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Abstract—Mobile phones are becoming the convergent platform for personal sensing, computing, and communication. This paper
attempts to exploit this convergence towards the problem of automatic image tagging. We envision TagSense, a mobile phone based
collaborative system that senses the people, activity, and context in a picture, and merges them carefully to create tags on-the-fly.
The main challenge pertains to discriminating phone users that are in the picture from those that are not. We deploy a prototype of
TagSense on 8 Android phones, and demonstrate its effectiveness through 200 pictures, taken in various social settings. While research
in face recognition continues to improve image tagging, TagSense is an attempt to embrace additional dimensions of sensing towards
this end goal. Performance comparison with Apple iPhoto and Google Picasa shows that such an out-of-band approach is valuable,
especially with increasing device density and greater sophistication in sensing and learning algorithms.

Index Terms—Image Tagging, Face Recognition, Sensing, Smartphone, Context-awareness, Activity Recognition

1 INTRODUCTION

AUTOMATIC image tagging has been a long stand-
ing problem. While the fields of image processing
and face recognition have made significant progress, it
remains difficult to automatically label a given picture.
However, digital pictures and videos are undergoing
an explosion, especially with the proliferation of high
quality digital cameras embedded in mobile devices. As
these pictures get stored in online content warehouses,
the need to search and browse them is becoming cru-
cial. Furthermore, the growing sophistication in textual
search is raising the expectations from image retrieval —
users are expecting to search for pictures as they do for
textual content. Efforts to engage humans for labeling
pictures (with crowd-sourcing or online gaming [1], [2],
[3], [4]) may be a stop-gap solution, but is not likely
to scale in the longer run. The volume of content is
growing at dramatic speeds, and its dependence on a
pair of human eyes is likely to become the bottleneck.

This paper breaks away from established approaches
to image tagging, and explores an alternative architec-
ture rooted in multi-dimensional, out-of-band sensing.
The core idea is simple. Consider a scenario in which Bob
is taking a picture of his friends. Bob’s phone establishes
a short-lived wireless connection with all his friends’
phones, and instructs them to activate their sensors for a
short time-window around the photo-click. The sensors
sense the “moment”, summarize the measured data, and
communicate them back to Bob’s phone. Bob’s phone
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processes this data to identify which of the individuals
are in the picture, their activities, and other contextual
tags about the occasion. These tags are systematically or-
ganized into a “when- wher e- who- what ” format, ulti-
mately creating an automatic description for the picture.

A natural question is why should sensor-assisted tagging
be any easier or better than image processing/face recognition?
We believe this is true because the different sensors are
likely to capture the “moments” across multiple sensing
dimensions. Laughing may be more naturally detectable
via the microphone; dancing may exhibit an accelerom-
eter signature; light sensors may easily discern between
indoor and outdoor environments [5], [6], [7]. Further,
people in the picture may have the direction of their
smartphone’s compass opposite to that of the camera’s
compass; those that pose for the picture may exhibit a
motion signature through their accelerometers. Recog-
nizing all these attributes through image processing
alone may be hard. The diversity offered by multiple
sensing dimensions allows TagSense to “cast a wider
net” — the chances of capturing the individuals/actions,
over at least one of the dimensions, is likely to be higher.

Translating the overall vision into a deployable system
entails a number of challenges. (1) TagSense needs to
identify the individuals in the picture — since Bob’s
phone gathers sensed information from all phones
within wireless range, it is unclear which of the phones
were in the picture. (2) Sensor readings gathered from
different phones need to be mined to identify activities
and contextual information. (3) The energy budget for
sensing, communicating, and computing needs to be
optimized to facilitate wide-scale adoption.

The goal of this paper is to address these challenges,



and consolidate them into an extensible system frame-
work. We summarize our contributions in this paper as:

o Envisioning an alternative, out-of-band opportu-
nity towards automatic image tagging. We believe
that this opportunity will be catalyzed by the grow-
ing proliferation of camera-equipped smartphones,
and concurrent advances in personal sensing.

o Designing TagSense, a system for coordinating the
mobile phone sensors, and processing the sensed
information to tag images. The diversity in multi-
dimensional sensing helps overcome problems that
are otherwise difficult on a single dimension.

o Implementing and evaluating TagSense on An-
droid Nexus One phones. Compared to face recog-
nition capabilities in Apple iPhoto and Google Pi-
casa, TagSense exhibits a fairly good precision, and
a significantly higher recall. Moreover, activity tags
with TagSense are more relevant than Google Gog-
gles [8], giving us confidence to pursue TagSense as
a long-term research project.

The rest of this paper expands on each of these contri-
butions, beginning with the problem space, and followed
by the system overview, design, and evaluation.

2 PROBLEM SPACE

This section introduces TagSense with an example, and
uses it to describe the problem landscape.

Figure 1 shows 3 pictures labeled by TagSense. The
left and right were taken while our research group got
together in the Duke University’s Wilson Gym, and later
again at the Nasher Museum. The middle picture was
taken outside the Hudson Hall while snowing. Seven
of the students had a phone in their pockets, running
the TagSense application. For each picture, the sensor
information from all the phones were assimilated and
processed offline. TagSense generated the following tags:

Picture 1: Novenber 21st afternoon, Nasher

Museum indoor, Ronmit, Sushma, Naveen,
Souvi k, Justin, Vijay, Xuan, standing,

t al ki ng.

Picture 2: Decenber 4th afternoon, Hudson
Hal |, outdoor, Xuan, standing, snow ng.
Picture 3: Novenber 21st noon, Duke W/ son
Gym indoor, Chuan, Romit, playing, mnusic.

With out-of-band sensing over multiple dimensions,
tagging can be relatively easier, compared to image pro-
cessing/face recognition. Tags like “Nasher Museunt
and “W|son Gynt" are extracted from logical loca-
tion services, or by reverse looking up geographic
databases. “I ndoor/ out door ” is extracted from light-
sensor readings; the names of each individual from the
phones; “standi ng, playing” from accelerometers;
and “tal king, nmusic” from sound. Perhaps more
importantly, the tags do not include the names of the

people who were not in these pictures, even though they
were within wireless vicinity. Thus, although TagSense-
generated tags are not sophisticated, we believe they
improve the state of the art. Google Goggles was not able
to produce any tags for the same pictures in Figure 1.

We also asked an arbitrary person (who was not
present at the scene and does not know the people in
the pictures) to assign tags. This represents what one
might expect from a crowd-sourcing solution, such as
from Mechanical Turk [1]. The resulting tags were:

Picture 1: many people, sniling, standing
Picture 2: one person, standi ng, snow ng
Picture 3: t wo guys, playing, ping pong

We observed that human assigned tags were some-
what complementary to TagSense-generated tags in
terms of semantic richness. While humans easily recog-
nized the semantics of a picture, such as “smiling”,
electronic sensing extracted low-level attributes such as
names of people, simple actions, location, ambience, etc.
Even though these sensed attributes may only add up to
a small “tag vocabulary” today, recent research [9] has
made significant advances in enriching this vocabulary.

