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Abstract—Imagine a transportation system in which passengers
simply get on/off without any explicit ticketing operation. Yet,
the system tracks usage and charges passengers. Such a system
will not only be more convenient and efficient, but also be
more conducive for analytics, than existing systems. Towards that
goal, we exploit the opportunity that people are carrying sensor-
equipped smart devices, and their motion trajectories/patterns
and experienced environment can be measured continuously. As-
suming that vehicles are also equipped with such sensors (perhaps
fixed devices or smart devices carried by drivers), the vehicles’
motion and the experienced environment characteristics can also
be recorded and uploaded to cloud. Under these assumptions, we
hypothesize that the motion/environment sensed by a passenger’s
smart device correlates strongly with that of the vehicle she is
traveling in and is distinct from that of other vehicles and/or
other traces of the same vehicle. In this paper, we expand on this
intuition and develop a system, called RideSense, that matches
a passenger’s sensor trace against the traces of buses in that
area, to determine which bus, when she has taken and where
she gets on/off. Our evaluation of RideSense, with 20+ hours
of traces from 5 bus lines in our area, shows that it achieves
an accuracy of 84∼98%, depending on the choice of sensors and
their features, positions of the passengers’ phones and the metrics
of measurement. These results, while far from conclusive, offer
confidence that ticketless public transportation may indeed be a
possibility in smart cities of the future.

I. INTRODUCTION

In current public transit system, there are two major ways for
paying the fare. One is paying by cash. Passengers need to
prepare and carry cash with them and pay the fare when they
get on a bus. A more convenient way is IC-card based ticketing
system. A passenger obtains a physical IC card from transit
system operator and deposits fees in it. Later when she gets
on a bus, she inserts or scans the IC card to pay. Besides, in
recent years, we are witnessing the emergence of smart-device-
based e-payment in public transit. For example, smartphone
users in Japan use Felica [1]-embedded smartphones to take
bus and subway. Apple Pay is now being used in London buses
[2]. Both these are NFC-based solutions; passengers tap their
phones (which contain NFC chip) on readers and go.

While the existing pricing, ticketing and billing process in
public transportation systems generates significant revenue, it
does not come free of financial and experiential hurdles. For
instance, installing, upgrading, and maintaining the end-to-end
accounting infrastructure (including ticketing kiosks, manned
booths, ticket-checking gateways, card readers, etc.) require
substantial investment. The core notion of buying tickets, at the
right price, for the right destination, with the right monetary
change, and just in time to catch the train, is often a source of
frustration/anxiety, making the overall experience less seam-
less. Finally, ticketing often creates queues at purchase kiosks
and at bus stations, because every passenger boarding the bus

needs to pay for (or verify) her ticket. In sum, the process
of gathering revenue in public transportation systems imposes
operational burdens, both to the operators and the customers.
Apart from the above drawbacks, in current bus systems,
the operators at most know where each passenger gets on
the bus, but they have no knowledge or record of where a
passenger gets off, making it hard to perform analytics such as
determining the occupancy of each bus at each road segment.

To eliminate the operational burdens from both customers and
operators, and also provide an insight about the running of
the traffic system, we propose a smart-device-based system,
RideSense. Our core idea is simple and exploits the oppor-
tunity that people are carrying sensor-equipped smart devices
everywhere, and their motion trajectories/patterns and the envi-
ronment they experience can be measured continuously. Now,
assuming that public vehicles can also be equipped with such
sensors (perhaps installed explicitly or carried by the drivers),
the vehicles’ sensor data can also be recorded and uploaded
to the cloud. Under these assumptions, we hypothesize that if
Alice takes a bus, her sensor trace can be correlated against
the sensor trace of the bus to precisely position her bus trip -
which bus she takes, when she boards, where from and to she
rides, etc. We envisage matching Alice’s sensor data with the
vehicle at fine granularities, including similar pot hole jerks
that both Alice and the vehicle experienced, the stops, turns
and the number of lane changes, precise times of braking,
decreased atmospheric pressure due to increased altitude, etc.
Fig. 1 illustrates RideSense.

Fig. 1: An illustration of the RideSense system. Sensors on
passenger’s phone and on the bus collect the sensor data along
the travel; later these sensor traces are uploaded to cloud for
matching. The system could learn which bus line a passenger
took, when she boarded, and also where the passenger has
traveled, therefore the operator could bill the passenger.

