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Order Matters: Transmission Reordering in Wireless
Networks

Justin Manweiler, Naveen Santhapuri, Souvik Sen, Romit Roy Choudhury, Srihari Nelakuditi, and
Kamesh Munagala

Abstract—Modern wireless interfaces support a physical-layer
capability calledMessage in Message (MIM). Briefly, MIM allows
a receiver to disengage from an ongoing reception and engage onto
a stronger incoming signal. Links that otherwise conflict with each
other can be made concurrent with MIM. However, the concur-
rency is not immediate and can be achieved only if conflicting links
begin transmission in a specific order. The importance of link order
is new in wireless research, motivating MIM-aware revisions to
link-scheduling protocols. This paper identifies the opportunity in
MIM-aware reordering, characterizes the optimal improvement in
throughput, and designs a link-layer protocol for enterprise wire-
less LANs to achieve it. Testbed and simulation results confirm the
performance gains of the proposed system.

Index Terms—Wireless LAN, wireless networks.

I. INTRODUCTION

P HYSICAL layer research continues to develop new
capabilities to better cope with wireless interference.

One development in the recent past is termed Message in Mes-
sage (MIM). Briefly, MIM allows a receiver to disengage from
an ongoing signal reception, and engage onto a new, stronger
signal. If the ongoing signal was not intended for the receiver
(i.e., interference), and if the new signal is the actual signal of
interest (SoI), then reengaging onto the new signal is beneficial.
What would have been a collision at a conventional receiver
may result in a successful communication with MIM-capable
hardware. For a better understanding of MIM, we contrast it
with the traditional definition of collision. More importantly,
we differentiate MIM from the existing notion of physical layer
capture.
Collisionwas widely interpreted as follows: An SoI, however

strong, cannot be successfully received if the receiver is already
engaged in receiving a different (interfering) signal. Most simu-
lators adopt this approach, pronouncing both frames corrupt [1],
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Fig. 1. Most simulators assume that the order of SoI and interference deter-
mines precisely whether an SoI can be received, given sufficient SINR.

Fig. 2. Physical layer capture enables a later-arriving SoI to be received in
principle, but only with overlap during the 802.11 preamble.

Fig. 3. With MIM, a later-arriving SoI with sufficient SINR can be received,
even if there is no overlap of 802.11 preambles.

[2]. If, on the other hand, the SoI arrives before the interference
and satisfies the required SINR, the signal can be successfully
decoded. Fig. 1 shows the two cases.
Physical layer capture was later understood through the sys-

tematic work in [3] and [4]. Authors showed that capture al-
lows a receiver to decode a later-arriving SoI, provided the start
of both the SoI and the interference are within a preamble time
window. Fig. 2 illustrates this. While valuable in principle, the
gain from capture is limited because the 802.11 preamble per-
sists for a short time window (20 s in 802.11a/g/n). If the SoI
arrived later than 20 s, both frames will be corrupt.
MIM is empowering because it enables a receiver to decode

an SoI, even if the SoI arrives after the receiver has already
locked on to the interference [5]. Of course, the required
signal-to-interference-plus-noise ratio (SINR) is higher for
relocking onto the new signal. Conversely, if the SoI arrives
earlier than the interference, the reception with MIM-capable
hardware is same as traditional reception. Fig. 3 illustrates the
MIM advantage.
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Fig. 4. AP1 R1 must start before AP2 R2 to ensure concurrency. If AP2
starts first, R1 locks onto AP2 and cannot relock onto AP1 later.

To summarize, unlike traditional receivers, an MIM-capable
receiver can decode a strong signal of interest even if it arrives
later than the interference. Of course, the required SINR to de-
code the later packet is relatively higher ( 10 dB) compared to
when it arrives earlier ( 4 dB).
What Makes MIM Feasible?: An MIM receiver, even while

locked onto the interference, “simultaneously searches” for a
new (stronger) preamble. If a stronger preamble is detected
(based on a high correlation of the incoming signal with the
known preamble), the receiver unlocks from the ongoing
reception and relocks onto this new one. The original signal
is now treated as interference, and the new signal is decoded.
The ability to extract a new signal, even if at a higher SINR,
can be exploited to derive performance gains. We motivate the
opportunity with an example.

A. Link Layer Opportunity

Consider the example in Fig. 4. For R1, AP1 is the transmitter,
while AP2 is the interferer (and vice versa for R2). When using
MIM receivers, observe that the two links can be made concur-
rent only if AP1 R1 starts before AP2 R2. Briefly, since
AP2 R2 supports a higher SINR of 11 dB, it can afford to start
later. If that is the case, R2 will begin receiving AP1’s transmis-
sion first and later relock onto AP2’s new signal, which is more
than 10 dB stronger than AP1’s. However, in the reverse order,
R1 will lock onto AP2’s signal first, but will not be able to relock
onto AP1 because AP1’s signal is not 10 dB stronger than AP2’s
(it is only 5 dB stronger). Therefore, R1 will experience a col-
lision. As a generalization of this example, MIM-aware sched-
uling protocols need to initiate weaker links first and stronger
links later. Appropriate ordering of the links can improve spa-
tial reuse.
In a larger network, choosing the appropriate set of links

from within a collision domain, and determining the order of
optimal transmission, is a nontrivial research problem. IEEE
802.11 is unable to ensure such orderings, failing to fully exploit
MIM-capable receivers. Perhaps more importantly, graph-col-
oring-based-scheduling approaches are also inapplicable. This
is because graph coloring assumes symmetric conflicts between
links. MIM link conflicts are asymmetric (i.e., depend on rel-
ative order) and may not be easily expressed through simple
abstractions. To address this problem, we propose Shuffle, an
MIM-aware link-layer solution that reorders transmissions to
extract performance gains. Our main contributions in this paper
are the following.

Fig. 5. Testbed confirms MIM capability. Rx receives from Tx (at five posi-
tions) in the presence of interference (Intf).

1) Identifying the opportunities with MIM. We use MIM-en-
abled Atheros 5213 chipsets, running the MadWiFi driver,
to verify that transmission order matters.

2) Analysis of the optimal performance possible with MIM.
We show that MIM-aware transmission scheduling is
NP-hard, and derive upper bounds on its performance
using integer programming. CPLEX results show that
the optimal gain from MIM is substantial, hence worth
investigating.