Scope of TagSense

TagSense is a first step and certainly not a complete solu-
tion for image tagging. Images of objects (e.g., bicycles,
furniture, paintings), of animals, or of people without
phones, cannot be recognized. Put differently, TagSense
requires the content in the pictures to have an electronic
footprint that can be captured over at least one of the
sensing dimensions. If the objects do not present such
footprints, one has to rely on the visual domain alone
for detecting them (perhaps by training the classifiers
using pictures from the web of various objects). Ar-
guably, one may envision RFIDs on bicycles, furniture,
paintings, and even pet animals in the future. If future
cameras come equipped with RFID readers, TagSense
will immediately be able to tag each picture based on the
objects in it. However, without RFID readers on today’s
phones, TagSense narrows down the focus to identifying
the individuals in a picture, and their basic activities.

Basis for Comparison

It is natural to contrast the person-identification capa-
bilities of TagSense against face recognition algorithms.
While we will indeed compare with iPhoto and Picasa
(both of which allow face tagging via some human-
assistance), we observe that the visual and sensor-based
approaches can be complementary. Face recognition may
work well under good lighting conditions, when a per-
son’s face is clearly visible; TagSense may be as good
even under bad lighting conditions. For instance, unlike
TagSense, both iPhoto and Picasa did not recognize the
people in the middle and right pictures in Figure 1.
TagSense does not depend on the facial features of a
person (whether he is wearing dark glasses, or sporting



Fig. 1. Three example pictures. TagSense tags each picture with the time, location, individual-name, and basic activity.
Face recognition by iPhoto and Picasa can tag people in the left picture, less so in the middle, and not so in the right
picture. An arbitrary human (emulating crowd-sourcing) is able to label with semantically rich tags, however cannot
name individuals. Google Goggles, relying on image processing, offers poor tags.

a new beard), whereas face-recognition applies well to
kids who do not carry phones. Finally, face recognition
falsely detected faces in a wall-painting, and got con-
fused between twins in a picture; TagSense avoided both
these pitfalls. In summary, a hurdle to visual recognition
may not hinder recognition on other sensing dimensions,
and vice versa. Therefore, we believe that TagSense in
conjunction with face recognition algorithms could make
people-identification even more robust.

3 SYSTEM OVERVIEW

Figure 2 shows a high level overview of the TagSense
system. We consider an example scenario where Bob
is taking a picture of Alice and Eve, while John is in
the vicinity (but not in the picture). We describe the
operations of the TagSense system step-by-step.
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Fig. 2. TagSense architecture — the camera phone trig-
gers sensing in participating phones and gathers the
sensed information. It then determines who is in the
picture and tags it with the people and the context.

When TagSense is activated at the beginning of an
event (e.g., picnic), the application prompts the user
for a session password. People participating in that
event, and willing to run TagSense, decide on a common
password and enter it in their respective phones (alter-
native approaches to session password based on social

networking are discussed later in this section). This pass-
word acts as a shared session key, ensuring that sensed
information is assimilated only from group members.
Thus, when Bob takes a picture of Alice in a crowded
place, the picture does not get tagged with names of all
other people in the crowd. Privacy remains preserved.

Once Bob is ready to take the picture, he activates
the camera on the phone. Bob’s phone immediately
broadcasts an activat e-sensor beacon, encrypted
with the shared key. Phones in the group activate their
respective sensors. Once Bob clicks the picture, Bob’s
camera sends a beacon with its local timestamp and
the phones record it. Phone to phone communication is
performed using the WiFi ad hoc mode. After a threshold
time from the click, the phones deactivate their sensors,
and send sensor information back to Bob’s phone. Bob’s
phone assimilates these per-person activities, and also
infers some contextual information from its own sensors,
including location, ambient sound, light, etc.

The per-person activities are received from each phone
in the group, not necessarily those who were in the
picture. Thus, Bob’s phone must tell which phone-
owners were in the picture, and tag it accordingly.
Briefly, TagSense adopts three mechanisms. (1) When
people explicitly pose for the picture, TagSense extracts
a pause signature from the accelerometer readings. This
pause signature correlates well with the timing of the
photo-click, and is found to be mostly absent in people
who are not posing for the picture. (2) People in the
picture are often faced towards the camera. TagSense
leverages the phones’” and camera’s compass directions
to infer a “mutually facing” relationship; this heuristic
improves the confidence of the posing signatures. As
will be evident later, unknown and time-varying phone
orientations make the problem difficult. (3) For pictures
in which the subjects do not pose explicitly, the TagSense
camera takes multiple snapshots. The motion vectors for
the subjects are computed from the sequence of snap-
shots, and then correlated to the motion derived from



the phones’ accelerometer/compass readings. Phones
that exhibit a good correlation (between the visual and
acceleration dimensions) are used for tagging. The next
section visits the design of these techniques in detail.

Knowing which phones/people are in the picture,
TagSense extracts the context only from these phones. In
some cases, the context information is adequate for direct
tagging (e.g., sitting, walking, indoor, outdoor, etc.).
However, some measurements require CPU-intensive
processing (e.g., laughter recognition), and others rely
on external databases (e.g.,, GPS-to-address). In these
cases, TagSense exports the measurements to a cloud and
retrieves additional tags. These tags are then ordered in
a when-where-who-what format as follows,
<time, logical location,
namel <activities for namel>,
nane2 <activities for name2>, ...>
and uploaded into a specified repository for image-
search and other applications. We now address two
common questions about TagSense framework.

How to form an ad-hoc network of nearby smart-
phones? We mentioned earlier that the camera phone
gathers sensor information from other phones in the
vicinity using WiFi. It is relatively straightforward to
realize this task if a phone can act as a hotspot enabling
communication with other nearby phones. However,
in many cases, either the smartphone vendors or the
carriers currently do not support such a feature. There
have been workarounds to put WiFi into ad-hoc mode in
smartphones by installing third party firmware such as
CyanogenMod [10]. Recently, WiFi Direct protocol [11]
has been proposed to ease the setting up of direct WiFi
communication between devices, which is supported
by latest versions of Android. These advances ease the
implementation and installation of TagSense.