In a RideSense-enabled bus, the reference device collects
sensor data all the time when the bus is on duty. When the
bus is off duty, the sensor traces are uploaded into cloud
for matching. Passengers run a RideSense app in their smart



devices and could take buses freely without any explicit inter-
action with any ticketing/billing facilities when they get on/off.
RideSense utilizes the built-in sensors to record the motion and
environment information (e.g. atmospheric pressure) along the
passenger’s trip. After the passenger gets off the bus, the app
finds an opportunity (for example, when the user is at home
with WiFi connected and the phone is not busy) to upload the
recorded sensor trace into cloud.

The cloud matches a passenger’s sensor trace with reference
trace to find out: i) Which bus line the passenger has taken. ii)
Where the passenger boarded and disembarked, i.e. the source
and destination stations of a passenger’s trip. iii) When the
passenger took the bus. We use Which/Where/When to refer to
these three aspects in the rest of this paper.

Designed correctly, RideSense can bill the users accurately
afterwards. It depends on how well our intuition holds, i.e.
one sensor trace from the reference device in bus, the other
from the passenger’s smart device, should correlate strongly.
As a preliminary check, we collected motion data from three
passengers’ phones each on a different bus. We gathered
motion data from each bus too and matched them against
the passengers’ motion data. Fig. 2 shows that the highest
correlation values are along the diagonal indicating strong
correlation between motion of a passenger and her bus. Though
this is a toy experiment, it does affirm the core intuition.

0.914

0.578

0.623

0.642

0.834

0.626

0.651

0.624

1.000

Bus A
Bus B

Bus C

Reference Trace

P
as

se
n
g
er

 T
ra

ce Bus A

Bus B

Bus C

0

0.5

1

Fig. 2: The sensor trace collected by a passenger phone shows
higher correlation with the corresponding bus trace.

Apart from billing the users correctly, perhaps more impor-
tantly, the overall operation of the public transit system can
become far more seamless. For example, users can board buses
from any of the doors and conventional ticket verification
facilities are no longer needed, which reduces traffic backlogs
at the stations, and administrators can attain entire programma-
bility on pricing and billing. Perhaps other opportunities will
arise, given the disruptions in the transportation industry with
Uber-like services becoming popular. Finally, the data from
the vehicles and users can be amenable to valuable analytics,
offering insights into city planning, human mobility models,
traffic control, pricing, etc. Of course, realizing such a vision
will entail a variety of challenges, including sensor data
processing, mechanisms to thwart cheating, location privacy
for users, appropriate user interfaces, policies, etc. The tangible
outcome of this research is expected to be a convincing, data-
driven argument on the viability/practicality of this vision.

Currently, we target RideSense at bus system and assume that
each bus will be fitted with a device (e.g. smartphone) for
sensing motion and environment. We focus on implementing
and evaluating the algorithms for matching passengers’ sensor
traces against the traces of the buses in that region, to study

how accurately RideSense could tell the Which/Where/When
information about passengers’ bus trips. Considering that pas-
sengers’ sensor traces are their tickets, we need to be con-
cerned about the potential for cheating and tampering. Also,
users’ normal usage of the smart devices should not adversely
affect the RideSense accuracy. While there are several such
important issues that need to be tackled prior to deployment of
RideSense, in this work, we assume a non-malicious passenger
and conduct a study to assess the feasibility of RideSense.

Before we proceed with system design, it is important to clarify
a question one may have: Why not match the GPS data from
the user’s phone with that of buses in that region? A major
limitation of this GPS-based approach is that users are unlikely
to always turn on the power-hungry GPS. Furthermore, if
another vehicle also takes the same route between “source”
and “destination” at that time, GPS-based approach can not
correctly place the passenger on the right bus. The error
of GPS readings in urban area (where tall buildings and/or
tunnels exist) could also make the approach infeasible. On
the other hand, RideSense can offer better overall performance
using cheaper sensors (such as accelerometer, gyroscope, and
barometer) on a smart device.

II. SYSTEM DESIGN

We now present the design of RideSense system. As mentioned
earlier, RideSense app in passengers’ smart devices collect
readings from accelerometer, gyroscope and barometer. We
refer to this sensor data as passenger trace. A smart device
plugged in each bus records readings from GPS too in addition
to the above set of sensors. We refer to this sensor data
as reference bus trace. Considering that GPS coordinates of
bus stations could be obtained in advance, we can extract
the reference bus trace for each segment (see Fig. 3 for
terminology). The objective of RideSense is to identify the
sequence of bus segments whose sensor trace matches closely
with the passenger sensor trace.

