Fast Convergence with Fast Reroute in IP Networks

Glenn Robertson, James Bedenbaugh, Srihari Nelakuditi
University of South Carolina

Abstract—It has been observed that even in well managed
networks, failures of links and routers are not uncommon.
In order to satisfy the demand for high availability in case
of a failure, fast restoration of loop-free forwarding along the
optimal paths is imperative for a routing scheme. Failures can
be circumvented quickly with local rerouting but packets take
potentially long detours. Global recomputation of new optimal
routes incurs a convergence delay and can cause forwarding loops
during convergence. Attempts to avoid transient loops may also
increase the convergence delay. The recently proposed SafeGuard
mechanism overcomes these problems, i.e., it is always loop-
free, and minimizes disruption time and convergence delay. One
drawback however, is that SafeGuard needs each packet to carry
multiple-byte information about the path cost. We propose an
alternative approach, fast convergence with fast reroute (FCFR),
that employs a fast reroute scheme such as NotVia and needs
just one additional bit in the packet header. We evaluate the
performance of FCFR, and show that it performs comparably to
SafeGuard, with much less per-packet overhead.

I. INTRODUCTION

Studies on the occurrence of failures in a backbone network
have shown that failures of links and routers are common
even in a well managed network [1]. On the other hand, an
increasing number of users and services are relying on the
Internet and expecting it to be always available. In order to
ensure high availability in spite of failures, a routing scheme
needs to quickly restore forwarding to affected destinations.
Traditional routing schemes such as OSPF trigger link state
advertisements in response to a change in topology, and cause
network-wide recomputation of routing tables. Such a global
rerouting incurs some delay before traffic forwarding can
resume on alternate paths. During this convergence delay,
routers may have inconsistent views of the network, resulting
in forwarding loops and dropped packets [2].

Several IP fast reroute schemes such as NotVia [3],
FIFR [4], and MRC [5] have been proposed in the past
to initiate local rerouting as soon as a failure is detected.
In addition to the benefit of prompt forwarding resumption,
local rerouting can also prevent unnecessary routing updates
when the network outage is temporary. The downside of local
rerouting is that the packets take longer detours to reach
their destinations. In order to regain optimal routing if the
failure lasts longer than a preset threshold, routing updates
are triggered and a re-convergence of the network takes place.
Thus, fast reroute techniques do not obviate the need for the
eventual convergence process.

In order to prevent routing loops during this transitional
period, other authors have proposed schemes such as ordered
updates [6]. This approach creates a stable transition from
the outdated network topology to an updated view of the

Receive Update Receive Update

S &S S F'B%,@

=

Fig. 1. This figure illustrates the actions of a router after a network event. The
before change (bc) forwarding table corresponds to the fast reroute topology,
and the after convergence (ac) table is generated once the router has computed
the updated topology. Upon receipt of an LSA, the router immediately purges
its bc table and demotes the current ac table to bc. During the transient
period when it is computing an updated topology, the router maintains only
one (bc) forwarding table. Once the FIB update is complete, the router adds
anew ac table and begins using it to forward packets immediately. A second
link state change event triggers the similar process again.

network. However, this process extends the convergence period
of the network by waiting for acknowledgements that all
routers have updated their information base in the proper order
before proceeding. This process takes longer to converge than
conventional OSPF and prolongs the time period before the
network is prepared to adapt to another outage or change.

SafeGuard [7] was recently proposed to address the above
concerns and achieves three interconnected objectives: 1) loop-
free forwarding; 2) minimal forwarding disruption; and 3)
minimal convergence delay. At no time can a forwarding
loop happen with SafeGuard in the case of a single failure.
SafeGuard also reduces the period of disruption when packets
are dropped due to the lack of valid routes. Lastly, SafeGuard
minimizes the convergence delay, i.e., packets are forwarded
along optimal paths and the network is ready to absorb another
change as soon as possible. The drawback of SafeGuard,
however, is that it requires each packet to carry the cost of
the remaining path to the destination, which needs multiple
bytes in the header. Our objective is to minimize this overhead
while maintaining the benefits of SafeGuard.