How to ensure privacy of users while gathering
sensor measurements? TagSense preserves privacy of a
group of users by having them share a password/key
to ensure that sensed information is confined only to
group members. The key management can be made
convenient by having family members share a password,
and similarly each group of friends. Also, a phone can be
configured to respond only to TagSense beacons from the
phones on its contact list. An authentication mechanism
could also be built based on online social networks. For
instance, a smartphone may forward sensor information
only if the request comes from a specific Google+ circle
or Facebook group member’s phone. We have not yet in-
tegrated TagSense with social networks!, but we believe
it is feasible to devise convenient and rigorous methods
to preserve the privacy of users.

1. TagSense can record not only who is in the picture but also who is
around when the picture is taken. This additional meta information can
offer clear and intuitive control to the user while posting pictures on
a social network. She can restrict the viewership to only those friends
that are present at that event, a desirable functionality that currently
does not exist and can not be realized with face recognition alone.

4 DESIGN AND IMPLEMENTATION

This section zooms into the design and implementation
of the individual components in TagSense. We address
the primary challenge first, namely who are in the pic-
ture. We then describe modules that handle what they
are doing, and when and where the picture was taken.

4.1 WHO s in the picture

Alice and John may be spatially close by, but Bob may
choose to take Alice’s picture alone. Since Bob’s phone
will communicate to all phones through WiFi, and be-
cause phones use omnidirectional antennas, it is hard
to tell which phones are part of the picture. TagSense
explores combinations of multiple sensing dimensions,
along with observations about human behavior, to iden-
tify who are in the picture. We present 3 main op-
portunities: (1) accelerometer based motion signatures,
(2) complementary compass directions, and (3) motion
correlation across visual and accelerometer/compass.

(1) Accelerometer based motion signatures

We imagined that when subjects pose for a picture,
their phones are likely to exhibit a motion signature
that is different from those not posing. The intuition is
that the subjects of the picture often move into a specific
posture in preparation for the picture, stay still during the
picture-click, and then move again to resume normal behavior.
TagSense expects to find such a signature around the
time of the picture-click, but only in the accelerometers of
subjects posing for the picture. For those not posing, the
expectation is that their motions would not be in “lock-
step” with the subjects, and hence, their accelerometers
will not reveal such a signature.

To verify the existence of posing signatures, we dis-
tributed Nexus One phones to 4 students, and took
20 pictures at different times and locations. Different
subsets of students posed in each of the pictures, and
all their accelerometer readings were recorded. The mea-
surements were processed offline, and the variance vi-
sualized over time. Figure 3(a) shows the results from
a random subset of people that were in the picture,
while Figure 3(b) shows the same for people outside
the pictures. The black vertical line indicates the time
at which the pictures were taken. The posing signature
appears to be distinct — the accelerometer variance sub-
sides for a few seconds around the picture-click, and
grows back again. Section 5 presents additional results
from ~ 70 posing pictures, reaffirming that the presence
of the signature is a reliable discriminator.

(2) Complementary Compass Directions

A person may behave naturally when the picture is being
taken (e.g., playing a guitar, making a speech) — the
posing signature will be absent. Even if a person poses,
it may not be distinct on the accelerometer. Figure 4(a)
shows a picture where the subject was seated on his chair
and only looked up when the picture was taken — the
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Fig. 3. Variance of accelerometer readings from phones
of (a) those in the picture and (b) those outside the pic-
ture. Posing signature is evident in (a) and absent in (b).

“looking up” did not reflect on the accelerometer. To
address this case, TagSense makes an assumption that
people in the picture roughly face the direction of the
camera, and hence, the direction of their compasses will
be roughly complementary to the camera’s facing di-
rection. Thus, by analyzing people’s compass directions,
TagSense expects to tell who are in the picture.

The challenge, however, is that the user and her phone
may not be facing the same direction. This is because the
phone may be in the pant’s side-pockets, in a women’s
purse, back-pockets, etc. Let personal compass offset (PCO)
denote this angle between the user’s facing direction and
her compass direction (see Figure 4(b)). The TagSense
camera computes the PCO as:

UserFacing = (CameraAngle + 180) mod 360
PCO = ((UserFacing + 360) — CompassAngle) mod 360

Figure 4(c) shows the distribution of PCO, derived
from 50 pictures in which people were facing the camera.
Evidently, a reasonable fraction of the phones are not
oriented in the opposite direction of the camera even
though its user is actually facing the camera. Therefore,
blindly using the compass direction to detect the subjects
of a picture can be erroneous.

TagSense mitigates the compass problem by period-
ically recalibrating the PCO. The idea is to find pic-
tures in which subjects can be reliably identified using
other methods, and use these pictures for recalibration.
Specifically, if TagSense identifies Alice in a picture due
to her posing signature, her PCO can be computed
immediately. In subsequent pictures, even if Alice is not
posing, her PCO can still reveal her facing direction.

UserFacingpe, = (CompassAngle + PCO) mod 360

The inferred facing direction of the user is in turn used
to determine whether she is in the picture. This can
continue as long as Alice does not change the orientation
of her phone. However, if she moves the phone and
changes its PCO (say at time ¢;), then all pictures taken
after ¢; may get erroneously tagged.

We believe that TagSense can be made robust to such
changes in PCO. Let us assume that TagSense takes
a picture at time t;, t; > t;, where Alice was again
identified reliably through a posing signature. TagSense
recalibrates Alice’s PCO at t;, and revisits pictures that
were taken between ¢; and t;. All these pictures are
re-analyzed with Alice’s new PCO - if the new PCO
indicates that Alice was actually facing the camera in a
prior picture, the correction is made. In general, as long
as an individual’s PCO gets periodically re-calibrated,
her presence in other pictures can be reliably identified.

(3) Moving Subjects

Some pictures may have subjects moving in them -
playing ping-pong, finish line in a race, people dancing,
etc. Posing signatures will clearly be absent in these;
even compass orientation is unreliable because the mov-
ing subjects’ compass reading may continuously change
over time. TagSense relies on a multi-dimensional sens-
ing heuristic to identify the moving subjects. The essen-
tial idea is to take multiple snapshots from the camera,
derive the subject’s motion vector from these snap-
shots, and correlate it to the accelerometer measurements
recorded by different phones. The accelerometer motion
that matches best with the optically-derived motion is
deemed to be in the picture. We elaborate on this next.