Fig. 3: A bus line is made up of segments, which are delimited
by stations. Stations are the regulated places where the bus
stops and allows passengers to get on/off. When a bus is
moving on the road, it could experience many stops and turns.

Note that passenger trace may include data from other daily
activities, as the user may have the app on even when she is not
traveling on the bus. We need to make sure a passenger’s smart
device will only upload the sensor trace related to her travel in
bus system. Although RideSense could require passengers to
explicitly turn on the app only when they get on a bus and turn
off immediately after they get off a bus, this might sacrifice
some convenience and people might forget to turn on or off.
To provide the best user experience, user only needs to turn
on the app once and does nothing else. So the system needs to
distinguish a user’s bus traveling from all other daily activities.
Lots of solutions [3]–[8] exist which could distinguish vehicle
transportation from other daily activities through smartphone
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Fig. 4: RideSense extracts macro features from traces after
preprocessing. Based on macro features, the searching space
is reduced for each passenger trace. The system uses micro
features to do trace matching to identify a passenger’s trip.

sensors. Even for vehicle transportation, there are smartphone-
based solutions [5] [7] to distinguish bus from car. We borrow
the result from the existing approaches on distinguishing bus
traveling from other activities.

Given a passenger trace, RideSense only knows it starts and
ends at stations, but does not know the number of sta-
tions/segments in-between. To find the corresponding reference
bus trace, RideSense needs to compare all possible combina-
tions of consecutive segments from all bus lines. Considering
the number of bus lines and passengers in a city, enormous
number of reference and passenger traces are produced every-
day, RideSense needs to search a huge space to match a given
passenger trace. Fig. 4 shows the pipeline of the matching
algorithm of RideSense in cloud. The system extracts macro
features and micro features from both reference and passenger
traces. Macro features are the basic properties of the trace, such
as turn, stop information, which are used to filter out reference
traces and reduce the searching space for each passenger
trace. Micro features are the fine-grained characteristics of
the motion and atmospheric pressure information of the travel,
which are used for trace matching once the searching space is
reduced. We elaborate on the pipeline steps below.

A. Data Preprocessing

The data collected with smartphone’s built-in sensors, i.e.
accelerometer, gyroscope and barometer, is very noisy. Before
extracting features from these sensor data, RideSense goes
through a preprocessing stage to clean the data, which contains
two steps: smoothness and interpolation.

We run an exponential moving average on the raw sensor data
to remove noise. Due to the low-quality of smartphone sensors
and also the limitation of operation system, the collected sensor
data does not have fixed intervals between samples. We use
cubic spline interpolation [9] to interpolate the sample data
and then resample to obtain sample data with needed sample
rate.

B. Searching Space Reduction

Searching space reduction is carried out based on macro fea-
tures. Macro features define the basic properties of a bus line
and its segments. To reduce the searching space of reference
traces for passenger traces, RideSense needs to extract macro
features both from passenger traces and reference traces. By
comparing the macro features of both sides, the reference

traces which show irrelevant properties to the passenger traces
could be eliminated from the candidate set.

In RideSense, following macro features are extracted and used:
cellular network information, duration of travel, turn infor-
mation, altitude information. We present the details of each
macro feature, its usage and the way to extract in following
paragraphs.

a) Cellular Network: Cellular network contains lots of cellu-
lar towers, which are distributed to provide good coverage.
Each tower provides service to a limited area. A bus usually
travels through many cells of the network, which are covered
by different towers. Every cellular tower has a unique ID,
which could be detected by the phone. By using the cellular
network ID, RideSense could limit the reference traces for a
passenger trace to a certain area, the searching space could be
significantly reduced.

b) Duration of Travel: Both the reference traces and passenger
traces are formed by segments which are delimited by stations.
In the reference trace, by knowing the GPS coordinates of each
bus station, we could easily figure out the duration at each
station and also the duration between two consecutive stations.
In passenger trace, RideSense does not have GPS information,
so it doesn’t know how many stations/segments a trace covers.
Fortunately, the places where a passenger gets on and gets off
are stations inherently. Furthermore, the segments and stations
covered by a passenger trace are continuous. Therefore, the
end-to-end duration of a passenger trace should correspond to
the duration from one station to another station (including the
inbetween segments and other stations), although RideSense
does not know exactly which stations they are.

To find out the corresponding reference sub-trace for a passen-
ger trace (a passenger usually only travels a part of a bus line),
RideSense only needs to search sub-traces which start and
terminate at stations. It does not need to search the reference
traces in the middle of a segment. For a passenger trace, if the
duration of a sub-trace in reference space is far beyond the
duration of the passenger trace, it could not be the reference
trace corresponding to the passenger trace.