We propose fast convergence with fast reroute (FCFR),
which uses an existing fast reroute technique such as NotVia
or FIFR to create alternate routing during the convergence
process. Each router maintains two copies of their forwarding
information base as illustrated in Fig. 1. The before change
(bc) forwarding table corresponds to the fast reroute topology,
and the after convergence (ac) table is generated once the
router has computed the updated topology. Each packet carries
a bit that indicates its forwarding mode, i.e., which of these
two tables is used for forwarding it. The net effect is that
routers which have not yet computed their updated tables

Fig. 2.

(a) An example using NotVia on a part of the Abilene topology. The routers adjacent to the failure use NotVia to temporarily reroute traffic around

the failed link. NotVia encapsulates rerouted packets with the destination of ID. The packets are temporary rerouted along the path KC—HS—AT—ID. (b) An
illustration of transient loops caused by adjacent routers with inconsistent routing tables. The dashed lines indicate KC has begun to forward using the new
routing table. The dotted lines indicate HS is re-computing its topology and is still using the old routing table. This conflicting view of the network causes
temporary loops. (c) Using FCFR, KC forwards a packet using its ac routing table. The dashed line indicates the era bit set to ac. HS receives the packet
and recognizes it does not have ac routing table. The dotted line indicates that HS reset the era bit to bc and forwards it using the bc routing table back to
KC. When the packet arrives back at KC with the era set to bc, it must use its bc routing table to forward it. Since the link KC—ID is down, the router uses
NotVia encapsulation to route the packet via the path KC—HS—AT—ID, as before. Once HS computes its ac table, packets follow the new optimal path.

can continue to use the bc tables in order to deliver packets
during the convergence process. Routers that have absorbed
the new topology begin to forward packets with the ac table.
But if the packets reach a router with only the bc table, the
router will revert to using that table. Once a packet has been
diverted using a bc forwarding table, the packet cannot return
to using a path from the ac topology. This guarantees that
packets which originate at an updated router will always get
delivered, either along an ac path, or a combination of an ac
path and the bc path. Packets originating at not yet updated
routers follow the bc path all the way to the destination. Thus,
FCFR ensures loop-freedom while forwarding packets along
the optimal routes as soon as possible.

The rest of the paper is organized as follows. Section II
illustrates our approach including the intuition behind it and a
formal proof. Section III presents the results of our simulation.
Section IV discusses the related work that motivated the design
of FCFR. The limitations of FCFR are discussed in section V.
Finally, we conclude the paper in section VI.

II. OUR APPROACH

In this section, we illustrate a simple example, describe the
intuition behind our approach, gradually develop the FCFR
scheme, and show that it provides fast loop-free convergence.

A. Motivation

Fig. 2a shows an example using a part of the Abilene
network topology. Imagine if the link between Kansas City
(KC) and Indianapolis (ID) were to fail. The routers adjacent
to the failure would initiate an IP Fast Reroute scheme such as
NotVia to temporarily reroute traffic. In order to reroute the
traffic around the failed link, the NotVia mechanism would
encapsulate each packet with the destination of ID, using a
special address that indicates the link KC—ID has failed. This
special address is precomputed and known to each router along

the alternate route. Therefore, the temporary reroute scheme
would send packets along the path KC—HS—AT—ID.

After detecting the failure, the KC router would also send
out an LSA to advertise the failure throughout the network.
Each router in the network would recompute its routing table
according to the updated topology. Once KC completed its
computation, it would update its Forwarding Information Base
(FIB) as soon as possible and begin to forward using the
updated tables. Thenceforth, packets at KC bound for ID
would be routed toward Houston (HS) as the next hop.

During the transient period when all routers have not
completed updating their FIB, there is an inconsistent view of
the network topology. The routers adjacent to the failure (KC
and ID) may be the first to compute the new routing table.
However, their immediate neighbors, HS and AT, might incur
a slight delay updating due to the propagation delay across the
network. Therefore, for a short time, packets at HS bound for
ID would be re-routed back toward KC.

