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Abstract

This paper presents a novel landmark-based shape de-
formation method. This method effectively solves two prob-
lems inherent in landmark-based shape deformation: (a)
identification of landmark points from a given input image,
and (b) regularized deformation of the shape of an object
defined in a template. The second problem is solved using a
new constrained support vector machine (SVM) regression
technique, in which a thin-plate kernel is utilized to provide
non-rigid shape deformations. This method offers several
advantages over existing landmark-based methods. First,
it has a unique capability to detect and use multiple can-
didate landmark points in an input image to improve land-
mark detection. Second, it can handle the case of missing
landmarks, which often arises in dealing with occluded im-
ages. We have applied the proposed method to extract the
scalp contours from brain cryosection images with very en-
couraging results.

1 Introduction

Image segmentation is an important task in image un-
derstanding and computer vision. Traditional methods are
usually based on edge detection, region merging/splitting,
statistical pixel classification or hybrid methods [19]. Al-
though these methods are capable of partitioning an image
into regions of connected pixels according to image inten-
sity distributions, more often than not, the segmented re-
gions do not correspond well to true objects. This limitation
is particularly serious for medical image segmentation be-
cause medical images are often very noisy and the structures
to be identified have large “internal” intensity variations.

An effective way to solve this problem is to incorporate
the known shape information of the desired objects into
the segmentation process. Generally, the shape of an ob-
ject is described by the boundary contour (or several closed
contours) of the objects, which can be represented by a se-
quence of sampled landmark points.

A number of shape-based segmentation methods have

been proposed. For example, the active contour (or snakes)
[8, 1, 17, 4] model constrains the desired shape to be suf-
ficiently continuous, smooth and differentiable during the
deformation process. Although the original active contour
cannot process multiple contours, the problem can be solved
using the recent geodesic contour method [3].

More advanced shape models include the point distri-
bution model (PDM) by Cootes et al.[5], which can learn
shape variations from a set of segmented training images,
each containing a set of landmarks to define the shape.
PDM calculates the covariance matrix of these landmarks
and then represents the shape variations along the directions
of the most significant eigenvectors of the covariance ma-
trix. However, it is a tedious job to build the training set
manually and in some cases it is also difficult to identify the
set of landmark points for all the shapes of interest.

Similarly to PDM, Staib et al. [13] decompose the
shape into items with different frequencies. Then the shape
knowledge is learned by studying the distribution of each
Fourier coefficient. The result is used to constrain the shape
deformation. Jain [7] presents a similar approach which pa-
rameterizes the shape and uses the distribution of the pa-
rameters as the constraint for shape deformation. Along the
same line, Leventon et al. [10] incorporate statistical shape
information into geodesic active contours to segment medi-
cal images.

The work presented in the paper is more closely related
to the deformable models developed by Rueckert et al. [12]
and Zhong et al. [18]. Similar to the active contour, the
energy function of those models consists of two terms ac-
counting for external and internal energy respectively. The
external energy is a potential field describing the edge and
region matching information between the template and the
input image. The internal energy represents the shape de-
viation from the prior. However, it is not easy to determine
the appropriate weight for the internal and external energy.
Additionally, this energy function is nonlinear and includes
too many unknowns to be well handled by gradient-based
algorithms.

This paper presents a new landmark-based shape defor-
mation method which can effectively avoid the above ques-
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tions. At first, edge- or/and region-based methods are ap-
plied to detect candidate landmark points in the input image
within the neighboring area around each landmark in the
template. Multiple candidates may be detected for one land-
mark when it is necessary. Then the template is deformed
using a special support vector machine (SVM) regression
technique. Based on the fitting result, a set of better land-
marks is identified from the detected candidates. This pro-
cess is repeated until the final result is obtained. Usually, a
couple of iterations is sufficient.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe the proposed shape-based deformation
method. Section 3 discusses the selection of the regulariza-
tion parameter and how to handle missing landmarks. Sec-
tion 4 presents representative results for medical image seg-
mentation, followed by the conclusion in Section 5.