From motion’s perspective, every trace is formed by stop and
move. So an end-to-end duration of a trip is composed of
many stop-durations and move-durations. Different bus lines
and even different traces of the same bus line exhibit different
stops and moves. Thereby the proportion of stop and move
durations within an end-to-end duration could also be macro
features for a trace.

In reference trace, the stop and move could easily be identified
by the speed measured by GPS. While in passenger trace,
no GPS speed information is available. We developed a stop
detector to identify the stop and move. After running the stop
detector, we summarize the stop and move proportion of a
passenger trace as macro features.

Stop Detection: The stop detection in RideSense is based
on accelerometer and gyroscope readings. We run a sliding
window with 1-second length and 0.5-second step size on
the sensor data to extract features (as listed in Table. I) for
stop detection. These features are selected experimentally. We
trained a random forest which contains 50 decision trees for
stop detection.



TABLE I: Features for Stop Detection
Sensor Feature

Accelerometer
Time Domain: (Magnitude of Linear Acceleration) Mean, Median, Vari-
ance, Standard Deviation
Frequency Domain: (Magnitude of Linear Acceleration) Maximal ampli-
tude, Energy, Mean coefficient magnitude,Root Mean Square of bucket
0∼20 Hz

Gyroscope
Time Domain: (Magnitude of Gyroscope Readings) Mean, Median, Vari-
ance, Standard Deviation
Frequency Domain: (Magnitude of Gyroscope Readings) Maximal ampli-
tude, Energy, Mean coefficient magnitude, Root Mean Square of bucket
0∼20 Hz

c) Turn: Each bus line and its segments have different numbers
of turns. A turn could be detected by continuously integrating
the gyroscope readings over a window. We experimentally
select 6 seconds as the window length for a turn. If it is a turn,
the bus should be able to complete a continuous movement
within the window and experience large enough turn degrees.
Although gyroscope suffers from the problem of drifting [10],
which usually leads to problems with a long duration. In a
6-second window, it is reliable to tell it is a turn or not from
the integrated gyroscope readings.

Turns have different degrees and directions. To compare turn
degree accurately, the passenger phone and reference phone
must be aligned accurately. Reference phone could be fixed
in a bus, but passenger phone has unlimited flexibility, which
makes it less reliable in turn degree comparison.

When a bus makes a turn, it could have one of the two
directions: left and right. A bus turns around its Z-axis (as
shown in Fig. 5 (b)). The Z-axis of bus aligns with the Z-axis
of the earth coordinate system (as shown in Fig. 5 (a)).

While the passenger and reference phones could be in any
attitude, their coordinate systems do not align with the earth
coordinate system (as shown in Fig. 5 (c)). In order to measure
the turn around the earth’s Z-axis, the smartphone’s Z-axis and
the Z-axis of bus (i.e. Z-axis in earth coordinate system) must
be aligned.

Fig. 5: (a) Earth coordinate system. Smartphone’s coordinate
system (c) usually does not align with bus coordinate system
(a, b). To learn the turn direction, their Z axes must be
aligned. RideSense utilizes the accelerometer readings when
the phone is in static status to measure the relative attitude
between smartphone and the earth coordinate system, and then
a rotation is applied to align smartphone’s Z-axis with the Z-
axis in earth coordinate system (d).

To align the passenger phone’s Z-axis with bus, RideSense
needs to do a rotation on the smartphone’s gyroscope readings,
which could eliminate the relative difference between the
two Z axes. The relative difference could be learned from
accelerometer when the passenger phone is in a static status.
If a phone is static, what the accelerometer measures is only
the gravity. The gravity is distributed on its 3 axes, which tells
the attitude of the phone in the earth coordinate system.

For reference trace, it is easy to find the static status from
the GPS information, where the GPS speed is shown as 0.
It is more difficult to identify the static status in passenger
trace, which does not include GPS information. Although we
could use stop detector to identify stops, which is unlikely
100% accurate in recognizing all stops. To reduce the impact of
error propagation caused by stop detector, RideSense uses the
accelerometer readings in a short period when the stop detector
reports stop continuously for 3 times. Once 3 consecutive stops
are reported, it is safer to conclude that the passenger phone
is static, then RideSense learns the distribution of acceleration
(i.e. gravity) on the 3 axes to obtain the attitude of the
passenger phone.