Fig. 2b shows an illustration of what are termed transient
loops, or micro-loops, which occur during the convergence
period. These loops are caused by adjacent routers that have
differing views of the network topology. In this example, KC
has begun to forward based on the updated routing table,
indicated by the dashed lines. Note that rerouting with NotVia
is not triggered at KC since the new next hop is not ID as
KC has already updated its routing table. The router at HS
is re-computing its topology and is still using the old routing
table, as indicated by the dotted lines. This conflicting view
of the network is the cause of these temporary loops.

Transient loops can cause dropped packets due to TTL
expiration, and additional load on the affected links, which
competes with legitimate traffic for bandwidth on those links.
These packets are not delivered due to routing inconsistencies
in the network, and can cause the loss of critical data, such as

VoIP calls and real-time collaboration sessions. The previously
proposed approach using ordered updates [6] can eliminate
these transient loops. With ordered updates, KC would update
its forwarding table only after HS has updated its table.
Therefore, until KC updates its table, packets to ID that arrive
at KC get rerouted using NotVia address of ID. This NotVia
path would be the same in both new and old routing tables
since the link KC—ID is excluded from the computation. Once
KC updates its table, packets get forwarded along the new path
KC—HS—AT—ID without any loops.

The trade off with ordered updates is that loops are pre-
vented at the expense of increased convergence delay. This
may not be a serious concern since packets continue to
be rerouted with NotVia during this period. However, it is
desirable to reduce the convergence delay for two reasons.
First, packets take longer detours during convergence and it is
preferable to restore the optimal routing as soon as possible.
Second, and perhaps more importantly, once the network
converges after a failure, it is ready to handle another failure.
Thus overlapping multiple failures can be treated as sequential
single failures which are easier to handle. These are the reasons
that motivated the design of SafeGuard [7]. Our aim is to
maintain the benefits of SafeGuard, while reducing its per-
packet overhead. In the following, we present the intuition
behind such a scheme that achieves both fast convergence and
fast rerouting with only one additional bit of overhead.

B. Intuition

Suppose a link’s state changes at time ty. Let us refer to
the forwarding table as being in the before change (bc) era if
it was computed before ¢y and therefore, does not reflect the
change. Similarly, a recomputed forwarding table that accounts
for the change is said to be in the after convergence (ac) era.
Based on this naming convention, a network is said to be
converged at time t., when all the routers are in the ac era.
During the time between ¢, and ¢., which is the convergence
delay, some routers’ forwarding tables are in bc while others
are in ac era. Due to this inconsistency, packets may get
caught in transient forwarding loops.

Clearly, when all the routers forward using the ac era
table, packets will not loop. Similarly, no loops can exist if
all the routers use the bc era forwarding tables. Using the
bc table, packets could arrive at a router adjacent to the
failure and potentially get dropped because the next-hop is not
reachable. However, fast reroute mechanisms such as NotVia
are employed to handle this scenario by having adjacent
routers perform local rerouting along an alternate loop-free
path. In other words, with ac era forwarding by all routers,
no packet encounters a forwarding loop or routing failure. The
same scenario occurs by using bc era forwarding at all routers
in combination with NotVia. The only difference is that ac
era forwarding is optimal. Therefore, we would like to have
all routers start using ac tables as early as possible.

Now, imagine a hypothetical scheme where all routers use
the bc table for forwarding along an alternate route using
NotVia during the time between ty and t.. Then, at time ¢,

all routers would switch to using the ac table for forwarding.
Such a hypothetical scheme would not have any forwarding
loops or routing failures. Obviously, this hypothetical scheme
is not feasible. First of all, the time duration (¢. — to) is not
known in advance. Second, and perhaps more importantly, it
is not feasible for all the routers to update their FIBs simul-
taneously at time ¢.. Therefore, we need a practical scheme
that behaves approximately like this hypothetical scheme.