3) Design of an MIM-aware transmission scheduling system,
Shuffle, for enterprise wireless LANs. Links within the
same collision domain are suitably reordered to enable
concurrency. A measurement-based protocol engine coor-
dinates the overall operation and copes with failures.

4) Implementation and deployment within our university
building. Testbed results demonstrate practicality and
consistent performance improvements over 802.11 and
order-unaware TDMA. Additional QualNet simulations
show the scalability of Shuffle system to larger networks.

II. VERIFYING MIM

We validate the existence of MIM capabilities in com-
modity hardware using a testbed of Soekris [6] embedded PCs,
equipped with Atheros 5213 chipsets running the MADWiFi
driver [7]. The experiment consists of two transmitters with a
single receiver placed at various points in between (Fig. 5). This
subjects the receiver to varying SINRs. To ensure continuous
transmissions from the transmitters, we modify the MADWiFi
driver to disable carrier sensing, backoff, and the interframe
spacings. To time-stamp transmissions, a collocated monitor is
placed at each transmitter. Each monitor is expected to receive
all packets from its collocated transmitter, while the in-between
receiver is expected to experience some collisions. Merging
time-stamped traces from the two monitors and the receiver, we
were able to determine the relationship between transmission
order and collision.
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Fig. 5 shows delivery ratios for different orders of packet ar-
rivals at different positions of the receiver. For all these posi-
tions, the interference was strong, i.e., in the absence of the SoI,
we verified that the interfering packets were received with high
delivery ratio. Under these scenarios, observe that when the re-
ceiver is very close to the transmitter (positions 1–3), it achieves
a high delivery ratio independent of the order of reception. This
is a result of achieving a large enough SINR such that both
SoI-first (SF) and SoI-last (SL) cases are successful. However,
when the receiver moves away from the transmitter (positions 4
and 5), the SINR is only sufficient for the SF case, but not the SL
case. Hence, at position 4, only 4% of the late-arriving packets
get received, as opposed to 68% of the early-arriving packets.
This validates the existence of MIM capability on commercial
hardware and additionally confirms that enforcing the correct
order among nearby transmissions can be beneficial.

III. MIM: OPTIMALITY ANALYSIS

A natural question to ask is how much throughput gain is
available from MIM? Characterizing the optimal gain will not
only guide our expectations, but is also likely to offer insights
into MIM-aware protocol design. Toward this end, we first
prove that MIM-aware scheduling is NP-hard and use integer
programming methods to characterize the performance bounds
for a large number of topologies. We compare the results with
an MIM-incapable model.
Theorem 1: Optimal MIM scheduling is NP-hard.
Proof: Consider the problem of Optimal Link Scheduling

with MIM-capable nodes. An optimal schedule consists of a
link selection and a corresponding MIM-aware ordering that
together maximize the network throughput. Assume that a
polynomial-time algorithm exists to provide the optimal MIM
link scheduling from known network interference relationships.
Conventional (no-MIM) link scheduling is a known NP-com-
plete problem, reduced from Maximum Independent Set [8].
Therefore, if our assumption is true, then it would be possible
to find the optimal MIM-incapable link schedule in polynomial
time just by restricting the SoI-last SINR threshold to infinity
in our algorithm (i.e., ensuring later-arriving signals are never
decoded). This contradiction proves that optimal MIM-aware
link scheduling is NP-hard.

A. Optimal Schedule With Integer Program

To quantify the performance gains from MIM, we model
wireless networks with MIM-capable and MIM-incapable
receivers and compare their optimal throughput over a va-
riety of topologies. The networks consist of multiple access
points (APs), each associated to a number of clients. Each
transmission produces an interference footprint derived from a
path loss index of 4. With MIM-capable receivers, the SF SINR
requirement is 4 dB, while the SL requirement is 10 dB [5].
With MIM-incapable receivers, the SINR requirement for
reception is uniformly 4 dB, and later-arriving packets cannot
be received. We construct linear (binary integer) programs to
compute the maximum number of concurrent links meeting the
required SINR thresholds. The linear program also produces
the order. Fairness is not considered in this analysis. To make
our model solvable within reasonable execution time, we make

TABLE I
INTEGER PROGRAMMING PARAMETERS AND VARIABLES

the following simplifying assumptions. 1) All clients are asso-
ciated to the AP with the strongest signal strength. 2) A frame
is always pending on any AP-to-client link. 3) Only a single
data rate is used throughout the network. In Section IV-B, we
consider MIM scheduling with rate control.
Let and be arbitrary nodes in a wireless network and be

the set of all nodes. We define the boolean relation
is within the transmission range of . Let

denote the set of wireless links such that
.

Let denote the SoI strength received on link (by node
from an active transmission by node ), measured in units of
power. Equivalently, let denote interference re-
ceived on link (by node ) due to a concurrent transmission on
link (from node ). Table I summarizes the parameters and
variables. Under an assumption of additive multiple interfer-
ence and nonfading channels, the maximum link concurrency of
a given wireless network under MIM-aware MAC can be found
using the following integer programming formulation:

(1)

(2)

(3)

(4)

(5)

The aggregate network throughput may then be computed as
.

Theorem 2: Any 0/1 solution to the above integer program
satisfies the following.
1) encodes the active links.
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2) The variables encode a total ordering on the active
links, where is made active after [Constraints (2) and
(3)].

3) The set of active links along with their ordering satis-
fies the interference constraints and is hence feasible
[Constraints (4) and (5)].

The optimal solution to the integer program is therefore pre-
cisely the optimal solution of interest.

Proof: Consider constraints (2) and (3). Suppose first that
all the . Then, constraints (2) and (3) are equivalent to

and . We interpret the
variable as follows: if follows in the ordering,
and 0 otherwise. Note that the constraints exactly encode the
following information: In any ordering, for every , either
appears after or the other way around; for every , it
cannot happen that follows , follows , and follows .
It is shown in literature that these constraints are necessary and
sufficient to encode a complete ordering.
Now, suppose the are not all 1. In that case, only

if follows in the ordering and both and are active, so
that . In this case, the constraints (2) and (3) are
meaningful only if all the corresponding variables are all 1,
which means all the corresponding links are active. For these
links, the constraints (2) and (3) encode a total ordering.
The constraints (4) and (5) encode the interference con-

straints. For any link , the only that contribute to
constraint (4) are those with , which are precisely the
that are active and precede . Furthermore, the left-hand side

of the constraint is nonzero only if itself is active. A similar
reasoning shows the validity of constraint (5).