When a user clicks for a picture, the TagSense camera
takes several snapshots? following the click. This time-
sequence of snapshots is then analyzed to identify the
motion vectors of the subjects. Figure 5 illustrates the
intermediate steps for calculating the motion vectors
between two snapshots. First, the velocity of each pixel
is computed by performing a spatial correlation across
two snapshots — this operation is well known as Optical
Flow. TagSense adopts a recent Mat | ab implementation
for Optical Flow [12], and the outcome is shown in
Figure 5(c). Second, the average velocity for the four
corner pixels are computed, and subtracted from the
object’s velocity — this compensates for the jitter from
the cameraman’s hand. Third, the color of each pixel
is redefined based on its velocity. Neighboring pixels
with different velocities are assigned different colors,
producing clear boundaries for moving objects (Figure
5(d)). Fourth, by leveraging the outcome of the third
step, an edge finding algorithm identifies the objects in
the picture (Figure 5(e)). Now, a bounding box is created
around each object. Finally, the average velocity of one-
third of the pixels, located in the center of each object,

2. A snapshot is at a much lower resolution compared to actual
photos. In our prototype, they are just screenshots of the camera
preview, taken at time intervals of 0.3s.
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Fig. 5. The illustration of the procedure for extracting motion vectors of people from two successive snapshots.

is computed and returned as the motion vectors of the
people in the picture. Figure 5(f) shows the result.

Once the optical motion vectors are in place, TagSense
assimilates the accelerometer/compass readings from
different phones and computes coarse grained velocity
hints. We note that computing velocity from noisy ac-
celerometers is extremely difficult. Therefore, we only
extract a crude hint (e.g., low, medium, high), based
on the up-down movements of the phone along the
axis perpendicular to the user’s motion. The acceleration
along this axis varies, based on whether the user is run-
ning/biking, walking, or reasonably stationary. Features
of such motion, combined with compass directions, are
used to compute rough velocity vectors, which in turn
are matched to the output of optical flow. The match is
performed for every object, and each match tags a new
person in the picture. Of course, this scheme is amenable
to errors as reported in the evaluation section — further

work is necessary to reliably handle moving subjects.

Combining the Opportunities

After taking a picture, TagSense attempts to leverage the
above opportunities for tagging it with the names of
people. TagSense first searches for the posing signature
in the accelerometer readings of every phone, and also
computes that user’s facing direction (assuming her PCO
is known). If the posing signature is present, the person
is immediately deemed to be in the picture, and her PCO
is recalibrated. In the absence of the posing signature,
TagSense checks if the person is reasonably static. If so,
and her facing direction makes less than 45° angle with
the camera’s direction, then her name is added to the
tags. Finally, if the person is not static, TagSense com-
putes the picture’s optical motion vectors and correlates
with the person’s accelerometer/compass readings. The
person is included upon a high-confidence match.



Integrating TagSense with Face Recognition

As mentioned before, TagSense is a complementary
approach to face recognition. On one hand, TagSense
cannot tag people without phones and pictures taken
in the past. On the other hand, face recognition works
well only in good lighting conditions when a person’s
face is clearly visible. In other words, any hurdles to
visual information processing are unlikely to hinder
progress on techniques based on information from other
dimensions, and vice versa. When combined, the smart-
phone and face based approaches can work in synergy.
TagSense can easily tag people in solo posing pictures
bootstrapping face recognition approaches without hu-
man assistance. As TagSense tags more pictures of a
person, recognizing her face becomes more accurate.
TagSense can also limit the set of candidates using the
above methods making it easier to recognize the faces
in the picture with higher confidence. Similarly, when a
person’s face is recognized, TagSense can calibrate that
person’s PCO and use it to tag the surrounding pictures.
There are many other ways these two approaches can
reinforce each other, which we will explore in future.

Points of Discussion

(1) TagSense cannot pinpoint people in a picture. It can
say that Eve is in the picture but may not be able to
point out which of the three people in the picture is
Eve. Nevertheless, we believe TagSense-type tagging is
still valuable. For instance, a user could ask, ”show all
Birthday party pictures where Eve was present”. Such an
application does not require knowing which one is Eve
— just knowing that she is in the picture is adequate.

(2) TagSense cannot tag kids as they are not likely to have
phones. This is a major limitation, however, even at a
young age, kids are beginning to listen to music and play
games on devices like iPods/PSPs. TagSense works with
any device that has wireless footprint and basic sensors.
Of course, tagging pictures of babies will still be hard,
and babies may be a reason for taking many pictures.

(3) TngSense’s compass based method assumes people are
facing the camera. Though there is some leeway in the
facing direction, this assumption is invalid when some-
one is turned sideways or around in that picture, and not
posing or moving. We currently do not have a remedy
for this case, and leave it for future investigation.

4.2 WHAT are they doing?

Activity recognition with the aid of mobile phones has
been an active area of research lately [6], [13]. TagSense
can avail the schemes resulting from that research to
identify activities while tagging pictures. Therefore, the
focus of this paper is not on devising new activity recog-
nition schemes. Instead, we implement a few schemes
to provide a sample set of activity tags for the sake
of completeness in developing the TagSense prototype.

We start with a limited vocabulary of tags to represent
a basic set of activities. This vocabulary can be later
enlarged to incorporate the further advances in activity
recognition in the future. In the following, we discuss a
few of the supported activities in our vocabulary.

Accelerometer: Standing, Sitting, Walking, Jump-
ing, Biking, Playing. Most of the activity recognition
schemes rely on accelerometer sensor. It has been ob-
served that many of the physical activities produce
distinct motion patterns. There is a clear signature from
accelerometer readings to determine whether someone
is sitting or standing. Similarly, using statistics of ac-
celerometer readings (e.g. variance, 4th moment, dy-
namic range, and zero-crossing rate) as well as location
information, it is possible to differentiate between walk-
ing, biking, or playing. Figure 6 plots the acceleration
readings for these three activities, and the difference
between them can be easily observed. There are many
other activities that can be recognized with the aid of
accelerometer. But we have not done this exhaustively
since our aim is only to show a representative set of
activity tags to indicate what is possible with TagSense.
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Fig. 6. Acceleration readings for different activities.

Acoustic: Talking, Music, Silence. This sensor pro-
vides information that is quite distinct from what could
be gleaned from the visual picture. From a picture of
a person in front of a microphone, it is hard to say
whether that person is talking or singing. On the other
hand, with the audio samples from the acoustic sensor, it
becomes easier to differentiate between these two cases.
In our TagSense prototype, we provide basic information
regarding ambient sound when the picture is taken. The
classification is done by feeding Mel-frequency Cepstral
coefficients into SVM. A few audio samples around the
picture click would suffice for this purpose.

We evaluate the accuracy of our prototype in recog-
nizing activities in Section 5.2 and show encouraging
results. We believe more sophisticated techniques can
improve the vocabulary and accuracy of activity tags.



4.3 WHERE is the picture taken?

The location of a picture conveys semantic information
about the picture — a photo taken inside a restaurant
conveys a sense of food and fun. It also enables lo-
cation based photo search, such as all pictures from the
Disneyland food court. GPS based location coordinates are
inadequate for this purpose. In many cases, its important
to distill out a semantic form of location, such as the
name of a place (gym, airport, cafe), and indoor or
outdoors. Tagging the background of the picture (e.g.,
Atlantic Ocean in the background) may be even more
attractive. TagSense leverages mobile phone sensors and
cloud services to approach these goals.