Our approach is based on the following intuition. Consider
the path traversed by a packet. Suppose we segment the
packet’s path into ac and bc segments such that all forward-
ing within a segment belong to the same era. The possible
combinations of segments in a path could be:

1) bc

2) ac

3) ac—bc

4) bc—ac

5) bc—ac—bc—:--

6) ac—bc—ac—:--

A forwarding loop is only possible when a path is allowed
to alternate between bc and ac segments as in cases of (5) and
(6). Therefore, by constraining a packet to traverse between
bc and ac segments only once at the most, we can ensure
that the packet does not loop. Our approach is based on this
intuition — it allows only the first 3 cases to happen. In other
words, a packet gets forwarded by ac tables until it encounters
a router which has only bc table. Thereafter, it gets forwarded
by bc tables until it reaches the destination.

TABLE I
NOTATION
d convergence delay
p.era the era for forwarding of packet p
p.era the complement of p.era
p.dst the destination of packet p
R.era the current era of the router R
Frlera] the forwarding table at R corresponding to era
Frlera](dst) the next-hop to dst from R as per era

C. Scheme

We now describe how FCFR achieves fast loop-free con-
vergence using NotVia to provide fast rerouting. FCFR works
with other fast reroute approaches such as FIFR also. But for
simplicity, we present FCFR using NotVia.

Under NotVia, when a link [fails, the adjacent router
encapsulates the original datagram inside another packet with
the destination address set to the next-hop’s not-via address.
Because of the special meaning of the not-via address, it gets
routed consistently by all routers along an alternate path that
does not include . Without notifying others about the failure,
NotVia alone can guarantee delivery to all destinations in the
case of a single failure. But routing would be suboptimal and
another concurrent failure could cause loops. Therefore, a link
state update is triggered even while performing local rerouting
with NotVia. To avoid transient loops during convergence,
NotVia may be coupled with ordered updates so that routers

update their FIBs in an orderly manner that is loop-free. How-
ever, ordered updates may prolong the convergence process.
Our goal is to achieve both fast convergence and fast rerouting.

The basic idea behind FCFR is to use one bit, which
represents the era, in the packet to convey how it should be
forwarded. This bit represents either bc or ac. As illustrated
in Fig. 1, during the time between receiving LSA and updating
FIB, a router uses only the bc table. Between the time of FIB
update and network convergence, a router may reference either
bc or ac table based on packet’s era field. When the network
is converged to a stable state, each router has both bc and ac
tables but only ac table is used for forwarding.

When a packet has the era bit set to bc, all routers
consistently forward according to the bc tables as per the
fast reroute mechanism. If the packet has the era bit set to
ac, a router forwards it according to the ac table as long as it
is done with its FIB update. Otherwise, it the resets the era
bit in the packet to bc. From then on, the packet only gets
forwarded along the bc path. The packet era is initialized to
bc or ac based on the state of the originating router.

The mapping of bc/ac to 0/1 is not static. It changes
after every link up/down event. However, it is consistently
interpreted by different routers provided the following two
conditions are satisfied. 1) A router does not install a new
FIB before its neighbor receives the corresponding LSA. This
is a reasonable assumption considering that propagating the
LSA over a link takes much less time than the time needed
to recompute new forwarding table and update the FIB. 2)
No concurrent independent failures occur, which are relatively
rare. FCFR can handle multiple correlated failures by treating
them as a single event. Under these conditions, we can prove
that if the convergence delay for OSPF is d = t. — %y, then
FCFR converges within d after a failure. In addition, FCFR can
successfully protect against any two closely occurring failures
if they are spaced apart by at least d in time.

The FCFR scheme can be summarized as follows:

o Each packet p has a 1-bit field in the header called era

o Each router R maintains its current era

o A packet p’s era is set to R’s era if p originates at R

o R forwards p using the table for p.era

e If R does not have a table for p.era, then it toggles

p.era and forwards it according to that table

o A packet in the bc era stays in that era until it reaches

its destination using fast reroute

o A packet in the ac era gets switched to the bc era if it

encounters a router in bc era along the path to destination

FCFR can also be described by the actions taken by router
R upon each possible event (see Table I for notation).

