blocking statistics. The issues in practical implementation of localized
routing schemes are discussed in Section IV. We conclude the note in
Section V.

II. PROPORTIONALROUTING: GLOBAL VERSUSLOCAL

In this section, we first lay out the basic assumptions regarding the
proportional QoS routing models we consider in this note. We then
present an ideal global proportional QoS routing model, where we as-
sume that thecomplete topologyinformation of the network as well
as theoffered traffic loadbetween every source destination pair are
known. The performance of the global optimal proportional routing
scheme will serve as the basis for comparing the performance of local-
ized proportional QoS routing schemes. Then, we introduce the notion
of virtual capacity and briefly describe how it can be used in designing
localized proportional routing schemes.

In all the QoS routing models we consider in this note, we assume
thatsource routing(also referred to asexplicit routing) is used. More
specifically, we assume that the network topology information is avail-
able to all source nodes (e.g., via the OSPF protocol), and one or mul-
tiple explicit-routedpaths are set upa priori for each source and desti-
nation pair using, e.g., MPLS [1]. Flows arriving at a source to a des-
tination are routed along one of the explicit-routed paths (hereafter re-
ferred to as thecandidatepaths). For simplicity, we assume that all
flows have the same bandwidth requirement—one unit of bandwidth.1

When a flow is routed to a path where one or more of the constituent

1The models presented in this note can be extended to the case where flows
have different bandwidth requirements using the extended Erlang loss formula
[7], [19].

links have no bandwidth left, this flow will be blocked. The perfor-
mance metric in our study will be the overall blocking probability ex-
perienced by flows. We assume that flows from a source to a destina-
tion arrive randomly with a Poisson distribution, and their holding time
is exponentially distributed. Hence, theofferedtraffic load between a
source–destination pair can be measured as the product of the average
flow arrival rate and holding time. Given the offered traffic load from a
source to a destination, the task of proportional routing is to determine
how to distribute the load (i.e., route the flows) among the candidate
paths so as to minimize the overall blocking probability experienced
by the flows.

A. Global Optimal Proportional Routing

Global optimal proportional routing problem has been studied ex-
tensively in the literature (see [21] and references therein). Given the
global knowledge of the network topology and offered traffic loads,
the optimal proportions, for distributing flows among the candidate
paths between each source–destination pair, can be computed as fol-
lows. Consider an arbitrary network topology withN nodes andL
links. For l = 1; 2; . . . ; L, the capacity of linkl is cl > 0, which is
assumed to be fixed and known. Let� = (s; d) denote a source–des-
tination pair in the network. Let�� denote the average arrival rate
of flows arriving at source nodes destined for noded. The average
holding time of the flows is�� . Recall that each flow is assumed to re-
quest one unit of bandwidth, and that the flow arrivals are Poisson, and
flow holding times are exponentially distributed. Thus the offered load
between the source–destination pair� is �� = ��=��. LetR� denote
the set of candidate paths for routing flows between the source–des-
tination pair�. The global optimal proportional problem can be for-
mulated [8]–[10] as the problem of finding the optimal proportions
f��r ; r 2 R�g (where

r2R ��r = 1) for each source–destina-
tion pair�, such that the overall flow blocking probability in the net-
work is minimized. Or equivalently, finding the optimal proportions
f��r ; r 2 R�g such that the total carried traffic in the network

W =
� r2R

�r��(1� br) (1)

is maximized.
In (1), br denotes the blocking probability along pathr. Under the

link independenceassumption [8]–[10],br can be expressed as follows:

br = 1�
l2r

(1� bl) (2)

wherel 2 r means that linkl is part of router, andbl is the blocking
probability of link l. The blocking probabilitybl of link l is in turn
given by the Erlang loss formula

bl = E(�l; cl) =

�

c !

c

n=0

�

n!