The “place” is derived by performing a reverse lookup
on the GPS coordinates. We assume that such databases
will emerge over time, or SurroundSense [14] like ser-
vices will become prevalent. Now, to infer whether the
picture was taken indoors or outdoors, TagSense utilizes
the light sensor on the camera phone. We find that in
most cases, the intensity of outdoor environments are
either far above or far below the light intensity in indoor
environments. Figure 7 shows the variation of light in-
tensity measured at 400 different times, across days and
nights in outdoor and indoor environments. Evidently, it
is feasible to compute light intensity thresholds (one for
daytimes and another for nights), using which indoor
environments can be discriminated from outdoors. We
have observed that this approach works even under
cloudy or rainy outdoor conditions. However, for robust
discrimination, even in situations such as indoor at night
without lights on, information from other sensors such as
the absence of GPS signal, is needed in addition to light
sensing. Currently, TagSense use only the light intensity
measurement (from the camera) during the picture-click
to tag the picture as “indoors” or “outdoors”.
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Fig. 7. Indoor/outdoor light intensities

TagSense employs the combination of location and
phone compasses to tag picture backgrounds. For exam-
ple, knowing that the picture is at the California beach
and the camera is facing west, one can infer the ocean in
the background. Further, Enkin and similar services [15]
have developed a database for frequently visited loca-
tions that given a location and orientation returns names
of visible objects. One can create similar mini databases

for their personal spaces, such as homes, offices, gardens,
or university campus. Google Streetview is also expected
to expose such an API in the near future. TagSense can
exploit these capabilities for background tagging.

4.4 WHEN is the picture taken

Tagging the picture with current time is a standard fea-
ture in today’s cameras, and TagSense trivially inherits it.
However, TagSense adds to this by contacting an Internet
weather service and fetching the weather conditions. If
the picture happens to be taken outdoors, and if the
whether suggests snowing or raining, TagSense asso-
ciates that tag with the photo. Finally, if the picture is
taken after sunset (determined by sending the current
time to the weather service), TagSense tags the picture as
“at ni ght ”. Together, the “when-wher e- who- what ”
tags offer a reasonable description of the picture. The
following section evaluates the overall efficacy.

5 PERFORMANCE EVALUATION

To evaluate TagSense, we have conducted real-life exper-
iments with 8 Google Nexus One phones. One phone
is used as a camera while the others are carried by 7
participants naturally in their pockets. When a picture
is taken, the camera triggers other phones and gathers
sensor readings through WiFi ad-hoc mode. The sensing
data is later processed to generate tags. To collect a
diverse set of pictures, we visited four different settings:
(1) Duke University’s Wilson Gym, (2) Nasher Museum
of Art, (3) a research lab in Hudson Hall, and (4) a
Thanksgiving party at a faculty’s house. For brevity, we
refer to these scenarios as gym, museum, lab, and house.

Our evaluation aims to answer the following ques-
tions: (1) How well does TagSense tag people com-
pared to approaches based on face recognition; (2) How
does human behavior in different scenarios affect the
individual tagging methods (posing, compass, motion)
employed by TagSense. (3) How well can TagSense
recognize activities and context. We begin with tagging
people in the picture, and later evaluate activity and
context-tagging. We end with a toy image search tool
using our collection of 200 pictures tagged by TagSense.

5.1 Tagging People

We compare TagSense with Apple’s iPhoto and Google’s
Picasa, two popular products that employ face recogni-
tion. Once a person’s face is manually tagged with a
name, iPhoto and Picasa attempt to tag similar faces
in other pictures. In our evaluation, we tagged each
participant’s face once and let iPhoto and Picasa tag
other pictures in the set. One may argue that iPhoto and
Picasa perform better with more training. However, we
believe that our evaluation setting is fair as it ensures
similar amount of human assistance in all these schemes.
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Fig. 8. Performance of TagSense: (a) Top and (b) bottom graphs show people inside and outside each picture. Wrongly
excluded/included ones are shown in red/black. Overall, TagSense does well in tagging people.
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Figure 8 illustrates how well TagSense tags people in accurately they were excluded®. For example, in the last

a picture: Figure 8(a) shows how accurately people were

3. In an attempt to preserve the natural behavior of smartphone

included in the picture, while Figure 8(b) shows how users, we allowed people to freely move in and out of the camera’s

communication range. Hence, in some of the pictures, the sum of
people inside and outside the picture adds up to less than seven.



picture in Figure 8(a), TagSense correctly identifies 2 of
the 3 people in the picture. Overall, TagSense performs
reasonably well in separating the people outside from
those inside a picture. In contrast, Figure 9 shows that
iPhoto has high false negatives though only a few false
positives, i.e., iPhoto is accurate when it detects a face,
but it fails to detect a large fraction of faces. Picasa, as
shown in Figure 10, performs better than iPhoto on our
picture set, but it too does not recognize many faces. To
formally evaluate TagSense and compare it with iPhoto
and Picasa, we employ the metrics commonly used for
information retrieval — precision, recall and fall-out.

Metrics

We know the people in each picture, so the ground truth
is known. Therefore, the precision, recall, and fall-out of
TagSense can be defined as follows.

People Inside N Tagged by TagSense
P 88 y lag
|Tagged by TagSense|

precision =

|People Inside N Tagged by TagSense|

1=
reca |People Inside|

|People Outside N Tagged by TagSense|

fall-out =
all-out |People Outside|

Similarly, we can compute the precision, recall, and fall-
out for iPhoto and Picasa. The goal of a tagging scheme
is to achieve high precision, high recall, and low fall-out.

Overall Performance

Figure 11 compares the performance of TagSense with
iPhoto and Picasa using these metrics. The precision,
recall, and fall-out are computed over the entire set
of pictures. While the precisions of iPhoto and Picasa
are better than TagSense, their recalls are much lower.
Importantly, recall is a key metric for search-like appli-
cations. A low recall implies that when a user searches
for a picture, the results are unlikely to include the one
she is looking for. On the other hand, a scheme with high
recall (albeit with low precision) is more likely to return
the sought picture, along with several less relevant ones.
TagSense is suitable for the latter type of service, which
perhaps is more desirable in image-search applications.