e Router R receives a packet p
1) if Fr[p.era] does not exist, then p.era = R.era
2) forward p to Frlp.eral(p.dst)

e Router R receives a new LSA
1) purge Fr[R.era]

e Router R has recomputed and updated new FIB

1) R.era= R.era

o Packet p originates at router R
1) p.era= R.era

o Router R initializes its state
1) Rera=0
2) Fgr|[R.era] = Fr[R.era]

Now let us revisit the Abilene example shown in Fig. 2
and consider what would happen if the same failure occurred
with FCFR. The routers at KC and ID would be the first to
recompute the updated topology and begin forwarding using
the updated ac routing table. However, the routers at HS
and AT incur a notification delay due to the LSA process
before they can compute the new table. Therefore, during the
transition period, we have neighboring routers in the network
with inconsistent routing tables. Fig. 2¢ shows how FCFR
prevents loops from forming in this situation.

First, the router at KC begins to forward packets using its
updated (ac) routing table. KC sends each packet with the
era bit set to ac, as indicated by the dashed line. The router
at HS would receive the packets with ac era and recognize
that it does not have the updated routing table. Therefore, HS
would reset the era bit to bc in these packets and forward
them using the outdated (bc) routing table back to KC. This
return path is indicated by the original dotted line. Once a
packet arrives back at KC with era set to bc, it must look
up its previous (bc) routing table. Since the link from KC
to ID is down, the router uses NotVia encapsulation to route
the packet via the path KC—HS—AT—ID, as before. Once HS
computes its ac table, packets follow the new optimal path.
Thus, as soon as the routers along the shortest path update
their FIBs, FCFR resumes optimal forwarding.

Effectively, with one additional bit in each packet, and one
additional forwarding table at each router, FCFR/NotVia can
guarantee loop-free fast convergence and fast rerouting.

D. Proof

We now sketch the proof that FCFR is loop-free at all times
provided: i) a router does not install a new FIB before its
neighbor receives the corresponding LSA; and ii) there is only
a single failure event propagating throughout the network.

Proof: After a failure, a router can be in one of the
following three states:

e initial state, with ac table and bc table (the old table
which is no longer useful after the failure)

o updating state, with bc table (same as the ac table before
entering the updating state)

o final state, with tables bc and ac (this ac table is different
from the ac table in the initial state)

As long as a packet is forwarded with respect to a single era,
it will be forwarded properly, as all tables with the same era
value represent a consistent view of the network. If the value
of p.era never changes, then the packet gets forwarded w.r.t.
to a single view of the network, and thus forwarded correctly.

When p.era = bc, the packet’s era cannot change. Also,
all routers in the network should have bc forwarding tables.
Thus, any packet with p.era = bc will be forwarded with

Convergence time(sec)
Convergence time(sec)

(a) Link down (b) Link up

Fig. 3.

Convergence time(sec)
Convergence time(sec)

Convergence time, as measured by the time at which all routers in the network have finished updating their forwarding tables after a network event.

OSPF, FCFR, and SafeGuard (not shown) have identical convergence times, while ordered updates requires a longer convergence time.

respect to a single era, and all routers in the network will be
able to forward it according to that era table.

When a packet is sent between two routers in the same state,
it is forwarded consistently based on the same network view.
The value of p.era is always equal to the era of the table
on which it was last forwarded. Thus, a router receiving a
packet from another node in the same state forwards the packet
according to its current era. Thus, p.era will not change.

When a packet with p.era = bc arrives at a router in the
updating state, the value for p.era is set to bc. From that
point forward, the packet will be forwarded according to the
bc era, and p.era will not change.

Routers in the initial and final states cannot be adjacent to
each other. This follows from the requirement that a router
does not install a new FIB before its neighbor receives the
corresponding LSA. So there is no possibility of misinterpret-
ing the meaning of the era bit by two neighboring routers.

Accounting for all potential state transitions, it is only
possible for p.era to change at most one time during its
flight, after which time it will be forwarded along a consistent
network view, the bc era. If p.era does not change, then
by definition the packet would have been forwarded along
a consistent network view. Since forwarding based on a
consistent view can not cause a loop, FCFR is loop-free. H

III. SIMULATION

To evaluate the performance of FCFR, we use SSFNet [8].
We compare the performance of FCFR against Safeguard,
ordered FIB updates, NotVia, and vanilla OSPF. We borrowed
the code for all schemes except FCFR from the authors of
SafeGuard. We use two widely-used topologies known as
Abilene and Exodus for the simulation. In addition, we used
one randomly generated topology for comparison.