B. Results

We used CPLEX [9] to solve many instantiations of the
integer program. In Fig. 6, we present results for topologies
of grid-aligned access points and randomly placed clients. All
clients associate to the AP from which it receives the strongest
signal. Each data point is sampled as the arithmetic mean of 15
trials. Results show that ideal concurrency gains can be large
with MIM-capable receivers. This provides a sound motivation
for designing and implementing MIM-aware protocols.

IV. SHUFFLE: SYSTEM DESIGN

We propose Shuffle, an MIM-aware link-layer solution that
reorders transmissions to improve concurrency. Shuffle targets
enterprise WLAN (EWLAN) environments, such as universi-
ties, airports, and corporate campuses [10], [11]. In EWLANs,
multiple APs are connected to a central controller through a
high-speed wired backbone (Figs. 4 and 10). The controller co-
ordinates the operations of APs. The APs follow the controller’s
instructions for transmitting packets to their clients.
The rationale for targeting EWLAN architectures is twofold.

1) EWLANs are becoming popular in single-administrator en-
vironments [11]–[15]. Developing this platform on sound phys-
ical and link layer technologies can further drive its prolifer-
ation. 2) MIM-aware scheduling is hard, and a systematic ap-
proach to solving it should perhaps start from a more tractable
system. EWLANpresents a semicentralized platform, amenable

Fig. 6. MIM can provide large concurrency gains. These graphs show the
number of links that can meet SINR requirements with and without MIM
enabled. Gains improve with increasing network density. (a) Varying number
of clients. (b) Varying number of APs.

Fig. 7. Flow of operations in the Shuffle system. Data packets arrive from the
network gateway and are enqueued at an AP. The AP notifies the controller of
the waiting outbound packet. The controller inserts the corresponding AP–client
pair into a network-wide link queue and eventually schedules this link as part
of a concurrent batch. The AP dequeues and transmits the packet according to
the controller’s prescribed schedule and subsequently notifies the controller of
all failures. The controller utilizes this feedback for loss recovery and conflict
diagnosis.

to experimentation. Exploiting MIM capability on this architec-
ture is itself a rich, unexplored research area that could lay the
foundation for extending MIM-aware schemes to decentralized
systems.

A. Protocol Design

We first sketch the three main operations of Shuffle. Fig. 7
illustrates their interactions.
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1) Conflict Diagnosis: Shuffle characterizes the interference
relationships between links. In the steady state, links
that have been concurrent in the past are scheduled con-
currently, while those in conflict (across both orders) are
serialized. With link failures, the interference relationships
are appropriately revised. Over time, this continuously
learned knowledge base becomes an interference map
against which future transmissions may be scheduled.

2) Packet Scheduling: From the learned interference relation-
ships, an MIM-aware scheduler (running at the controller)
computes batches of concurrent links and their relative
transmission order.

3) Schedule Execution: After scheduling batches of concur-
rent transmissions, the controller notifies the relevant APs
when these transmissions should occur. The APs maintain
precise time synchronization with the controller so that ex-
pected transmission orderings may be accurately executed.

1) Conflict Diagnosis: Scheduling algorithms require the
knowledge of link conflicts. MIM increases the difficulty of
inferring conflicts because it introduces a dependency on trans-
mission order. Shuffle overcomes this difficulty by admitting
some inaccuracy in the interference map. The main idea is
to speculate that some permutations of links are concurrent,
maintain their delivery ratios over time, and use these delivery
ratios to infer conflict relationships. The learnt relationships can
be used to speculate better and schedule future transmissions.
In the steady state, learning aids scheduling, which in turn aids
learning, thereby sustaining a reasonably updated interference
map. Of course, packet losses may happen when the interfer-
ence map becomes inconsistent with the time-varying network
conditions. Shuffle copes with it through retransmissions.
Speculating and Verifying Concurrency: While bootstrap-

ping, the central controller assumes (optimistically) that any set
of links formed by distinct APs may be scheduled concurrently.
Upon link failure, detected by per-client acknowledgments,
APs request the controller to reschedule the lost packet. The
controller revisits the unsuccessful schedule to determine
all the active APs in that schedule; it reduces the delivery
ratio of the failed link against each of these APs. When no
rescheduling request is received, the controller assumes suc-
cessful delivery and appropriately updates the delivery ratio
for each link, against all interfering APs. For example, when
link , belonging to a schedule , is successful, the controller
gains confidence that is truly concurrent with all other APs
in . More precisely, it gains confidence that link can sustain
earlier-arriving interferences from APs that started before
and later-arriving interference from APs that started after .
The delivery ratios for each link–AP pair are maintained for
both orders and are updated appropriately. Fig. 8 shows the data
structures maintained at the controller. When the delivery ratio
between link and an interfering AP falls below a threshold,
the controller will either enforce schedules where starts
first, or (depending on the severity) will pronounce and the
interfering AP to be in complete conflict. Link–AP pairs in
complete conflict are scheduled in separate batches thereafter.
Reviving Concurrency: Link–AP pairs that are currently in

complete conflict may become concurrent in the future. Unless
such concurrency is revived, the network may degenerate to a

Fig. 8. Per-link data structure maintained at the controller for scheduling trans-
missions. is the transmitter for link .