: (3)

Here, the load offered on linkl; �l is the sum of all thereducedloads
(after independent loadthinning) from any source–destination pair�
which has a route passing through linkl, i.e.,

�l =
� r2R :l2r

��r��
m2r�flg

(1� bm): (4)

The global optimal proportional routing problem (1) is aconstrained
nonlinear optimization problemand can be solved using an iterative
procedure based on thesequential quadratic programming method
[18], [3]. Each stage of the iterative procedure has two steps. First,
given a set of flow proportions�r , the fixed-point equations (3) and
(4) involving bl’s and�l ’s are solved. Using these values,W given by
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(1) is recomputed. Then this algorithm essentially searches for a new
set of improved flow proportions based on the revenueW .

B. Virtual Capacity Model

We now turn our attention to the problem of modelinglocalizedpro-
portional routing. Unlike in global proportional routing, in localized
proportional routing we assume that each source node has only alocal
(and thuspartial) view of the network state. For example, a source
node may only have knowledge of the offered traffic loads between the
source–destination pairs originating from itself. It may also only have
partial network topology information (in particular, the link capacity
information may not be available to a source node). As mentioned in
the introduction, in this note we will focus on local QoS state informa-
tion gathered at two different granularity levels: thelink level and the
pathlevel. At the (finer) link level, each source node can collect the fol-
lowing information locally: 1) the offered traffic load of flows from the
source to a destination; 2) the number of flows routed along a path from
the source to a destination that are blocked; and 3) in the case when a
flow is blocked, the identity of the link at which the flow is blocked.
The third type of information can be made available to a source node by
simply piggybacking the identity of the link at which a flow is blocked
in the flow setup failure notification sent back to the source node. At
the (coarser) path level we assume that each source node only collects
the first and second types of the local information listed above. As a
result, the path-level local information provides a source node with a
much “vaguer” view of the global network QoS state.

Given only locally collected flow statistics, determining “optimal”
proportions for distributing flows among multiple paths between a
source–destination pair becomes a difficult problem. In particular,
since each source node doesnot know the capacity of a link and
the total offered load on the link, the Erlang loss formula cannot be
directly used to derive flow blocking probability at a link. To address
this problem, we introduce the notion ofvirtual capacityof a link (or
a path)perceivedby a source node. Consider a linkl, let �s;l be the
load placed by a source nodes, andbs;l be the blocking probability
observed by nodes. Intuitively, the virtual capacity,vcs;l, of link l

perceived by the source nodes is the (perceived) amount of bandwidth
available to the flows routed from sources along link l, given the
observed blocking probabilitybs;l. Formally,vcs;l is defined via the
inverse of the Erlang loss formula as follows:

vcs;l = E
�1(bs;l; �s;l) (5)

whereE�1(b; �) := fc : E(�s;l; c) = bs;lg is the inverse function of
the Erlang loss formula with respect to the capacity. Note that we use
thecontinuousversion of the Erlang loss formula defined in [5]. The
virtual capacity of apathcan also be defined analogously by replacing
the link l with a pathr; �l;s andbl;s with �r;s andbr;s, the load offered
and blocking probability observed by nodes along pathr.

The notion of virtual capacity previously defined has several inter-
esting and important properties that are key to our study of localized
(adaptive) proportional routing. First of all, it is clear that the virtual ca-
pacity of a link or a path can be computed solely based on local informa-
tion (e.g., load offered and blocking probability observed by a source
node). Second, the notion of virtual capacity provides aquantitative
measure of capacity2 share on a link or a path grabbed by the flows
originated from a source node. The larger the load a source node offers
on a link or a path, the more capacity share the node grabs. We later see

2It is worth noting that vc � c. This is due to “loss in multiplexing
gain” when a shared channel is divided into multiple “dedicated” channels. To
ensure the same blocking probability, the total capacity of the dedicated chan-
nels has to be larger than the capacity of the shared channel.

that this property helps the adaptation process by having a source node
with fewer good candidate paths grab more capacity on a shared link,
causing the other sources with better paths to adjust their proportions.
Third, the virtual capacity perceived by a node is a function ofboth its
offered loadand the observed blocking probability, which changes as
the overall load on a link or a path varies. Consequently, a node can
adjust its offered load to effect a change in the observed blocking prob-
ability, or as a response to the change in the observed blocking prob-
ability. The notion of virtual capacity therefore provides a theoretical
basis for the analysis of how flow proportions should be adjusted based
on locally collected statistics.