The schemes are evaluated using the following metrics:
average convergence time, path stretch during convergence,
packet loss rate, and flow amplification factor. This last metric
measures a protocol’s tendency to form loops during conver-
gence. This metric helps validate that OSPF allows loops to
form whereas Safeguard, ordered updates, and FCFR preclude
loops from forming during convergence.

A. Convergence Time

The first metric evaluated during the simulation was the
convergence time of each protocol. As illustrated in Fig. 3,

the convergence time of OSPF, FCFR, and SafeGuard (not
shown) is the same for all four topologies and all scenarios of
link down, link-up, node down, and node up. This is because
using these protocols, each node updates its FIB immediately
upon receipt of an LSA. Therefore, there is no additional delay
required due to ordered updates or obtaining some kind of
routing consensus prior to convergence. This feature of our
scheme satisfies the first part of our goal of fast convergence
with fast rerouting. The ordered updates approach takes longer
to converge, particularly for node failures. One effect of this
delay is that the network is performing sub-optimal routing
for a longer period of time by relying on the underlying fast
reroute mechanism. The major impact, however, is that the
network is not prepared to deal with another failure because
it is still compensating for a previous event.

With our approach, we can achieve both fast rerouting and
fast convergence. During the time the network is recomputing
new routes, a fast reroute scheme like NotVia can redirect
packets to their destinations, albeit over a sub-optimal path.
This in itself is no better or worse than any other fast reroute
scheme. However, our key advantage is that during conver-
gence, we can achieve loop-freedom without incurring any
additional cost in convergence time. Therefore, the network is
prepared as soon as possible to deal with another failure.

B. Path Stretch

The path stretch metric measures the optimality of routes
during the convergence process. Any path stretch value greater
than 1 indicates a sub-optimal path; the higher the value, the
longer the route is compared to the optimal path. Fig. 4a
illustrates the path stretch plotted over time for the Abilene
topology used in our simulation. The path stretch for OSPF is
quite high during convergence mainly because some packets
loop for a while and then escape it to reach the destination.
Safeguard generates the most optimal paths and converges the
most quickly back to the unit path length. Ordered updates
also has lower path stretch than OSPF but takes longer to
converge than others due to its strict updating requirements
and signaling. We find that FCFR actually converges just
as quickly as Safeguard, but at the cost of only one bit of
overhead and no additional signaling, such as that required
by ordered updates. Similar trends can be observed with the
Exodus and Random topologies (Fig. 4b and 4c).

15

15

FCFR
Safeguard
Ordered ninmnn
OSPF |

FCFR
Safeguard
Ordered ninmnn
OSPF |

FCFR
Safeguard
Ordered i
OSPF |

14 14

g

13 13

12 fy 4, 12 12t

iy, QU
“

Path Stretch
Path Stretch
Path Stretch

11 11

1t \'n’llllllnllunuullu|||| 1

200

%
@y,
i
gy,
i,
IR ETTT R R 1

700

w,]
%,
v

800

600 700 900
Time [ms]

(c) Random

600 800 900 200 300 400 500 100¢
Time [ms]

(b) Exodus

600 700 800 900 100C 300 400 500 100¢
Time [ms]

(a) Abilene

Fig. 4. Path stretch for a single link down event. Path stretch remains low initially for OSPF as packets are being dropped at the failed link, then increases
as routing loops start to occur. Fast rerouting schemes start with a higher initial path stretch due to packets being delivered through a longer route, then
decrease as the network convergences. SafeGuard has the best overall performance throughout the convergence interval, while both SafeGuard and FCFR
perform significantly better than ordered updates in larger topologies. Though the convergence times are the same for FCFR and OSPF, FCFR takes longer
to reach a path stretch value of 1, due to in-flight packets being routed according to a prior network view. Initial OSPF data for the Abilene topology is not

200 300 400 500

present due to a 100% initial drop rate of all simulated packets through the failed link.