very conservative (serialized) schedule. To this end, Shuffle uses
a “forgetting” mechanism. Over time, the controller assumes
that conflicting link sets and orderings may have become con-
current and artificially improves recorded delivery ratios. When
delivery ratios rise above the threshold requirements, previously
conflicting link sets and orderings are attempted anew.
Opportunistic Learning: To update the interference map

more frequently, Shuffle takes advantage of opportunistic over-
hearing. For instance, a client C3 that overhears a packet from
AP5 at time can piggyback this information in an ACK packet
that it sends in the near future. The controller has a record of
which other APs were transmitting at . Assuming AP7 was,
the controller can immediately deduce that link (AP5 C3)
can be concurrent with a transmission from AP7. The exact
order for this concurrency can also be derived since the con-
troller also remembers the relative transmission order between
AP5 and AP7 from past time . Continuous overhearing of
packets and piggybacking in ACKs can considerably increase
the refresh rate of the interference map. Convergence time can
reduce, facilitating better scheduling.
2) Packet Scheduling: Given the interference map of the

network, the MIM-aware scheduler selects an appropriate batch
of packets from the queue and prescribes their order of trans-
mission. To maximize throughput, it should schedule the largest
batch of packets that can be delivered concurrently without
starving any client. As noted earlier, optimal MIM-aware
scheduling is NP-hard, and graph-coloring approaches are not
applicable because MIM conflicts are asymmetric in nature.
Thus, new algorithms are required for effective MIM-aware
scheduling. In this section, we consider packet scheduling
with fixed rate. In Section IV-B, we discuss how the Shuffle
controller incorporates active bit rate control into its scheduling
decisions.
Feasibility of a Schedule: An MIM-aware concurrent link

schedule consisting of ordered links through may be
considered feasible if and only if for all , all are
unique; all are unique; can sustain earlier-arriving
interference from all APs starting before ; and can sus-
tain later-arriving interferences from from APs starting after .
Given , a network-wide queue of all packets waiting for down-
load transmissions, one possible brute-force scheduling would
be to generate all such that is feasible. Assuming
a fixed bit rate, the highest throughput schedule would be the
feasible subset of with maximum cardinality. While this ap-
proach may be plausible with small queues, it is imperative that
we develop more computationally efficient heuristics for wider



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

applicability. To this end, we present two suboptimal but prac-
tical (greedy) heuristics.
Greedy Algorithm: A simple greedy algorithm would be to

consider the packets in the first-in–first-out (FIFO) order for in-
clusion in the batch. Initially, the batch is set to empty. Then,
each packet is attempted in turn to check if it is feasible to add
it to the batch. Since the ordering of packets in the batch may
affect its feasibility, a packet may need to be tried at different
positions. Once a feasible ordering is found, the packet is in-
serted in that position in the batch. While this greedy scheme
may not achieve optimal concurrency, it protects the clients
against starvation. In every round, the first packet in the queue is
guaranteed to get scheduled, and hence every conflicting packet
will progress by at least one position in the queue. As a re-
sult, it is guaranteed to get transmitted within a bounded number
of batches. A reasonable fairness is also achieved through this
simple scheme. The worst-case time complexity of the basic
greedy algorithm is , where is the number of packets
in the queue. Pseudocode is presented in Algorithm 1.

Algorithm 1: Greedy

1: Let be the first packets in the queue.
2:
3: for all Packets do
4: for to do
5: if then
6: Add to in position
7: Return

Least-Conflict Greedy: A conflict-oriented greedy metric
may offer higher concurrency. The basic idea, with the pseu-
docode given in Algorithm 2, is as follows. Each of the packets
in the queue can be checked to see the type of pairwise conflict
it has with all other packets in the queue (line 3). Each packet
can be assigned a score based on such conflicts. For example,
while computing the conflict of packet , it is compared to
every other packet in the queue. If and are found to be
concurrent, irrespective of their temporal order, then packet ’s
conflict score remains unchanged. However, if must begin
earlier than , then the conflict score for is incremented
by one (line 5). If can begin later, then again, ’s conflict
score remains unchanged. The controller computes the conflict
score for each packet and sorts the packets in increasing order
of this score (line 6). Then, the controller performs the basic
greedy algorithm on this order of packets (line 7). The intuition
is that packets with fewer conflicts will be inserted early in the
batch, potentially accommodating more concurrent links. The
time complexity of the Least-Conflict Greedy algorithm is also

.

Algorithm 2: Least-Conflict

1: for all Packets do
2:
3: for all Packets do

Fig. 9. Heuristics for MIM-aware scheduling.

4: if
then

5:
6: Sort by increasing score
7: Return

Without the hard scheduling guarantee of first-packet inclu-
sion in every batch, clients may encounter unfairness and even
starve. To cope with this, an aging factor can be introduced
along with the conflict scores (line 2). Packets that experience
prolonged queuing delay receive a proportional score reduc-
tion. Over time, the packet is likely to have a low score, and
hence will be certainly scheduled by the controller. Overall, this
method is likely to achieve better concurrency compared to the
simple greedy scheme at the expense of some unfairness.
Comparison to Optimal: Fig. 9 compares the concurrency

of proposed heuristics to that of the optimal with and without
MIM (derived from the integer program). Least-Conflict
Greedy scheduling achieves near-optimal concurrency and
provides consistent improvement over the naive heuristic.
3) Schedule Execution: The controller repeatedly runs the

scheduling heuristic on the queue of wireless-bound packets and
selects batches of ordered packets. Packets are actually queued
at the respective APs, while the controller is only aware of
AP, packet–destination link identifier tuples. For each link in
the batch, the controller notifies the corresponding AP of the
precise duration of stagger. By maintaining tight time synchro-
nization with the controller (discussed in Section V), APs are
able to execute the staggered transmission schedule, illustrated
in Fig. 10. In this example, transmissions are staggered in the
order AP1 C13 before AP3 C32 before AP2 C21.
Backoff durations and RTS/CTS handshakes are not necessary
because the scheduler accounts for link conflicts based on the
interference map. Of course, transmission losses will still occur
due to a variety of unpredictable reasons. Loss detection and re-
covery are certainly necessary.
Loss Detection and Recovery: Shuffle requires client ac-

knowledgments for loss recovery and delivery ratio estimation.
Shuffle schedules periodic upload time windows (UTWs),
reserved for ACKs and other client upload traffic. At the expi-
ration of a UTW, the AP can deduce reception failures for the
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Fig. 10. Illustration of a scheduled batch of packets with the staggered trans-
mission times. AP1 starts first, followed by AP3, then AP2.

packets transmitted in the preceding download period. For each
failed reception, APs place the packet on a high-priority retrans-
mission queue and send a negative acknowledgment (NACK)
to notify the controller of the loss. The controller adjusts the
corresponding delivery ratios and schedules a retransmission.
The AP retransmits the failed packet prior to any new packet to
the same client, reducing out-of-order packet delivery.