Method-wise and Scenario-wise Performance

Figure 12 shows how the 3 different people-tagging
methods (posing, compass, and motion) perform in
different scenarios. Evidently, posing signatures work
reliably in the majority of museum and lab pictures
(Figure 12(a)), where participants explicitly posed for
the camera. On the contrary, people were mostly sit-
ting/eating/talking in the house, and this did not
present a distinct posing signature on the accelerometer.
Thus, the compass-based identification proved beneficial
in this scenario (Figure 12(c)). Similarly, motion-based
methods were suitable for gym pictures, where peo-
ple were engaged in playing racquetball, ping-pong, or
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Fig. 11. The overall precision of TagSense is not as high
as iPhoto and Picasa, but its recall is much better, while
their fall-out is comparable.
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running (Figure 12(d)). The performance of iPhoto and
Picasa also varies; both precision and recall are relatively
better in the museum and lab, where pictures are close-
ups, and people mostly face the camera. The recall de-
grades significantly in the gym and house, where people
may not be always facing the camera, and behave more
naturally. These results convey a sense of complementary
behavior between TagSense and iPhoto/Picasa, and we
believe that their merger can be powerful.
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Fig. 12. The performance of different TagSense meth-
ods under different scenarios (from top to bottom): (a)
museum, (b) lab, (c) house, and (d) gym.



Searching Images by Name

An obvious application of tagging people is name-based
image search. The user types one or more names and the
system should retrieve all the images containing them.
Figure 13 shows TagSense’s performance in comparison
to iPhoto and Picasa. It shows the results for 9 individ-
ual searches and for 4 pairs of names (e.g., Alice and
Eve). The pairs are chosen such that there are several
pictures with both the individuals in them. The results
demonstrate once again that TagSense offers reasonable
precision and better recall than iPhoto and Picasa. The
lower recall of iPhoto and Picasa gets amplified when
searching for pictures of a pair of people, as in pair
ID 12. Also, note that both iPhoto and Picasa recognize
some individuals better than others, whereas TagSense
provides similar performance across all people.

[C_JTagSense: Precision I TagSense: Recall Il TagSense: Fallout
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Fig. 13. Performance comparison of TagSense with
iPhoto and Picasa for name based image search.

We hypothesize that Picasa and iPhoto may be able to
match TagSense’s performance by tuning certain param-
eters. However, TagSense is a nascent system (compared
to years of research behind Picasa/iPhoto), and we be-
lieve that further investigation can improve TagSense’s
capabilities as well. Perhaps more importantly, the inte-
gration of both the approaches can be superior to either
of them. In our future work, we plan to perform such an
integration, reinforcing sensing-based approaches with
face recognition, and vice versa.

5.2 Tagging Activities and Context

The assessment of an activity-tagging scheme is not
straightforward since the ground truth is rather subjec-
tive. Therefore, we rely on humans to judge the relevance
and completeness of tags generated by TagSense. Since
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completeness is a function of the “vocabulary” of tags,
we limited the experiment to only TagSense’s vocab-
ulary. We asked humans to pick a set of tags for the
picture from the given vocabulary. We can then define
the metrics precision and recall as follows.

|Tags by Humans N Tags by TagSense|

precision = |Tags by TagSense|

|Tags by Humans N Tags by TagSense|

=
reca |Tags by Humans|

We do not define a metric like fall-out here since we
can not meaningfully bound the total set of tags that are
considered irrelevant to the picture, and then find the
fraction of those that are incorrectly tagged by TagSense.

Figure 14 shows the results with 5 human volunteers
assessing TagSense’s activity tags*. As evident, most of
the tags produced by TagSense are relevant and also
somewhat describe the context of the people in the
pictures. Of course, with a small tag vocabulary (of
around 30 activity tags), this should not be viewed as
a concrete result. Rather, this only suggests that the
TagSense framework can be useful, if its vocabulary
grows over time by borrowing from activity recognition,
acoustic sensing, and signal processing communities.
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Average Precision/Recall
o
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Fig. 14. Assessment of tags given by TagSense.

5.3 Tag Based Image Search

To understand the user-centric performance of TagSense,
we implemented a toy image-search engine running on
our set of 200 tagged pictures. We recruited 5 volunteers
and showed them 20 pictures each (randomly picked
from the 200). They were then asked to compose query
strings from our tag vocabulary and retrieve each of the
pictures — they could also use names of people in their
queries. For the given search string, our system returned
a set of pictures. The volunteer then marked the number
of relevant pictures and also whether the target picture
is one of them (we call this a hit). Table 1 shows the
per-volunteer performance results.

4. The volunteers were recruited from our research group members
and their friends. Though there is a potential for bias here, the
volunteers have been explicitly asked to provide objective assessment.
Furthermore, this assessment by a small set of people is meant to be
illustrative, and a broader user study is essential to validate our results.



TABLE 1
Performance of tag based image search

Name | Avg. Relevant | Avg. Irrelevant | Hit rate
User 1 2.75 4.85 0.85
User 2 5.6 1.8 0.65
User 3 4.05 2 0.5
User 4 4.05 2.35 0.7
User 5 2.55 1.6 0.55

Figure 15 zooms into the results of user 4 with medium
search satisfaction. For each search string, it shows the
number of relevant and irrelevant pictures. The search
string is marked with a “.” if it is a hit, a x” otherwise.
While TagSense does not precisely return the target
pictures in all cases and returns irrelevant ones in some
cases, we believe that the overall results are encouraging

for continued research in this direction.
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TagSense based image search system.

6 ENERGY USAGE OF TAGSENSE

This section focuses on the energy consumption of
TagSense. First, let us recall the key steps in TagSense
from the energy usage perspective. When the user is
ready to take a picture and puts the phone’s camera
in preview mode, it sends a message that activates the
sensors on the participating phones. Once the user clicks
the picture, another message is sent by the camera phone
and the other phones respond with sensor readings. If
no messages are exchanged for a certain threshold du-
ration, the sensors are automatically deactivated. Thus,
TagSense attempts to conserve the battery by keeping the
sensors activated only around the time a picture is taken.
Still, compared to a normal camera application, TagSense
uses more energy for sensing and wireless communica-
tion. In this section, we measure the amount of energy
consumed by different components of TagSense, and
propose ways to improve its energy usage.

6.1 Measurement Set-up

We use a power monitor from Monsoon Solutions [16]
to measure the energy consumption on phones that have
been used in TagSense evaluations, including Google
Nexus one and Samsung Galaxy Nexus. The probes from
the monitor are connected to a copper tape extension
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TABLE 2
The power consumption (mW) for different components

Avg. Max. Instant | Min. Instant
Name Power Power Power
Suspend 9.7 13.8 7.9
Acc., compass and light 16.2 24.5 13.9
Display only 383.5 593.3 300.3
WiFi PSM (idle) 14.9 293.2 7.8
WiFi ad-hoc (idle) 268.3 838.8 254.2

from the lithium battery of smartphones. In this way,
phones are powered entirely by the power meter, and
using the lithium battery only as ground. A computer,
connected via USB, records the current and voltage of the
device at a sample rate of 5000 hertz. The high sampling
frequency provides enough sensitivity to observe even a
single packet transmission.