III. L OCALIZED PROPORTIONALROUTING

In this section, we present two virtual capacity based theoretical
schemes for localized proportional routing—thevirtual link based min-
imization(vlm) and thevirtual path based minimization(vpm). In both
schemes, each source collects local QoS state information, and based
on this local QoS state information, periodically recomputes flow pro-
portions assigned to the paths from the source to a destination. This
distributed dynamic adaptation procedure can be viewed as an iterative
process where in each iteration each source independently attempts to
minimize the observed blocking probability by adjusting the amount of
traffic routed through each path. These localized proportional routing
schemes differ in the type and the granularity of local QoS state infor-
mation collected, and therefore, in the computation of flow proportions
for paths.

A. VLM

In the vlm model, a source collects link-level flow blocking statis-
tics with the assistance from the connection admission control (CAC)
module. We assume that whenever a flow setup request fails at a link,
the identity of that link is also recorded and piggybacked to the source.
The CAC module at the source node informs the QoS routing module
of the flow setup failure and the identity of the link where the flow is
blocked. Such link-level flow blocking information can be gathered by
a source with very little overhead on the network.

With the locally collected link-level flow statistics, a source knows
the offered traffic load on a link contributed by flows originating from
that source. Unlike the global routing model, the source, however, does
not have any information regarding the traffic loads offered by the other
sources on the link. It neither has any knowledge of the capacity of
the link. The source can only infer the state of the link from the flow
blocking probability at the link it observes. Using the notion of virtual
capacity of a link, the source can infer its share of the bandwidth at
each link, and piece together a partialvirtual viewof the network from
its own perspective.

With the virtual network view, each source can employ a localized
version of the global optimal proportional routing scheme to compute
the “optimal” flow proportions for each of its destinations: we replace
the actual capacity of a link by its virtual link capacity, and only offered
traffic loads from the source is used to compute the optimal flow pro-
portions for the source. The resulting optimization procedure, referred
to as the virtual link based minimization (vlm) procedure, is shown
in Fig. 1, where s is a source node. This localized flow proportioning
scheme is an iterative process where each iteration is performed after
an observation interval by each source asynchronously. In thenth iter-
ation, the current virtual capacityvc(n)s;l of each linkl with respect to

s, is computed, based on the current offered load�
(n)
s;l and the corre-

sponding observed blocking probabilityb(n)s;l . The local minimization
is then performed on the virtual network thus formed with each linkl

having the capacityvc(n)s;l .
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Fig. 1. The vlm procedure at source nodes.

B. VPM

In the vpm model, each source collects only path-level flow statis-
tics: the number of flows routed along each path between the source
to a destination, and the number of flows blocked along the path. Un-
like the link-level localized QoS routing model, here we assume that
the identify of the link at which a flow is blocked isnot available to a
source. This, for example, will be the case if the link identity at which
a flow is blocked is not piggybacked to a source as part of flow setup
failure notification.

With only locally collected path-level flow statistics, a source can
not infer the QoS state of any individual link. A source can only obtain
some knowledge about the “quality” of a path based on the traffic of-
fered on the path and the corresponding observed flow blocking prob-
ability along the path. Similar to the virtual link based QoS routing
model, in the virtual path based routing model we associate a virtual
network with each source–destination pair, using the notion of virtual
capacity of a path. Consider a source–destination pair(s; d). Suppose
there arek candidate paths between sources and destinationd. Using
the notion of virtual capacity of a path, we treat thesek paths as if
they weredisjoint and each consisted of a singlevirtual link. The vir-
tual capacity of a pathr is represented byvcr , which is determined
by the offered load from sources to destinationd along pathr and
the observed blocking probabilitybr of flows routed along the pathr.
Although the real network topology of these paths may be very com-
plex (e.g., multiple paths of a pair may share links among them or with
paths of other source–destination pairs), the notion of virtual capacity
of a path allows us to circumvent these difficulties by essentially cap-
turing the “capacity share” of flows routed along various paths.