FCFR m——
Safeguard

Ordered i
OSPF

FCFR m——
Safeguard

Ordered i
OSPF

40
30

20

Flow amplification factor
Flow amplification factor

FCFR m—
Safeguard

Ordered i
OSPF

40
30

20

Flow amplification factor

10

-10

400 600
Time [ms]

(a) Abilene

100C 0

Fig. 5.

400

(b) Exodus

400 600 800
Time [ms]

(c) Random

600 800 200 100C
Time [ms]

100C 0

Flow amplification factor for a single link down event. SafeGuard, ordered updates, and FCFR guarantee loop prevention during the convergence

interval and therefore do not have flow amplification by definition. OSPF has routing loops during convergence, and thus a higher flow amplification factor.

C. Flow Amplification

The third metric measured was flow amplification factor.
This metric shows the number of times a probe packet
traverses a given link in the same direction. Therefore, if a
packet loops between two nodes until its TTL of 128 expires,
the flow amplification on that link would be 64. Fig. 5 shows
the comparison between different schemes. OSPF clearly has
a high flow amplification factor indicating the formation of
transient loops. Safeguard, ordered updates, and FCFR all have
mechanisms which prevent loops from forming. This behavior
is confirmed by the simulation, which shows no forwarding
loops for any of the above three schemes.

D. Packet Loss

We also compared the performance of these schemes in
terms of their rate of packet loss during the process of conver-
gence. Fig. 6 shows that all other schemes have significantly
lower packet loss rate than OSPF. As expected, FCFR restores
forwarding just as well as SafeGuard. Other measurements in
the remaining topologies confirm this result as well.

Our simulation results support that FCFR achieves perfor-
mance similar to SafeGuard with lower per-packet overhead.

‘We have also conducted simulations with node failures as well
and observed similar relative performance.

IV. RELATED WORK

The idea for FCFR was developed from other schemes
which provide transient loop prevention, but at a greater cost
in packet header information or signaling overhead across the
network. Extensive work has been done in the area of loop-free
convergence. The previously cited papers on Safeguard [7] and
ordered updates [6] are good examples of this work. Compared
with these two schemes, we believe that FCFR provides the
same level of robustness without the cost of carrying remaining
path length in all packets or the delay of waiting for all routers
in the network to update in the proper order.

Another work in this area is the incremental update mech-
anism proposed in [9] which also alleviates the transient loop
problem. However, this method is aimed largely at ISPs who
need to conduct planned maintenance on a link and have a
network management tool to implement the required metric
changes. In contrast, FCFR could be applied in any network
with little operator intervention and can react to any changes
in the network, whether they are planned or not.

Another related work [10] uses failure carrying packets to

FCFR

Safeguard 1 1

Ordered i
OSPF

100 IHIIIIIHHIHI‘

o

T
I-mlm-m-m-l|mm-ml\“-

S
]

W,

80 - 80

60 - 60 -

40 b 40 b

Percentage packet loss
Percentage packet loss

20 + 20

BT8R EI 0 IEH ot

FCFR
Safeguard

FCFR
Ordered |
OSPF

Safeguard J
Ordered ninmnn
OSPF

Ty,

Percentage packet loss

AU ION

400 600 800
Time [ms]

(a) Abilene

100¢C 0 200

(b) Exodus

400 600 800

Time [ms]

100 0 400 600 800
Time [ms]

(c) Random

100¢C

Fig. 6. Packet loss rates for a single link down event. Fast rerouting algorithms (i.e. FCFR, SafeGuard, and ordered updates) stop losing packets immediately
after the failure is detected, while OSPF continues to lose packets until forwarding tables are updated.

eliminate the need for convergence. However, the cost of this
scheme is that it must maintain a list of failed links in the
network, which is a significant modification to the routing
protocol and the packet header. With FCFR, we can achieve a
similar effect by using only one additional bit in the IP header.