From the attitude value, RideSense derives a rotation matrix,
which is used to rotate the Z-axis in smartphone’s sensor read-
ings into the Z-axis of the earth coordinate system. Therefore,
the system could measure the rotation around earth’s Z-axis,
i.e. how the bus is turning.

To tell the turn direction, RideSense only needs to look at the
gyroscope readings on Z-axis. If the gyroscope reading on Z-
axis is positive, the bus is turning left, otherwise it is turning
right. We use a voting mechanism within the turn window to
decide whether the gyroscope reading is positive or not.

In RideSense, we use the number of turns and turn directions
as macro features.

d) Altitude: RideSense collects barometer readings which cor-
respond to the altitude of the road. But barometer is easily
affected by climate factors, such as temperature, humidity. It
could only reflect relative relationship in altitude, e.g. place
A is higher than place B. RideSense utilizes barometer to
eliminate candidate reference traces for a given passenger
trace. For instance, if the barometer reading at source station
of a passenger trace is higher (with a threshold) than the
destination station, the reference sub-trace which has opposite
relationship in barometer readings between its source and
destination stations could be ignored.

After reducing the searching space based on the macro fea-
tures, the remaining reference traces are further compared
with the passenger traces based on micro features, which is
explained in next section.

C. Passenger Trip Identification

When a passenger takes a bus, the passenger phone should
experience same or similar motion and environment as the
reference device in the bus. RideSense characterizes the motion
through micro features extracted from motion sensor data.
Besides, the system also extracts micro features from the
barometer readings which represent the atmospheric pressure
along the trip. By comparing a sequence of micro features of
passenger trace with a sequence of micro features extracted
from reference trace, RideSense finds out the reference trace
which corresponds to a passenger’s travel.

When the reference phone and passenger phone are in static
status, the trace data does not contain meaningful and com-
parable motion characteristics, which also wastes resource on
computation. Therefore RideSense extracts micro features only
from the sensor readings when the phone is experiencing
movement.



The system extracts micro features from accelerometer, gyro-
scope and barometer both in time and frequency domain. In
feature extraction, a 1-second sliding window is applied on
sensor data, which moves every 0.5 seconds. The sequence of
micro features of reference traces are delimited by stations.
RideSense Z-normalizes the micro features and uses Dynamic
Time Warping to do matching. In this system, normalized
DTW distance is used to represent the similarity between
traces. The reference trace which achieves minimal normalized
DTW distance to the passenger trace is regarded as the
corresponding reference trace.

To learn the effectiveness of the features, we collected ex-
perimental sensor traces along some randomly selected bus
lines in our area, and then we carried out the study with
each single feature on the experimental traces. Base on the
experiment result and also taking the cost of computation into
consideration, following (micro) features are finally used in
RideSense for identifying detailed which/where/when informa-
tion of passenger trips:

TABLE II: Micro Features for Passenger Trip Identification
Sensor Feature (all based on the magnitude, time domain)

Motion Sensor
Median, Root Mean Square of Linear Acceleration;
Log Energy of Gyroscope Readings

Barometer
Mean, Median, Variance, Standard Deviation, Range, Mean Crossing
Rate, Mean Absolute Deviation, Skew, Root Mean Square, Signal Mag-
nitude Area

III. EVALUATION

We evaluate RideSense with the public transit in our university
area to study how well the system could identify the bus
line/shift (which/when) and source/destination stations (where),
corresponding to a passenger’s bus trip. Before presenting the
detailed results, we summarize our findings below.

• RideSense can identify which/when/where about a
passenger’s travel with an overall accuracy of 85%
using motion sensors and an accuracy of 91% based
on barometer.

• It can determine the number of segments a passenger
has travelled (fare for the bus-riding may depend on
this) correctly in 96% and 99% instances with motion
sensors and barometer respectively.

• The more segments a passenger travels, the higher the
accuracy of RideSense in identifying her trip.

• Motion-sensor-based RideSense performs better when
a passenger has the phone in his pocket than the
phone in hand, whereas barometer-based RideSense
is irrelevant to phone positions.

A. Data Collection

We recruited two volunteers for data collection. The volunteers
traveled on 5 bus lines, which have 5 to 8 bus stations
(correspondingly, 4 to 7 segments). For each bus line, they
rode 3 times. The volunteers spent 20+ hours and collected
more than 30G sensor data. The data collection was carried
out in different time of different days, including rush hours and
other time, and also experienced different weather conditions.