Given the path-level virtual network view for a source–destination
pair, the “optimal” flow proportions for the paths between the pair can
be computed to minimize the overall flow blocking probability ex-
perienced by the flows routed along these paths. Formally, consider
a source–destination pair�. Let R� denote the set of paths between
the source–destination pair�. For each pathr 2 R� let vcr denotes
its virtual capacity (perceived by the source–destination pair�). The
flow proportions for the paths can be computed using an iterative pro-
cedure, referred to as the virtual path based minimization (vpm) pro-
cedure, as is shown in Fig. 2. In this procedure, the virtual capacity
vc

(n)
r of each pathr is computed using the Erlang inverse formula,

given the current offered load�(n)r along the pathr and the corre-
sponding observed blocking probabilityb(n)r . Based on these path vir-
tual capacities, new loadsf�(n+1)

r g are reassigned to paths such that

r2R
�
(n+1)
r E(vc

(n)
r ; �

(n+1)
r ) is minimized. This procedure is per-

formed iteratively and independently at each source per each destina-
tion.

C. Alternative Paths and Localized Trunk Reservation

The virtual capacity based local minimization schemes described so
far treat all candidate paths equally. Since an admitted flow consumes

Fig. 2. The vpm procedure for a pair�.

bandwidth and buffer resources at all the links along a path, clearly,
path length is also an important factor that must be taken into con-
sideration. There is a fundamental tradeoff between minimizing the
resource usage by choosing shorter paths and balancing the network
load by using lightly loaded longer paths. As a general principle, it
is preferable to route a flow alongminhop(i.e., shortest) paths than
paths of longer length (also referred to asalternativepaths). By pre-
ferring minhop paths and discriminating against alternative paths, we
not only reduce the overall resource usage but also limit the so-called
“knock-on” effect [8], [9], thereby ensuring the stability of the whole
system. The knock-on effect refers to the phenomenon where using al-
ternative paths by some sources forces other sources whose minhop
paths share links with these alternative paths to also use alternative
paths. This cascading effect can cause a drastic reduction in the overall
throughput of the network.

In order to deal with the knock-on effect, trunk reservation [9] is em-
ployed where a certain amount of bandwidth on a link is reserved for
minhop paths only. A flow along a path longer than its minhop path
is admitted only if the available bandwidth even after admitting this
flow is greater than the amount of trunk reserved. Trunk reservation
provides a simple and yet effective mechanism to control the knock-on
effect. However, trunk reservation cannot be used directly in localized
routing schemes, since it requires global configuration. Furthermore,
core routers have to figure out whether a setup request for a flow is sent
along its minhop path or not, introducing undesirable burden on them.
We propose to address this by having each source router locally dis-
criminate against its own alternative pathswithout any explicit global
trunk reservation. A source node employing a localized scheme can
control the amount of alternative routing by adjusting the virtual ca-
pacities in its virtual network. This can be thought of as animplicit
localized trunk reservationperformed by each source independently.