V. LIMITATIONS AND DISCUSSION

FCFR is critically dependent on the consistent interpretation
of the era field in the packet by different routers along
its path. As pointed out before, FCFR assumes single or
correlated serial failures and does not guarantee loop-freedom
in the case of multiple, independent failures. We currently
do not have a mechanism to cope with concurrent failures
and we plan to study it further in future. Another scenario in
which the era field could be misinterpreted is when a failure
partitions the network temporarily until the failure is repaired.
The problem of synchronizing the era value between two
segmented partitions of the network can be solved by utilizing
OSPF’s mechanism for synchronizing router databases.

When two routers establish a new adjacency, they begin by
verifying two-way communication between the routers. Next
they determine which router is the master and slave based on
which has the higher router ID. Once the master is established,
that node controls the exchange of LSA information between
the two routers. If one router has a more recent LSA than the
other, the newer one is promulgated so that both routers have
the same LSA. If an LSA does not exist in the other router’s
database, or it has an outdated copy, the receiving router floods
a copy of that LSA out to all its neighbors as well.

In order to solve the problem of era synchronization, we
can utilize this mechanism to resynchronize the era value when
a network partition is repaired. In the case of identical eras
on both sides of the partition, no action is needed. If both
sides of the partition are in a different era, then the master
of that adjacency will take priority and impose its era on the
slave. The slave router will then flood this new value out to all

other nodes in that (heretofore) partition. Thus, once a network
partition is repaired, all nodes will have a consistent view of
the network topology. We need to validate this method through
simulation and address any other potential issues in order to
make FCFR fully suitable for deployment.

VI. CONCLUSION

We proposed the FCFR scheme to prevent forwarding loops
during the convergence period and restore the network to an
optimal routing state as soon as possible. FCFR achieves fast
convergence with fast rerouting using only one bit per packet
and an additional forwarding table per router, without any
signaling overhead. We evaluated the performance of FCFR
using SSFNet simulator. Our evaluation shows that FCFR has
lower packet loss than OSPF, shorter convergence delay than
ordered updates, and overall similar performance as SafeGuard
with lower overhead. FCFR has some limitations in its ability
to deal with network partitions and multiple failures, and we
are currently developing ways to address them.

VII. ACKNOWLEDGEMENTS

We sincerely thank Xiaowei Wang and Ang Li for shar-
ing their SafeGuard implementation in SSFNet. We are also
grateful to NSF for partially funding this research through the
grant CNS-0448272. Any opinions, findings and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the NSF.

REFERENCES

[11 A. Markopoulu, et al, “Characterization of Failures in an IP Backbone,”
in Proc. IEEE Infocom, Mar. 2004.

[2] U. Hengartner, S. B. Moon, R. Mortier, and C. Diot, “Detection and
analysis of routing loops in packet traces,” in IMW, Marseilles, France,
Nov. 2002.

[3] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using not-via
addresses,” Internet Draft (work in progress), Mar. 2010, draft-ietf-
rtgwg-ipfrr-notvia-addresses-05.

[4] J. Wang and S. Nelakuditi, “IP Fast Reroute with Failure Inferencing,”
in INM, 2007.

[5] A. Kvalbein, et al, “Fast IP Network Recovery using Multiple Routing
Configurations,” in Proc. IEEE Infocom, Apr. 2006.

[6] P. Francois and O. Bonaventure, “Avoiding Transient Loops during
IGP Convergence in IP Networks,” ACM Transactions on Networking,
vol. 15, no. 6, pp. 1280-1292, Dec. 2007.

[71 A.Li, X. Yang, and D. Wetherall, “SafeGuard: Safe Forwarding during
Routing Changes,” in CoNEXT, 2009.

[8] Scalable Simulation Framework, “http://www.ssfnet.org.”
[9] P. Francois, M. Shand, and O. Bonaventure, “Disruption free topology
reconfiguration in OSPF networks,” in INFOCOM, 2007.
[10] K. Lakshminarayanan, M. Caesar, M. Rangan, T. Anderson, S. Shenker,
and I. Stoica, “Achieving convergence-free routing using failure-carrying
packets.” in SIGCOMM, 2007, pp. 241-252.