B. Design Details

Practical considerations arise while translating the Shuffle
protocol into a functional system.
Rate Control: In the preceding discussion on packet sched-

uling, we assume for simplicity that all network links operate
at a fixed transmission bit rate. A link’s tolerance to an interfer-
ence source is dependent on its operating data rate and channel
quality. A practical approach must jointly consider link concur-
rency decisions with rate control. In view of implementation
complexity, Shuffle adopts a simple strategy based on recent
delivery ratios of a link at different data rates. The approach is
adapted from the popular SampleRate protocol [16] as follows.
Shuffle maintains independent rate control state for each

link–interferer pair. With knowledge of delivery ratios
at each link, the controller runs a rate control algorithm

to select the best rate for link in presence
of interfering AP . Observe that this rate is the best known rate
at which link and AP have been successful in the recent past.
Not all rates may have been attempted recently, hence this is
only a heuristic. In the presence of more APs in the concurrent
batch, the rate assigned to the link is conservatively chosen as
the minimum among the best known rates for each AP. Once a
batch of links have been formed, the controller sorts the rates in
increasing order. Lower rates imply weaker links, suggesting
that it is beneficial to start them earlier. Shuffle staggers each
of the links to match the sorted order of the rates. Where two
links share the same bit rate for their transmissions, they are
staggered in order of increasing delivery ratio (offering the
weaker link a greater chance of success). As time progresses,
the controller gradually increases the rates of links that attain
high delivery ratios. When delivery ratios go down, the rates
are reduced [16].
Upload Traffic: The controller must account for client-to-AP

transmissions in its schedules. For loss detection and upload
traffic, the controller frequently reserves a network-wide UTW.
During each UTW, clients contend for channel access using the
traditional CSMA (for simplicity). APs notify their clients about

the periodicity and duration of UTWs through beacons. Thus,
the controller may dynamically adapt the UTW schedule once
per beacon interval in response to changes in the relative bidi-
rectional traffic load. Given that UTWs may be scheduled fre-
quently, each in the order of a few packets, division of time into
upload and download windows is not expected to substantially
impact latency. Since Shuffle achieves time synchronization on
the order of 20 s (Section V), such division is practical.
Controller Placement: A number of placement options exist

for installing the controller into the network. It may be collo-
cated with the network gateway, allowing it to create MIM-
aware schedules as the packets pass through the gateway. In re-
ality, proprietary router software and administrative restrictions
may impose practical constraints on collocation. To circumvent
this, we propose to plug the controller directly onto the wired
network (as an independent device or perhaps as amodule in one
of the APs). Because of our lightweight scheduling heuristics,
we find relatively low CPU utilization for the controller process
( 20%). Decoupling the controller from the gateway may pro-
vide higher flexibility and easier maintenance. If necessary, the
controller can be reprogrammed with a better scheduling pro-
tocol and plugged back into the network. Advantages in time
synchronization and retransmissions also arise as a by-product.
However, the APs may need to be “thicker” than when the con-
troller regulates the flow of packets.

V. SHUFFLE: IMPLEMENTATION

Testbed Platform: We evaluated our fully functional Shuffle
implementation on a testbed consisting of laptops running Linux
kernel ver. 2.6.27 and equipped with Atheros chipset D-Link
DWA-643 ExpressCard interfaces, Soekris embedded PCs run-
ningMetrix Pyramid Linux with Atheros 5213 chipset Mini PCI
interfaces, and a high-performance Lenovo server. One of the
laptops served as the controller, while others as APs and clients.
Soekris devices were used as additional clients. The server func-
tioned as a high-volume data source, representing the network
gateway.
Shuffle’s functional logic (including conflict diagnosis,

MIM-aware transmission scheduling, and loss recovery) are
implemented through element extensions to the Click Mod-
ular Router [17]. Our tests assume the wireless link to be the
bottleneck for all flows. Thus, in the steady state, our gateway
module injects CBR UDP traffic (in 1500-B datagrams) to each
AP at a rate just exceeding the maximum theoretical wireless
bandwidth. This ensures that APs are always backlogged with
wireless-bound traffic.
To implement Shuffle and TDMA schedule execution,

we customized the MadWiFi 802.11 (madwifi-hal-testing,
revision 3879) driver. By modifying the MadWiFi txcont
configuration command, a driver ioctl call, we can selec-
tively disable hardware carrier sense, virtual carrier sense,
backoff, and DIFS/EIFS/SIFS intervals on the wireless in-
terfaces. This allows Shuffle to schedule its own stream of
packets without 802.11-specific timing constraints. To allow
precise transmission timing, we provide a mechanism inside
the MadWiFi driver that transmits a packet on the basis of
the 802.11 Timing Synchronization Function (TSF) clock. For
synchronization between APs and controllers, we modified
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Fig. 11. AP-to-controller clock synchronization error and transmission de-
viance from the assigned schedule, relative to the local clock. AP and controller
separated by approximately 20 m of CAT-5 cable, one switch, and one hub.
Margin of error s, attributable to 802.11 TSF inaccuracy.

the Sky2 (v1.22) Ethernet driver to include the 802.11 TSF
timestamp in Ethernet packets. With extensive optimization,
we have been able to achieve synchronization in the order of
20 s. We report the relevant details next.
Time Synchronization and Stagger: To enforce transmission

staggers on the order of preamble durations (tens of s), we
need equally precise time synchronization between the AP and
controller. The 802.11 TSF clock is used for synchronizing all
stations in a BSS. To synchronize APs with the Shuffle con-
troller, we insert 802.11 TSF timestamps into Ethernet packets
by modifying the Sky2 Ethernet driver. These time-stamped
control packets are exchanged bidirectionally between the con-
troller and APs. When a controller receives a TSF time-stamped
packet from the AP, it computes the offset between the time-
stamp and its local TSF clock. This offset includes wire prop-
agation delays, Ethernet switching latencies, processing time,
and the clock difference between the controller and the AP.
The same offset is also computed at the AP and exchanged be-
tween the two parties. The AP averages the two offsets and de-
duces an estimate of the actual instantaneous difference between
the controller’s clock and its own TSF. Propagation delays and
processing latencies in the Ethernet driver are reasonably sym-
metric, hence the clock difference estimation can be accurate on
the order of microseconds. The clock difference is cached and
exposed to Click through a sysctl interface.
Fig. 11 presents the empirical cumulative distribution func-

tion (CDF) of the AP/controller synchronization error achieved
by our implementation. We estimate this error by spatially col-
locating the AP and the controller, which then get synchronized
by the same TSF clock on their wireless interfaces. The TSF
clock now acts as the reference clock, allowing us to quan-
tify our synchronization precision over the AP/controller wired
connection. We consistently achieved a median synchronization
error of 20 s. Since the Atheros chipset TSF implementation
is accurate to s (verified in a separate experiment by com-
paring the packet reception times at multiple TSF-synchronized
receivers from a single transmitter), we believe that our total
margin of error is within 25 s.