The exact method in which alternative paths are discriminated varies
between vlm and vpm. While vlm employs link-level discrimination,
vpm does path-level discrimination. Under vlm with trunk reservation,
a link is categorized into two cases:alternative-onlyor minhop-also. A
link l is said to be alternative-only link w.r.t. a sources, if l lies only
along alternative paths from the sources to its destinations. Otherwise
if a minhop path from source s to any destination passes through linkl,
thenl is categorized as minhop, also w.r.t. sources. The links that are
used only by alternative paths for routing traffic from this source are
targeted for the adjustment. Their capacities are reduced by an amount
 where, is the trunk reservation parameter, i.e.,vcs;l = (1� )vcs;l
if l is alternative-only w.r.t. sources. The capacities of other links are
left unchanged. In case of vpm, this local adjustment of virtual capaci-
ties is more straightforward. Given a trunk reservation parameter , the
target virtual capacity of alternative paths is reduced by an amount ,
i.e.,vcr = (1� )vcr if r is an alternative path. The virtual capacities
of minhop paths are left unchanged. In both vlm and vpm, the mini-
mization procedure is then applied locally at the source on the virtual
network with these adjusted capacities.
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Before we proceed to evaluate the performance of these schemes, it
is interesting to contrast the link based and path based localized pro-
portional routing models with the global optimal proportional routing
model in the way they handle the sharing of links among paths. While
the global model is aware of how the links are shared by all the paths
between any source to any destination, the localized link-level model is
only aware of sharing of links among the paths from the same source.
The localized path-level model is completely oblivious of any link
sharing. However, this lack of knowledge about explicit sharing be-
tween paths is somewhat compensated by the notion of virtual capacity,
which indirectly accounts for the effect of link sharing. Moreover, the
localized models make up for the absence of such knowledge by em-
ploying an iterative process to compute flow proportions, in an attempt
to approach the optimal flow proportioning. This iterative procedure
can be thought of as continual refinement of the (partial) virtual net-
work view of each source that eventually converges to an equilibrium
state yielding near-optimal flow proportions.

D. Performance Evaluation

In this section, we demonstrate the convergence process of the lo-
calized proportional routing models, and compare their blocking per-
formance with that of the global optimal proportional routing model
through numerical investigation. Before we present the results, we first
describe the evaluation setup.

Theminisptopology used in our study is shown in Fig. 3 which is the
core of an ISP backbone topology used in [12]. For simplicity, all the
links are assumed to be bidirectional and of equal capacityC in each
direction. For each source, a subset of nodes (shown in smaller font)
are chosen as destination nodes. The flow dynamics of the network
are modeled as follows (similar to the model used in [22]). Each flow
is assumed to require one unit of bandwidth. Flows arrive at a source
node according to a Poisson process with rate�. The incoming traffic
at a source is uniformly split among its destination nodes. The holding
time of a flow is exponentially distributed with mean1=�. Following
[22], the offered network load is given by� = �N�h=�LC, whereN
is the number of source nodes,L is the number of links, and�h is the
mean number of hops per flow, averaged across all source–destination
pairs. The parameters used in our study areC = 20; � = 1; N =
9; L = 26, and�h = 2:64. The average arrival rate at a source node�
is set depending upon the desired load.

We first illusrate the convergence of localized schemes. The load�
is set to 0.60 and only the minhop paths are chosen as the candidate
paths for each source–destination pair. The average period between
recomputations is set to 1. The Fig. 4(a) shows the overall blocking
probability as a function of time, i.e., the number of iterations. The
performance of the global optimal routing scheme is also shown for
reference. Note that the performance of localized schemes only varies
with time. It can be seen that the overall blocking probability of both
the localized routing schemes gradually decreases as the number of it-
erations increases. Both the schemes eventually converge and each to a
different convergence point. Starting with arbitrary initial proportions,
the localized schemes approach close to their respective convergence
points within ten iterations. Though the finer-grained link-level scheme
performs better than the coarser-grained path-level scheme, there is not
significant difference in their blocking probabilities. More importantly,
the blocking performance of both the localized schemes is quite close
to that of the global optimal scheme.