Each time, the volunteers use 3 phones. One acts as reference
phone, the other two phones act as passenger phones. The

phones are synchronized before the volunteers get on the bus,
which allows us to get the ground truth for evaluation. After
the volunteers get on the bus, the one carrying the reference
phone sits close to the driver. The reference phone is fixed
on the seat close to the driver. The two passenger phones are
carried by the other volunteer who randomly selects available
seat to sit. One of two passenger phones is in pants pocket,
the other is in hand.

The reference phone collects sensor data from GPS, cellular
network component (cellular network ID), accelerometer, gy-
roscope and barometer. Before the bus starts to move from the
first station, the volunteer taking care of the reference phone
marks a “start” on the reference phone; and then after the bus
stops at the final station, this volunteer marks a “stop” on the
reference phone. The start and stop markers in the reference
trace tells the ground truth of the beginning and end of the
bus trip. In the middle of the travel, the reference phone is not
touched to avoid involving any motion from human.

The phone in the pants pocket of the passenger also collects
the same sensor data as the reference phone. But the GPS
information is only used for ground truth, it is not used in
trace matching.

The phone in passenger’s hand also collects same sensors as
reference phone. Same as the pants pocket-phone, the GPS
information here is only used as ground truth, which is not used
in trace matching. The phone in hand is used for two purposes.
First, the passenger marks the bus stations on this phone,
which provides further ground truth about the stations of the
bus line when combined with the reference trace, because we
don’t have detailed GPS location information about the bus
stations in advance. Second, typing on the phone to mark
the ground truth of stations will introduce the motion of the
passenger, which allows us to mimic normal user operations
on smartphone, although the operations are not intensive.

The collected data are processed and then used in evaluating
the performance of RideSense.

B. Performance

To be a practical and useful system, RideSense should be
able to achieve two goals: 1) It searches a candidate space as
efficient as possible for a given passenger trace. 2) It identifies
passenger trip with high accuracy. In this section, we verify
our design and study the performance of RideSense.

In current implementation, we set relatively conservative con-
ditions for macro-feature based searching space reduction.
Fig. 6 shows the effectiveness of macro features in reducing
searching space. On average, RideSense filters 91% of the
candidate reference traces for each passenger trace before it
goes into the micro-feature-based matching stage.

Next, we study whether RideSense could accurately identify:
(i) Which bus line a passenger has taken; (ii) When, i.e., the
shift of the bus she rides; (iii) Where she has traveled, i.e. the
source and destination stations.

From the perspective of applications, RideSense could be used
to bill a passenger. It could also help bus system operators
analyze the traffic flows and the travel patterns of passengers.
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Fig. 6: Based on macro features, on average 91% candidate
reference traces are filtered for each passenger trace.

For billing, knowing which/where is enough in most cases.
Besides, we also want to find out how correctly the system
will charge passengers and in what scenario, to what extent a
passenger might be charged less or more than needed.

For traffic analysis, we consider the following fine-grained
to coarse-grained measurements: i) which/where/when: It tells
detailed travel information about each passenger, which helps
the operators get fine-grained knowledge about the traffic
system and travel pattern of each passenger. ii) which/when: It
tells the bus line/shift a passenger has traveled, which could
help the operator learn about the load on each bus line in a
particular duration. iii) which: It enables the transit operator to
be aware of the overall usage of its bus lines.

Therefore, RideSense is evaluated from four aspects, i.e.
which/where/when, which/where, which/when, which. The ac-
curacy of these measurements is defined by equations (1)∼(4).

where LP (LR) is the id of bus line of passenger P (reference
R); BSP (BSR) is the id of bus shift; SSP (SSR) and DSP

(DSR) stand for source and destination segments.

The area we collected data is not completely flat, which
exhibits barometer-friendly characteristics. Buses go through
several slopes, which have rakes ranging from 5 to 30 degrees.
Barometer is capturing the characteristics of the terrain of cer-
tain area, hence its performance may be less generalizable than
motion sensors. Therefore, we evaluated RideSense based on
micro features from motion sensors and barometer separately.
The overall accuracy is shown in Fig. 7.

According to these results, when matching is based on motion
sensors, the system achieves overall accuracy of 85% for
which/where/when, 91% for which/where, 86% for which/when
and which is identified with an overall accuracy to 93%.
Barometer related results show that, in our area, if the
RideSense uses barometer-based information, it could achieve
much better performance than the situation with motion sen-
sors. Its overall accuracy goes to 91% in the fine-grained
measurement (i.e. which/where/when). In coarse-grained mea-
surement, the accuracy is even higher, up to 98%.
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Fig. 7: Accuracy of (a) motion-sensor and (b) barometer based
RideSense in identifying which/where/when, which/where,
which/when, and which, with phones in hand or pocket.