Upon receiving a packet from the controller, APs busy-wait
on their TSF clocks to transmit the packet at the scheduled
instant. We measure the inconsistency between the scheduled
time of transmission, , and the actual time it was transmitted,
. This measurement was performed by assigning an AP to

transmit packets with a precise spacing of 20 ms. At a collo-
cated receiver, we measure error as 20 ms minus the observed
interpacket arrival times. The dashed line in Fig. 11 plots the
CDF of this deviation. The mean timing error is around 4 s.
Coordination and Dispatching: For every wireless-bound

packet, the AP places the packet on a per-client queue and
sends a notification to the controller. Once MIM-scheduling
selects the packets to schedule, the controller broadcasts the
schedule in the form of AP, client, start time tuples. Observe
that the controller does not specify which exact packets must
be transmitted—it only specifies the links that must be acti-
vated. Upon receiving a schedule, the AP dequeues a packet
to the specified client and passes it to MadWiFi, along with
the exact local TSF clock at which transmission must start.
The MadWiFi driver busy-waits on the TSF clock and, hence,
can transmit the packet at the precise time. Transmissions
continue until the controller schedules an upload window, at
which point the clients respond with batch ACKs. The batch
ACK contains a bit vector that marks the failed transmissions
in the preceding upload window. The AP places the failed
packets on a highest-priority retransmission queue and informs
the controller. The highest-priority queue ensures that the AP
will not transmit any new packet to the same client before
all retransmissions have been satisfied reducing out-of-order
delivery. In the subsequent download window, the controller
accounts for the failed packets and generates new ordered
schedules. The process continues.

VI. EVALUATION

Our testbed evaluation aims to demonstrate the feasibility
of Shuffle on commodity hardware and to characterize the
performance improvements with MIM-aware scheduling.
Comparison to IEEE 802.11 MAC confirms gains from cen-
tralized scheduling. To highlight the gains attributable to
order-awareness, independent of centralized scheduling, our
evaluation focuses on comparison to a capture-aware TDMA
(running on MIM hardware, but without imposed ordering). We
begin our analysis with results using a fixed bit rate, showing
how correct ordering improves delivery probability on weaker
links. Next, we compare Shuffle and TDMA operating with
full 802.11g rate control. We summarize our main findings as
follows.
• We begin with four simple two-AP topologies. Shuffle
outperforms 802.11 by about 40% and TDMA by 20%
(Fig. 12). Shuffle’s Jain Fairness Index is close to 1, while
that for 802.11 and TDMA are around 0.95 and 0.93,
respectively.

• Incorrect order of transmissions considerably degrades
performance. In two-AP topologies, the difference in
throughput between the correct and wrong order is almost
30% (Fig. 12).
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Fig. 12. Concurrency gains with only two links.

• The importance of order is more pronounced in three-AP
topologies (Figs. 13 and 14). More concurrency opportu-
nities offer higher gains with Shuffle—up to 100% over
802.11, and 20% over TDMA. Fairness improves as well.
Results from 10-link topologies also attain around 70%
gain over 802.11, and 20% over TDMA (Fig. 15).

• Fully functional Shuffle including 802.11g bit-rate control
shows 29% gains over TDMA throughput in a favorable
topology (Fig. 16) and yields 17% gain when different
client positions are systematically tested (Figs. 17 and 18).

ThroughputWith Two Access Points: To understand the prim-
itives of MIM-aware scheduling, we begin with topologies of
two APs, each associated with a single client. We character-
ized the interference relationships, as coordinated by the Shuffle
controller, finding the proper stagger order for maximal con-
currency. To understand the ramifications of incorrect ordering,
we forced the controller to schedule transmissions in correct
and incorrect orders. For fairness toward 802.11, we disabled
RTS/CTS and ensured that the topologies under test did not in-
clude hidden terminals. Fig. 12 presents the results.
Evident from the graphs, MIM-aware transmission re-

ordering consistently yields higher throughput than both 802.11
and order-unaware TDMA scheduling. When ordered correctly,
strong links allow weaker links to start first, and then extract
their own signal of interest from the channel (recall the notion
of relocking). In the absence of explicit ordering in TDMA,
concurrent packets may naturally achieve “good” and “bad”
link orderings due to clock synchronization error. For some
packets, the “right” AP will transmit first, and for others, it will
start too late and fail. Thus, for any pair of links, we expect
a TDMA schedule to result in the correct order (and thereby
gain) approximately half of the time. Our results support this
intuition. Fairness, computed as Jain’s Fairness Index, also
improves. We discuss this more later.
Throughput With Three Access Points: The notion of

ordering becomes more complex with three clients, each
associated with a distinct AP. Fig. 13 shows the throughput
comparison. Since more concurrent links are feasible, Shuffle
outperforms 802.11 and TDMA by larger margins. However,
of greater interest is the sensitivity of performance to the
different transmission orders. The variation in throughput
between different orders is evidently large, indicating that gains

Fig. 13. Multiple Shuffle orders provide higher throughput than both TDMA
and 802.11.