We now study the effectiveness of localized trunk reservation
method and the impact of parameter on the performance. Apart
from minhoppaths, paths of lengthminhop + 1 are also chosen as
the candidate paths for each source–destination pair. Fig. 4(b) and
(c) show the convergence process of vlm and vpm, respectively. The

Fig. 3. Theminisptopology used in our study.

performance of these schemes is shown for different values of the trunk
reservation parameter : 0%, 5%, 10%, 15%. It is quite evident that
the performance of localized schemes with(>0%) trunk reservation
is better than without (0%) it. However, as the value is increased
the performance gain is reduced. There is almost no difference in
performance between values of 10% and 15%. These results show
that localized trunk reservation is quite effective, particularly in case
of vpm. This is expected since vlm even without any trunk reservation,
using finer-grained link-level information, accounts for sharing of
links between minhop and alternative paths from a source to all its
destinations. The role of localized trunk reservation in vlm is limited
to avoiding overloading of minhop paths of a source by traffic on
alternative paths of another source. On the other hand, the localized
trunk reservation plays a much more critical role in vpm. The minhop
paths to a destination have to be guarded from alternative paths to the
same destination besides from alternative paths to other destinations.
This is due to availability of only coarser-grain information, and thus,
lack of knowledge about sharing of links between different paths.
However, with localized trunk reservation, the vpm scheme tides over
this shortcoming and performs comparably to the vlm scheme. We
now proceed to study the practical issues involved in implementing
localized schemes.

IV. I SSUES INIMPLEMENTATION OF LOCALIZED SCHEMES

The localized schemes described so far have been shown to approach
the performance of the optimal scheme using only local information.
Furthermore, even with coarser-grain path-level blocking information
the vpm scheme performs as well as the vlm scheme that uses finer-
grain link-level blocking information. It is easier to collect path-level
statistics and simpler to implement path-based schemes. Hence, we
focus on path-based localized schemes and further investigate the is-
sues involved in implementing them.

A. Equalization-Based Proportioning

The vpm scheme first computes the virtual capacity of each can-
didate path and then performs local minimization. Though the com-
plexity of this minimization procedure is much less than that of optimal
scheme, it could still be significant. A simple alternative to minimiza-
tion procedure is toequalizeeither blocking probabilities or blocking
rates. The objective of theequalization of blocking probabilities(ebp)
strategy is to find a set of proportionsf~�1; ~�2; . . . ; ~�kg such that flow
blocking probabilities of all the paths are equalized, i.e.,~b1 = ~b2 =

� � � = ~bk, where~bi is the flow blocking probability of pathri, and
is given byE(~�i�; ci). On the other hand, the objective of theequal-
ization of blocking rates(ebr) strategy is to find a set of proportions
f�̂1; �̂2; . . . ; �̂kg such that flow blocking rates of all the paths are
equalized, i.e.,̂�1b̂1 = �̂2b̂2 = � � � = �̂k b̂k, whereb̂i is the flow
blocking probability of pathri, and is given byE(�̂i�; ci).

The virtual path based equalization (vpe) procedure for equalizing
blocking rates is shown in Fig. 5. At any given iterationn � 0, let�(n)r

be the amount of the load currently routed along a pathr 2 R� , and let
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(a) (b)

(c)

Fig. 4. Convergence of localized schemes(load = 0:60). (a) Minhop paths only. (b) vlm with alternative paths. (c) vpm with alternative paths.

Fig. 5. The vpe procedure for a source–destination pair�.

b
(n)
r be its observed blocking probability on the path. Then the virtual

capacity of pathr is given byvcr = E�1(�
(n)
r ; b

(n)
r ). For each minhop

path, the mean blocking rate of all the minhop paths,��(n), is used to
compute a new target load. Similarly, for each alternative path, a new
target load is computed using the target blocking probability(1� )b�.
Here,b� is the minimum flow blocking probability of all the minhop
paths and is a configurable parameter to limit the knock-on effect.
The basic idea behind this alternative routing method is to ensure that
an alternative path is used to route flows between the source–destina-
tion pair only if it is better than all the minhop paths. Given these new
target loads for all the paths, the new proportion of flows,�

(n+1)
r , for

each pathr is obtained, resulting in a new load�(n+1)r = �
(n+1)
r �� on

pathr.
We now compare the performance of the vpe scheme with the vpm

scheme. The Fig. 6(a) shows the performance of these schemes when
only minhop paths are chosen as the candidate paths while the Fig. 6(b)
shows the case when alternative paths are also used for routing. In both
cases, the load is varied from 0.5 to 0.6 and the overall blocking prob-
ability is shown as a function of load. It can be seen that though the
vpm performs better than the vpe scheme, the difference is not large.
Moreover, with alternative paths there is almost no difference in the