6.2 Energy Consumption

Table 2 shows the energy usage when different sensors
are turned on separately. The average power is calcu-
lated by averaging over all the 5000 power measure-
ments during one second. Within this duration, there
is significant variation in the power usage. The max.
and min. instant power accordingly show the maximum
and minimum measurements in one time slot. It can
be observed that physical sensors like accelerometer,
compass and light sensor are not power hungry. They
do not consume much more power than a suspended
system, even when these sensors are actively measuring.
On the other hand, GPS consumes a high amount of
power at around 150mW [17]. WiFi is another major
source of power consumption. In ad-hoc mode, the radio
hardware continuously keeps on to overhear possible in-
coming packets, which consumes a considerable amount
of energy. Instead, if the WiFi is put under station mode
and connected to an AP, the Power Saving Mode (PSM)
is able to put the WiFi clients into deep sleep. In PSM
deep sleep, energy consumption can be quite low since
the radio can be completely turned off and wake up
only to receive the scheduled frames. Based on this
understanding on how energy is drained, we describe
some ways to improve the energy usage of TagSense.

6.3 Reducing Energy Usage

To reduce the energy consumed by communication, we
could use WiFi direct instead of WiFi ad-hoc. WiFi
direct has specified a power saving mode similar to
the WiFi PSM. Since most of the time phones are in
idle state in TagSense, WiFi direct can offer substantial
energy savings. However, because this standard has
been proposed just recently, not many phones in the
market currently support it. Even on Samsung Galaxy
Nexus phone that has WiFi direct feature, we have not
been able to experiment with PSM mode. However, we
believe WiFi direct will become popular and TagSense
can leverage it in future. Another way to save energy



consumed by communication is to decrease the amount
of data being transmitted. Client phones could compress
or even pre-process the data before sending it to the
camera phone. For example, instead of sending raw
accelerometer readings, the client phones could send
higher level results such as “posing”. Furthermore, they
can record the readings and transmit them later for
tagging several photos in a batch. Overall, we believe
there is a lot of scope for optimizing TagSense and make
its energy expense worthwhile.

7 LIMITATIONS OF TAGSENSE

In this section, we present some potential concerns with
TagSense, and discuss how they can be alleviated.

TagSense vocabulary of tags is quite limited.
TagSense is necessarily limited by the activities that can
be recognized with phone sensors. But the tags assigned
by humans are much richer than any sophisticated auto
tagging method. However, from the perspective of image
search and retrieval, the limited vocabulary may suffice.

TagSense does not generate captions. Though a nat-
ural next step, captioning a picture is hard for TagSense
given its limited vocabulary. However, if it generates tags
like, “Chuan, Xuan, playing, beach”, natural language
processing may be able to string them together to make
a caption like “Chuan and Xuan playing at the beach”.

TagSense methods for tagging people are complex.
A simpler manual alternative to TagSense, one might
consider, is to display the list of people near the camera
and let the camera-user select from that small list. We
note that determining the list of people in the vicinity
(using an ad hoc WiFi network) is part of the TagSense
architecture. Moreover, when taking the picture, people
are keen on capturing the moment and may easily get
annoyed with any distractions. While it is possible to
record some meta information to aid the users offline,
they may not bother to tag them later. We believe that
users prefer seamless tagging and TagSense methods can
be refined to make tagging more efficient and accurate.

8 FUTURE OF TAGSENSE

TagSense is an alternative way to address a longstanding
problem of image tagging. While our current prototype
has some limitations, we argue that future technological
trends are well aligned with TagSense. We list some of
these trends below and discuss their implications.

Smartphones may have directional antennas. Some
researchers advocate equipping smartphones with direc-
tional antennas to achieve high throughput [18]. Given
the insatiable demand for bandwidth, this may be a
viable option in the near future. When the camera has a
directional antenna, upon a click, it can send a directional
broadcast limiting the area of reception to that covered
by the camera angle. Then camera will receive responses
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only from those that are in the picture. This makes
tagging people both simple and accurate.

The granularity of localization will approach a foot.
Given the drive towards localization, it will not be long
before a person can be localized to a spot within a feet.
Then, it is easy to identify people that are located within
the area covered by the camera angle. Even without ab-
solute coordinates, localization relative to camera would
suffice. The ability to measure distance between two
nearby smartphones would also aid TagSense [19].

Smartphones are replacing point and shoot cameras.
The recent trend has been to equip smartphones with
sophisticated camera features diminishing the need for
traditional cameras. Moreover, in many instances people
forget to bring their cameras and instead take pictures
with their phones (which they typically carry every-
where). Therefore, the fraction of pictures taken with
phones is already large, which will only grow further,
amplifying the utility of TagSense.

9 RELATED WORK

Image tagging has been a topic of extensive research
given its applications to image retrieval [20]. Because
of the challenging nature of this problem, out-of-band
solutions have attracted attention of late. An approach
in [21] computes event and location groupings of photos
based on their time and location. As the user tags some
people in their collection, patterns of re-occurrence and
co-occurrence of different people in different locations
and events are expected to emerge. The system uses
these patterns to assist users in tagging pictures by
suggesting a short list of candidates. While this eases the
process of manual tagging, TagSense aims to automate it.
Mobile Media Metadata (MMM) [22] gathers contextual
metadata such as location at the time of capture. It also
generates more metadata for the captured image based
on the metadata of “similar” images at the server based
on the captured image location and pixel data. When
the system is not certain about the similarity, the user is
prompted for confirmation. The MMM approach is more
suitable for landmark pictures whereas TagSense targets
people-centric pictures.

Among all the earlier works, ContextCam [23] is the
most relevant to our work. Both TagSense and Con-
textCam have similar objectives but their solutions are
quite different. ContextCam annotates videos at the
point of capture with people in and around a scene.
It achieves this by placing ultrasound receivers on a
horizontal plane in front of the camera. Moreover, each
individual has to wear a device that periodically chirps
an ultrasound sequence. In contrast, TagSense offers a
more practical solution. TagSense, to the best of our
knowledge, is the first image tagging system that lever-
ages the sensing ability of the current smartphones.

TagSense builds upon three threads of research: mobile
sensing, activity recognition and image/audio process-



ing. While each thread is composed of rich bodies of
research, we survey only a few of them for brevity.