Fig. 14. Shuffle scheduling improves fairness.

from MIM reordering may not be extracted blindly. Use of
the incorrect order lowers throughput below that of a TDMA
schedule. Interestingly, even suboptimal orderings provide
gains over 802.11. This is an attribute of overly conserva-
tive carrier-sense mechanisms in 802.11, leading to exposed
terminal problems [18]. Shuffle overcomes these problems
through centralized scheduling and overlapping transmissions.
Fairness: MIM-aware scheduling does not degrade fairness

among clients (recall that our scheduling algorithms account
for fairness and starvation). Shuffle improves fairness over
802.11 and TDMA. In Fig. 14, we characterize these gains
using Jain’s Fairness Index. The 802.11 backoff mechanism
preferentially treats links that experience fewer losses. Thus,
802.11 exacerbates the already disproportionate bandwidth
allocation to stronger links. The Shuffle controller attempts to
ensure that sufficient transmission opportunities are extended
to all links, reducing this effect.
Performance on Larger Topologies: We tested Shuffle on

larger topologies with three APs each connected to up to four
clients. One of the large topologies with 10 links is illustrated
in Fig. 15(a). For this experiment, equal traffic is generated for
each client. Based on their interference relationships, not all
scheduled batches can consist of three concurrent links. As a
result, Shuffle sometimes schedules batches of two concurrent
links (especially in view of fairness). Fig. 15(b) compares the
throughput between Shuffle, TDMA, and 802.11. Performance
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Fig. 15. (a) Example 10-link topology in our building. (b) Throughput and
(c) fairness on entire Shuffle testbed.

improvements in this and other topologies are reasonable and
consistent. Fairness among the links is also observed to be high,
as illustrated in Fig. 15(c).
Complete ShuffleWith Rate Control: We evaluate the benefits

of MIM-aware ordering with rate control enabled. Our trans-
mission bit-rate control mechanism is similar in principle to
SampleRate and utilizes all 802.11g rates. Bit-rate control and
MIM-aware transmission ordering decisions are made holisti-
cally by the controller as part of the scheduling heuristic.
With aggressive rate-control mechanisms, channel fluctua-

tions can cause dramatic changes in throughput between tests
as the ideal rate changes with time. To ensure that Shuffle
gains relative to TDMA are attributable to ordering and not
testing artifacts, we measure throughput for Shuffle and TDMA
simultaneously. Our controller alternates between scheduling
batches of concurrent packets with and without ordering to

Fig. 16. Throughput for Shuffle versus TDMA using 802.11g with 6–54-Mbps
rate control enabled.

effectively time-share the channel. In this way, our comparison
is unbiased if channel behavior is coherent for longer than a
single packet duration. By maintaining separate interference
maps and rate control state for both Shuffle and TDMA,
Shuffle’s order-aware conflict learning is not impacted by
failures due to TDMA naiveté. To compare throughput, the
controller records the number of packets scheduled, the number
of failed transmissions, and the amount of time scheduled on
the channel independently for Shuffle and TDMA. Given that
Shuffle and TDMA run identical algorithms for centralized
scheduling and rate control, with the one exception of imposed
ordering through stagger, we believe this to be a highly fair
comparison. Since 802.11 is not compatible with centralized
scheduling, with this testing methodology, results for 802.11
are not reported in this section.
In Fig. 16, we present results from one topology consisting

of two mutually interfering links, similar to that presented in
Fig. 4. One link is strong and relatively unaffected by the inter-
ferer. The other link is far more susceptible. With Shuffle, the
weaker link successfully maintains a higher data rate than it can
under TDMA. We plot a CDF of our results over 50 trials (the
system starting from a ground state for each trial) to show that
the Shuffle conflict interference mechanism can reliably deduce
the proper ordering. The mean throughput gain from Shuffle is
29%.
Although the potential for gains with MIM ordering is

topology-dependent, it is not highly sensitive. As depicted
in Fig. 17, we deployed a two-AP topology. One AP was
positioned to serve a classroom, and another just outside, a
strong interference source. We collocated a receiver with the
outside AP, creating a strong link. By systematically moving
the other client to each of the 54 seating positions, we create a
diverse set of channel conditions. Fig. 18 shows these results.
Mean throughput is 32 and 27 Mbps for Shuffle and TDMA,
respectively (a Shuffle gain of 17%).

A. Simulation Results

We performed QualNet simulations to evaluate performance
in larger topologies. MIM capabilities were carefully modeled
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Fig. 17. Classroom environment with 54 seats. Leaving the AP and one client
fixed, we tested with a client placed on the desk in front of each chair.

Fig. 18. CDF of throughput for classroom test.

into the PHY and MAC layer of the simulator. The EWLAN
controller was assumed to have a processing latency of 50 s,
and the wired backbone was assigned 1-Gbps data rate. We used
802.11a with transmission power 19 dBm, two-ray propagation
model, transmission rate 12 Mbps, and a PHY-layer preamble
duration of 20 s.
Fig. 19(a) presents throughput comparisons for topologies

taken from Duke University buildings with different numbers
of APs on the same channel; each AP was associated to around
six clients. As a special case, the second topology has APs as-
sociated to 20 clients, resembling a classroom setting. Shuffle
consistently outperforms NoMIM, confirming the potential of
MIM-aware reordering.
Impact of AP Density: To understand Shuffle’s scalability in

high-AP-density environments, we generated synthetic topolo-
gies in an area of m .We placed an increasing number
of APs (ranging from 5 to 50) at uniformly random locations
in this region. Each AP is associated with four clients, and the
controller transmits CBR traffic at 1000 packets/s to each of the
clients. Fig. 19(b) presents results of this setting. It shows that
Shuffle offers consistently better throughput than NoMIM re-
gardless of the density of APs.
Impact of Fading: The earlier results were obtained without

accounting for channel fading. However, the impact of channel
fading can be severe, and the Shuffle system needs to adapt

Fig. 19. Performance evaluation on real and synthetic topologies. (a)
Throughput for real-life AP placements. (b) Higher AP density increases
concurrency.

to it over time. To evaluate our opportunistic rehearsal mech-
anisms, we simulate Ricean fading with varying -factors
and log-normal shadowing. Fig. 20 shows the percentage
throughput improvement of Shuffle over 802.11 for different
values of . For (Rayleigh fading), the fading is severe,
and the improvements are less than at higher values of . Still,
the improvements are considerable, indicating Shuffle’s ability
to cope with time-varying channels. The improvements were
verified to be a consequence of opportunistic rehearsals; when
opportunistic rehearsal was disabled, performance degraded.