(a)

(b)

Fig. 6. Performance of localized schemes under various loads. (a) Minhop
paths only. (b) Alternative paths also.

performance of vpe and vpm. This can be attributed to the way the
vpe scheme discriminates alternative paths using the performance of
minhop paths as a reference.
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The localized routing schemes presented so far are based on theo-
retical virtual capacity model. We have shown that they yield near-op-
timal performance using only local information. However, computa-
tion of virtual capacity and target load using Erlang’s Loss Formula
can be cumbersome. More importantly, the accuracy in using Erlang’s
Loss Formula to compute virtual capacity and new load relies critically
on steady-state observation of flow blocking probability. Hence, small
statistic variations may lead to erroneous flow proportioning, causing
undesirable load fluctuations. To circumvent these difficulties, we have
proposed simple yet robust implementations of these schemes, details
of which can be found in [17].

B. Heterogeneous Traffic

The discussion so far is focused on the case where the traffic is ho-
mogeneous, i.e., all flows request for one unit of bandwidth. In [20],
it was shown that when the capacity of a link is large, the blocking
probability of a flow of typei can be approximated as follows. Sup-
pose that typei flow requests fordi units of bandwidth and the load of
type i flows on link l is �i

l . The blocking probability for typei flows
on link l is given bybil = (di=�)E(( �i

ldi)=(�); (cl=�)), where�
is an “equivalent rate” given by� = ( �i

ld
2

i )=( �i
ldi). In other

words, the ratio of blocking probabilities of flow typesi andj would be
same as the ratio of their bandwidth requests, i.e.,(bi=bj) � (di=dj).
This implies that(�1b1)=(�2b2) = (�1=�2), i.e., the blocking rate
of flows of a type is proportional to their fraction in the total offered
load. Consequently, performance of an equalization based proportional
routing scheme would be same with or without categorizing the flows
into different classes. Considering that in practice link capacities are
much larger than an individual flow’s bandwidth request, proportional
routing schemes can be usedas isto route heterogeneous traffic.

C. Candidate Path Selection

The localized routing schemes discussed thus far are concerned
only with computing proportions given a set of candidate paths.
While the proportions for candidate paths are adjusted to reflect the
changing network conditions, the candidate path set itself remains
static. To reduce setup overhead and to ensure faster convergence,
it is desirable to identify a few good candidate paths. However, due
to changing network conditions, it is not possible to preselect a few
good paths statically. Hence it is necessary to supplement localized
proportional routing with a mechanism that dynamically selects a
few good candidate paths. We have proposed such a hybrid approach
to proportional routing where candidate paths are selected based on
infrequently exchanged global link-level information and traffic is
proportioned among candidate paths using locally collected path-level
information. For more details, please see [16] and [17].

V. CONCLUSION

In this note, we set out to investigate an important and fundamental
issue in localized QoS routing: the granularity of locally collected
QoS state information and its impact on the design of localized QoS
routing schemes. Toward this goal, we developed theoretical models
for studying localized proportional QoS routing. These models are
designed using the key notion of virtual capacity of a link or path,
which provides the basis for a source to infer the perceived quality of
a link or path based on only locally collected QoS state information.

Through numerical study, we demonstrated that although localized
QoS routing schemes that make routing decisions based on locally
collected QoS state information does pay a performance penalty for
the partial and “vaguer” view of the global network QoS state, this
penalty is not very significant. We have also discussed implemen-
tation issues and argued that by using simple localized equalization
based proportioning strategies, it is possible to route heterogeneous
traffic and yield near-optimal blocking performance with minimal
communication overhead.

REFERENCES

[1] R. Callon, A. Viswanathan, and E. Rosen, “Multiprotocol label
switching architecture,”RFC 3031, Jan. 2001.