When the evaluation is broken down into different positions
of passenger phones, it is evident that with motion-sensor
based RideSense, the position of the passenger phone affects
the performance. In all the measurement, the passenger trace
from the pocket phone could achieve higher correlation with
the corresponding reference trace than the correlation between
the trace from the hand phone and the reference phone. The
reason behind this is that the motion sensor data collected by
the phone in hand is polluted by the compensatory motion of
hand, which weakens its correlation with the reference trace.
On the contrary, if it is barometer-based, the positions of the
passenger phone do not play a role and the accuracy between
different phone positions does not show significant difference.

A passenger trip might cover different numbers of segments
of each bus line. In the bus lines we collected, the numbers
of segments range from 4 to 7. We derive sensor traces
with all possible numbers of segments a passenger might
travel, i.e. 1∼7 segments each trip. Then, we study the
matching accuracy between passenger and reference traces
based on different numbers of segments. The result is shown
in Fig. 8. Due to the limitation of space, we only show the
result for which/where/when and which/where. The accuracy
of which/when and which also follow a similar trend.
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Fig. 8: The accuracy of motion-sensor-based RideSense in
identifying which/where/when (a) and which/where (b) when
a passenger travels different numbers of segments. (c)(d) The
accuracy of RideSense when barometer is used.
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(b) Motion Sensors (Phone in Pocket)
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(c) Motion Sensors (Phone in Hand)
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Fig. 9: (a∼c) The accuracy of motion-sensor-based RideSense in recognizing the numbers of segments a passenger has traveled,
which decides whether the passenger will be charged correctly, or charged more, charged less. (a) shows the overall accuracy;
(b) shows the accuracy when the passenger phone is in pocket; (c) shows the accuracy when the passenger phone is in hand.
(d∼f) Performance of barometer-based RideSense in charging passengers.

Overall, with motion sensors or barometer, the accuracy in-
creases along with the increasing numbers of segments. In
other words, when a passenger travels more segments on a
bus line, the system can identify her ride more reliably.

Consistent with the result shown in Fig. 7, in our area,
barometer-based RideSense achieves higher accuracy than
motion-sensor-based system. When motion sensors are used,
the position of the passenger phone matters. The trace from
the pocket phone could be used to recognize the numbers
of segments a passenger traveled more accurately. When
barometer is used, RideSense performance is not affected by
the position of the phone or the motion of the passenger.

In many countries/cities, transportation fare is proportionate to
the number of segments a passenger travels. After matching
passenger trace with reference trace, if RideSense concludes a
longer bus-riding than a passenger’s actual trip, the passenger
might be charged more than what she should pay. Conversely,
if a shorter bus-riding is concluded for a passenger trace, the
passenger might pay less than she should. Fig. 9 shows how
accurately RideSense identifies the numbers of segments a
passenger has traveled. When motion sensors are used, overall,
a passenger will be charged correctly in 96% instances. In
2% cases, RideSense might charge a passenger more than
she should pay, and in another 2% cases, the system charges
passenger less. When a passenger takes a longer trip, more
likely she will be charged correctly. Also, phone in pocket is
more friendly to the billing system than the phone in hand.
When barometer is used, the overall accuracy climbs to 99%
and the performance is agnostic to the position of phone.

To summarize, our preliminary study shows that RideSense,
while not yet accurate enough to be an alternative ticketless
system, holds promise. By comparing the performance of
motion-sensor-based matching and barometer-based matching
in RideSense, we find that, in our area, by using barometer-
based feature, the system could outperform motion-sensor-
based method. We admit that the performance of barometer-

based RideSense is correlated with the terrain in our area.
For real deployment, we could combine motion sensor with
barometer to build a hybrid RideSense, which utilizes the
characteristics exhibited both in motion and terrain to achieve
best performance.

IV. LIMITATIONS AND DISCUSSION

Needless to say, this paper is a small step towards the broader
vision; substantial work remains as discussed here.

User Behavior: In our experiment, only minor user motion
is introduced (i.e. the user is tapping on the phone in hand
for marking the ground truth) in the sensing process of the
passenger phones. In reality, situation might be much more
complex. For instance, a passenger might be playing game
with her smartphone during her bus trip. A malicious user
might deliberately shake and move the phone to continuously
and intensively distort the motion trace. These user behavior
could pollute the sensor trace of the passenger’s bus-riding,
which thereby hinders the correlation with the reference trace.
To cope with these situations, we are exploring factorization
algorithms to separate vehicle motion from human motion,
given that they have some statistically distinct properties. We
leave this to future work.