VII. LIMITATIONS AND DISCUSSION

We discuss some limitations with Shuffle implementation and
identify avenues of further work.
External Network Interference: We assume that all WiFi

devices are associated to the same enterprise network. Put
differently, no other WiFi transmission occurs that is not
accounted for by the central controller. In reality, electronic
devices such as microwaves may interfere in the 2.4-GHz band.
Wireless devices from “neighboring” networks may interfere
at the periphery of a Shuffle deployment. Shuffle’s packet loss
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Fig. 20. Throughput improvement under different channel fading conditions.
Shuffle performs well under Rayleigh and Ricean fading.

recovery mechanism will be able to cope with sporadic interfer-
ence. However, if the losses are frequent, carrier sensing may
need to be selectively enabled for the peripheral APs, limiting
the Shuffle controller’s ability to schedule for those clients.
Latency: Shuffle introduces some end-to-end delivery

latency. When a packet is received at an AP, it cannot be for-
warded to the intended client until the AP notifies the controller
and receives a scheduled slot for transmitting the packet. As-
suming no queuing at the AP or client, the added latency is only
due to propagation, switching, and processing of two control
messages. As a design alternative, this latency may be elimi-
nated if the controller is collocated with the network gateway,
so that schedules may be forwarded to APs in tandem with the
outbound packet. While this provides no direct improvement
for retransmissions of lost packets, recall that retransmissions
get higher priority than new packets to the same client. This is
expected to make the retransmission delay tolerable.
Client Mobility: As a client moves, interference relationships

between links may change dramatically. While Shuffle’s con-
current link selection, rate control, and transmission ordering
mechanism do adapt to changes in channel conditions, we have
not yet characterized convergence time for continuous-mobility
scenarios.
Transport-Layer Interactions:We have not yet characterized

TCP interaction behavior with Shuffle scheduling. A potential
point of concern is division of time into upload and download
periods, possibly impacting TCP round-trip time estimation and
ACK timeouts. However, we believe that upload periods may be
scheduled frequently enough (every few download packets) to
limit this effect.
Compatibility: Shuffle is not immediately compatible with

existing deployments. Clients must be protocol-compliant so as
to remain silent during download periods and provide ACKs
during upload windows.
Small-Scale Testbed: We tested our Shuffle implementation

on topologies consisting of up to three concurrent links. Though
more experiments with larger topologies would be desirable to
confirm the scalability of Shuffle, our simulation results indicate
that Shuffle scales well.

VIII. RELATED WORK

Capture and MIM: Theoretical models have been proposed
to explain physical layer capture [19]. The first empirical evi-
dence of capture was presented in [3]. The recent study in [5]
quantifies SINR threshold requirements for 802.11a networks
under different packet arrival timings. Capture awareness has
been used for collision resolution in [20]. Bit error rate (BER)
models for capture were proposed in [21].
Spatial Reuse: Schemes like [22] and [23] make use of power

control and carrier-sense tuning to achieve improved spatial
reuse. Prior work has considered RTS/CTS variants to schedule
nonconflicting links [24]. However, most existing deployments
do not use RTS and CTS [18], and even those with RTS/CTS
do not exploit concurrency well. In CMAP [18], the authors
propose a distributed scheme that makes use of partial packet
decoding to determine if a concurrent transmission is possible.
This distributed approach makes use of the delivery ratios of
concurrent transmissions to determine whether they can be suc-
cessful. CMAP can benefit from MIM-capable hardware, but is
not MIM-aware. In contrast, our work explicitly orders trans-
missions to take advantage of MIM. In our earlier work [25],
we have made a case for reordering transmissions. In this paper,
we presented the details of the integer programming formula-
tion, rehearsal, scheduling, and transmission mechanisms. The
most significant addition is the implementation and evaluation
of Shuffle on a testbed.
Enterprise Wireless LANs and Scheduling: Enterprise

wireless LAN architecture is increasingly becoming pop-
ular to improve throughput, monitoring, and management.
SMARTA [14] utilizes a centralized server to build a conflict
graph and fine-tune the AP’s transmit power and channel
selection mechanisms. Several scheduling mechanisms for
single- and multihop radio networks like [8] were proposed
and in the context of EWLANs. Our controller–AP interaction
is similar to the one proposed in a recent work [26], [27].
The speculative scheduling solution in [11] and [28] proposed
a conflict-graph-based centralized scheduling mechanism
to improve spatial reuse. Our conflict graphs are based on
asymmetric link conflicts where conflicts change based on
transmission ordering. Police [29] builds a conflict graph for
both uplinks and downlinks in an EWLAN. This conflict graph
can be dynamically updated and used for allocating airtime
for links. Shuffle will benefit even more with such a scheme.
DIRC [30] uses the conflict-graph-based approach in EWLANs
for improving spatial reuse with directional antennas. We need
to study the significance of MIM and ordering with directional
antennas.
Characterizing and Measuring Interference: In [31], the au-

thors analyze the effects of combined interference and suggest
that an additive interference mechanism like the one used in
QualNet [2] is a very close approximation. This assertion is fur-
ther supported in [32]. An algorithm for estimating link
state interference in multihop wireless networks was proposed
in [33], and a linear order algorithm that takes capture into ac-
count was presented in [34]. These measurement schemes aim
to estimate the pairwise interference between links with few
measurements. In [35], the authors show how signal strength
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conditions vary transiently in real networks, and they quantify
the affects of received signal strength on delivery probability.
In this paper, we use a hybrid approach of measuring individual
link RSSI values to prune the initial set of concurrent links and
a decision-making scheme based on concurrent delivery ratios
similar to [18].

IX. CONCLUSION

Message in Message (MIM) in modern wireless cards allows
a receiver to disengage from an ongoing reception and engage
onto a new stronger signal. The rewards from this physical layer
capability cannot be fully realized unless link-layer protocols
are explicitly designed with MIM-awareness. Specifically, we
have shown that links that conventionally conflict with each
other may be made concurrent if they are initiated in a spe-
cific order. We then presented Shuffle, a system that reorders
transmissions to improve spatial reuse. Theoretical analysis has
shown that the optimal improvements with MIM can be sig-
nificant. A functional testbed validated that MIM-awareness is
practical, while results of experimental evaluation confirm con-
sistent performance improvements.
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