[2] S. Chen and K. Nahrstedt, “An overview of quality-of-service routing
for the next generation high-speed networks: Problems and solutions,”
IEEE Network Mag., Special Issue Trans. Distrib. Digital Video, vol. 12,
pp. 64–79, Nov./Dec. 1998.

[3] T. Coleman and Y. Li, “An interior, trust region approach for nonlinear
minimization subject to bounds,”SIAM J. Optim., vol. 6, pp. 418–445,
1996.

[4] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, “A framework for
QoS-based routing in the Internet,”, RFC 2386, Aug. 1998.

[5] R. F. Farmer and I. Kaufman, “On the numerical evaluation of some
basic traffic formulae,” inNetworks. New York: Wiley, 1978, vol. 8,
pp. 153–186.

[6] R. Guerin, S. Kamat, A. Orda, T. Przygienda, and D. Williams, “QoS
routing mechanisms and OSPF extensions,”RFC 2676, Aug. 1999.

[7] J. S. Kaufman, “Blocking in a shared resource environment,”IEEE
Trans. Commun., vol. COM-29, pp. 1474–1481, 1981.

[8] F. P. Kelly, “Routing in circuit-switched networks: Optimization,
shadow prices and decentralization,”Adv. Appl. Probab., vol. 20, pp.
112–144, 1988.

[9] , “Routing and capacity allocation in networks with trunk reserva-
tion,” Math. Oper. Res., vol. 15, pp. 771–793, 1990.

[10] , “Fixed point models of loss networks,”J. Austr. Math. Soc., ser.
B, vol. 31, pp. 204–218, 1989.

[11] P. B. Key and G. A. Cope, “Distributed dynamic routing schemes,”IEEE
Commun. Mag., vol. 28, pp. 54–64, Oct. 1990.

[12] Q. Ma and P. Steenkiste, “On path selection for traffic with bandwidth
guarantees,” presented at theIEEE Proc. ICNP, 1997.

[13] D. Mitra, J. A. Morrison, and K. G. Ramakrishnan, “ATM network
design and optimization: A multirate loss network framework,”
IEEE/ACM Trans. Networking, vol. 4, pp. 531–543, Aug. 1996.

[14] S. Nelakuditi, R. P. Tsang, and Z.-L. Zhang, “Quality-of-service routing
without global information exchange,” inProc. IWQOS, 1999.

[15] S. Nelakuditi, Z.-L. Zhang, and R. P. Tsang, “Adaptive proportional
routing: A localized QoS routing approach,” inIEEE Proc. IN-
FOCOM’00, Mar. 2000.

[16] S. Nelakuditi and Z.-L. Zhang, “On selection of paths for multipath
routing,” in Proc. IWQOS’01, June 2001.

[17] S. Nelakuditi, “Localized Approach to Providing Quality-of-Service,”
Ph.D. dissertation, Univ. Minnesota, Minneapolis, MN, Oct. 2001.

[18] M. Powell, “A fast algorithm for nonlinear constrained optimization cal-
culations,” inNumerical Analysis, Lecture Notes in Mathematics, G. A.
Watson, Ed. New York: Springer-Verlag, 1978, vol. 630.

[19] J. W. Roberts, “Teletraffic models for the telecom 1 integrated services
network,” presented at theProc. Internet Teletraffic Congress-10. Ses-
sion 1.1, paper #2.

[20] J. Roberts, U. Mocci, and J. Virtamo, “Broadband network teletraffic,”
in LNCS 1155. New York: Springer-Verlag, 1996.

[21] K. W. Ross,Multiservice Loss Models for Broadband Telecommunica-
tion Networks. New York: Springer-Verlag, 1995.

[22] A. Shaikh, J. Rexford, and K. Shin, “Evaluating the overheads of source-
directed quality-of-service routing,” inProc. ICNP, 1998.

[23] Z. Zhang, C. Sanchez, B. Salkewicz, and E. Crawley, “Quality of service
extensions to OSPF,” unpublished, Sept. 1997.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