Bandwidth and Energy Considerations: We have also as-
sumed that the uploaded data is only from the segments during
which the passenger is in the bus – in reality, this is non-
trivial. A classifier that recognizes that a person has boarded
a bus will need to run continuously, imposing an energy
burden. Even if continuous sensing and classification can be
solved efficiently, not all the data during a vehicular trip may
need to be uploaded. Identifying the most discriminating data
segments, and uploading them at opportune times, will reduce
the upload bandwidth from millions of users. A more careful
treatment is needed for a complete system.

Additional Opportunities: While challenges are many, op-
portunities exist too. Data from multiple passengers in the



same bus should exhibit similarities that could be useful in
improving the system’s accuracy, and in thwarting misbehav-
ior. The post-paid model possible with RideSense could also
enable various pricing schemes and discounts. For instance,
those that traveled in a crowded bus, or were delayed by
accidents, could be compensated through a discount applied to
their fare later, ultimately incentivizing public transportation.
Moreover, in Uber-like business, by correlating the sensor
traces from driver’s phone and passenger’s phone, service
could be improved in case GPS signal is lost or corrupted.

In current implementation and evaluation, we fixed the refer-
ence phone on a seat close to the driver and tried passenger
phones in pocket and hand. As a next step, we plan to try both
the reference phone and passenger phone in different positions,
and collect data with more bus lines. We will also carry out
the study in different areas to see how the system will perform
in different traffic situations and terrain.

V. RELATED WORK

Smartphone sensors have been used in traffic/transportation
related research to detect transportation mode, study driver’s
behavior, localize vehicles, and even identify travel informa-
tion. Here we list several works which are close to our solution.

Trellis [11] is a WiFi-based solution for transit analytics. It
utilizes the WiFi infrastructure in buses to detect the WiFi-
enabled mobile device carried by passengers. This system
could be used to identify popular routes, occupancy of buses,
etc. Compared with our solution, with Trellis, WiFi in pas-
sengers’ devices must be enabled. Due to the characteristics
of wireless signal, the passengers in other parallel-moving
vehicles could be erroneously counted as the passengers in
current bus. While with RideSense, even two vehicles are
moving in parallel, they still exhibit difference in motion (for
example, the acceleration/deceleration in speeding up/down,
time duration of stops, etc), which make the two vehicles
potentially distinguishable.

VTrack [12] and CTrack [13] use smartphone to collect GPS,
WiFi and GSM information along a user’s trip to figure out
the road segment and trajectory a user travels. By aggregating
the travel information, these two systems learn about the traffic
situation and estimate travel time to help on route planning.

Authors in [14] utilize bluetooth to scan passenger’s phone to
identify passenger’s trip on a bus. It treats first detection of a
phone as the source station and if unreachable for a certain
time, it concludes the passenger has got off. This solution
cannot reliably isolate its detection within a bus, people in a
neighboring bus might also be detected. It also incurs a privacy
problem, as anyone can detect the passengers.

The works [15], [16] and [17] also perform sensor-based
trace matching, similar to our system. [15] uses GPS and
barometer to collect altitude related information and matches a
passenger’s partial GPS/barometer trace with pre-constructed
reference trace to find out the bus line of travel. [16] uses
GPS, WiFi and accelerometer data to determine bus-riding and
matches routes based on the shape of the road in horizontal
plane. [17] recognizes bus line and estimates arrival time based
on matching cell tower ID sequence. This work relies on
audio processing to detect the audio signal of IC card reader

in order to tell whether a user is in public transit system.
Compared with these works, our approach uses only energy-
efficient sensors and provides which/when/where information
about a passenger’s travel, enables detailed traffic analysis.

VI. CONCLUSION

We envision smart transportation of the future wherein pur-
chasing tickets is not necessary. By exporting sensor data
from passengers’ smart devices and public vehicles, it should
be possible to detect how a passenger utilizes public trans-
portation, and bill her appropriately at the end of a day or a
month. From an operational point of view, such a system could
eliminate the entire ticketing and maintenance infrastructure
(ticket dispensers/sellers, gate checks, card readers, etc.). From
a user’s perspective, she could experience a seamless hop-
on/hop-off experience, without worrying about correct pric-
ing, cash amount, losing the ticket, etc. While realizing this
vision indeed poses logistical hurdles, RideSense is a first step
towards initiating the process and asking the right questions.
We believe there is adequate promise to engage into a serious
research effort.
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