Mobile sensing. Smartphones are becoming a conver-
gent platform for people-centric sensing [24]. Various
applications have been developed to exploit sensing
across multiple dimensions. SoundSense [6] taps into the
sound domain to identify events in a person’s life, and
building a audio journal. SurroundSense [14] shows the
possibility of ambience-sensing in determining a user’s
location. Censeme and Nericell [13], [25] detect user
and traffic status and share the information through
online networks. All these applications share the vision
of leveraging mobile phones as a “point of human
attachment” to gain insights into human behavior and
activity. TagSense is in an opportune position to fully
benefit from this growing body of research.

Activity recognition. Activity recognition has recently
taken prominence with advances in data mining and
machine learning algorithms. Researchers are looking
into activities through various information sources [26],
temporal activity correlations [9] and in different envi-
ronment settings [27], [28]. We foresee some of these
algorithms becoming amenable to TagSense.

Image/audio processing. Image and audio processing
are integral to TagSense [29]. Apart from optical flow [12],
several other opportunities exist to use image processing
for labeling. The literature is vast, but can be well
summarized by how Google Goggles is approaching the
problem. Any advancements with Google Goggles and
similar softwares will be amplified through the multi-
dimensional sensing based approach in TagSense.

10 CONCLUSION

Mobile phones are becoming inseparable from humans
and are replacing traditional cameras. TagSense lever-
ages this trend to automatically tag pictures with peo-
ple and their activities. We developed three differ-
ent methods based on posing, compass, and move-
ment, to identify the people in a picture. We imple-
mented a prototype of TagSense using Google Nexus
One phones and evaluated its performance. Our experi-
ments show that TagSense has somewhat lower precision
and comparable fall-out but significantly higher recall
than iPhoto/Picasa. TagSense and iPhoto/Picasa employ
complementary approaches and can be amalgamated
yielding a robust scheme for tagging images.

11 ACKNOWLEDGEMENT

We sincerely thank Jason Hong for shepherding our
MobiSys paper. We are also grateful to NSF for partially
funding this research through the following CNS grants
— 0448272, 0917020, 0916995, and 0747206.

14

REFERENCES
[1] Amazon, “Amazon Mechanical Turk,” https://www.mturk.com/
mturk/welcome.

[2] Google Image Labeler, “images.google.com/imagelabeler/,” .

[3] L. Von Ahn and L. Dabbish, “Labeling images with a computer
game,” in ACM SIGCHI, 2004.

[4] T. Yan and et al, “Crowdsearch: exploiting crowds for accurate
real-time image search on mobile phones,” in MobiSys, 2010.

[5] T. Nakakura and et al., “Neary: conversation field detection based
on similarity of auditory situation,” ACM HotMobile, 2009.

[6] H.Lu and et al, “SoundSense: scalable sound sensing for people-
centric applications on mobile phones,” in ACM MobiSys, 2009.

[7] A.Engstrom and et al., “Mobile collaborative live video mixing,”
Mobile Multimedia Workshop (with MobileHCI), Sep 2008.

[8] Google Goggles, “http://www.google.com/mobile/goggles/,” .

[9] D.H.Hu and et al., “Real world activity recognition with multiple
goals,” in ACM UbiComp, 2008.

[10] CyanogenMod, “http://www.cyanogenmod.com,” .

[11] WiFi Direct, “www.wi-fi.org/discover-and-learn/wi-fi-direct,” .

[12] C. Liu, “Beyond Pixels: Exploring New Representations and
Applications for Motion Analysis,” in Doctoral Thesis MIT, 2009.

[13] E. Miluzzo and et al., “Sensing Meets Mobile Social Networks:
The Design, Implementation and Evaluation of CenceMe Appli-
cation,” in ACM Sensys, 2008.

[14] M. Azizyan and et al., “SurroundSense: mobile phone localization
via ambience fingerprinting,” in ACM MobiCom, 2009.

[15] M. Braun and R. Spring, “Enkin,” http://enkinblog.blogspot.com/.

[16] Monsoon Solutions Inc., “http://www.msoon.com,” .

[17] Aaron Carroll and Gernot Heiser, “An analysis of power con-
sumption in a smartphone,” in USENIX ATC, 2010.

[18] A.A. Sani and et al, “Directional Antenna Diversity for Mobile
Devices: Characterizations and Solutions,” in MobiCom, 2010.

[19] C.Peng, G.Shen, Z. Han, Y. Zhang, Y. Li, and K. Tan, “A beepbeep
ranging system on mobile phones,” in ACM SenSys, 2007.

[20] Alipr, “Automatic Photo Tagging and Visual Image Search ,”
http://alipr.com/.

[21] Mor Naaman and et al, “Leveraging context to resolve identity
in photo albums,” in JCDL, 2005.

[22] Risto Sarvas and et al, “Metadata creation system for mobile
images,” in ACM MobiSys, 2004.

[23] Shwetak N. Patel and et al, “The contextcam: Automated point
of capture video annotation,” in ACM Ubicomp, 2004.

[24] R. Want, “When cell phones become computers,” IEEE Pervasive
Computing, IEEE, 2009.

[25] P. Mohan and et al, “Nericell: Rich monitoring of road and traffic
conditions using mobile smartphones,” in ACM SenSys, 2008.

[26] L. Bao and S.S. Intille, “Activity recognition from user-annotated
acceleration data,” Pervasive Computing, 2004.

[27] T. van Kasteren and et al.,, “Accurate activity recognition in a
home setting,” in ACM Ubicomp, 2008.

[28] M. Leo and et al., “Complex human activity recognition for
monitoring wide outdoor environments,” in IEEE ICPR, 2004.

[29] B. Logan, “Mel frequency cepstral coefficients for music model-
ing,” in ISMIR, 2000.

Chuan Qin received his PhD in Computer Science and Engineering
from University of South Carolina in Spring 2012. Earlier, he obtained his
Bachelors and Masters in Computer Science from Wuhan University. His
research interests include wireless networking and mobile computing.

Xuan Bao received the M.S. degree in Computer Science from Duke
University in 2011. He is currently pursuing his Ph.D. degree in Com-
puter Science at Duke University. His research focus is on human-
centric sensing and context-aware computing.

Romit Roy Choudhury is an Associate Professor of ECE and CS at
Duke University. He joined Duke in Fall 2006, after completing his PhD
from UIUC. He received the NSF CAREER Award in January 2008.
His research interests are in wireless protocol design mainly at the
PHY/MAC layer, and in mobile social computing at the application layer.

Srihari Nelakuditi received his Ph.D. from University of Minnesota,
Minneapolis in Computer Science. He is currently an Associate Pro-
fessor at University of South Carolina, Columbia. Srihari Nelakuditi is
a recipient of the NSF CAREER Award in 2005. His research interests
are in resilient routing, wireless networking, and mobile computing.