2 The Proposed Method

2.1 Problem formulation

For simplicity, consider the case in which the template
contains only a single closed contour. Extension to the
case of multiple contours is straightforward. The con-
tour is represented as a series of ordered landmark points
� � ������� � � � ����, where �� � ���� ��� are the coordi-
nates of the �-th landmark. For each landmark ��, the pro-
posed method first identifies a set of possible corresponding
landmark points �� � ��

���
� � � � �� �� � � � � ��� in the in-

put image, where ����� � ��
���
� � �

���
� �. Then the problem is

solved in two steps:

1. Identify the best landmark point ��

� � ���

�� �
�

�� from
the landmark set �� such that �� � ���

���
�

�� � � � ��
�

��
located in or near the real object boundary in the input
image;

2. Deform the prior shape � to match �� while keeping
the general shape characteristics of �.

The template deformation is described as a regression
problem of finding a transform � � ��� �� � �� � �

� that
minimizes

�

�

��

���

	���

�� ������ � 
����� (1)

where 	��� �� � 	 is a loss function, 
 � 	 is a regulariza-
tion parameter and ���� � 	 is a regularization functional.
In this setting, ���� � ������� � � �� �� � � � � �� is the de-
sired object shape in the input image.

Generally, it is a combinatorial problem to determine the
best��. In this paper, we use an EM-like (Expectation Min-
imization) two-step algorithm to solve it iteratively. Specif-
ically, we perform the shape-regularized fitting to an initial
�

� to get an optimal � and then update �� from detected

�� based on the acquired �. This process is repeated until
convergence.

There are three main subproblems in this approach: de-
tection of landmark candidates �� in the input image, de-
termination of the regression model and updating �� based
on the regularized fitting results. Solution to these problems
are discussed below.

2.2 Detection of landmark candidates

Given �, we assume that ��

� in an input image falls in a
circular area of radius �� centered at ��. According to the
principle of anisotropic diffusions [11], non-rigid biologic
shape deformation between the template and the input im-
age can be done effectively by moving each landmark ��
along the normal direction of the shape. This means that
we can search for the corresponding�� only along the nor-
mal directions of � as shown in Fig.1. Denote �� as the
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Figure 1. Search for landmarks along the nor-
mal direction of the initial shape.

unit vector along the normal direction at ��. Combining
the above assumptions, the corresponding landmark ��

� can
be obtained from the line segment �� � ��� � ���� � �
����� ����.

Because of noise and structural complexity, sometimes
it is difficult to accurately identify �

�

� from ��. In this

case, we can extract several candidates in �� � ��
���
� � � �

�� �� � � � � ��� and the proposed algorithm will determine an
optimal ��

� from ��.
For different application problems, various methods can

be used to locate ��� � � �� �� � � � � �. Generally, they can
be categorized into two classes.

1. Edge detection methods. Since the desired shape is the
contour of an object in the input image, edge points
in �� will be collected to construct ��. Any edge de-
tection algorithm can be applied here. A simplest ap-
proach is to calculate the gradient vector for each pixel
along ��. If its amplitude is very large (according to a
pre-selected threshold), it will be included in ��.

2. Region matching methods. For any pixel along ��,
if its neighboring area has similar features with the
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neighboring area centered at �� in the template image,
it will be included in ��. A number of matching met-
rics can be used for this problem, which include nor-
malized cross-correlation, squared differences in pixel
intensities, measures based on optical flow models and
mutual information metrics [14].

Generally, region matching is often more robust than edge
detection to process noisy images containing complex ob-
jects. However, region matching methods usually require
the template landmarks� to be very accurate, which is not
necessary for edge detection methods.

Selection of �� is related to the similarity between the
template and the input image. For segmenting 3D medical
images slice by slice, this is usually determined by the sam-
pling interval between two neighboring slices. The larger
the interval, the larger the ��. In practice, �� should also be
adaptively modified based on the size of ��. If there are too
many candidates in ��, then �� needs to be reduced, and vice
versa.

It is also possible that no landmark candidate is identified
for some ��. This problem will be discussed in Section 3.2.

2.3 SVM regression model for deformation

Given a set of estimated landmarks �� from ���� � �
�� �� � � � � ��, this section describes a regression model for
(1) and the corresponding algorithm. Generally, we expect
the regression model to have the following properties: (a)
���� is a good approximation for ��; (b) ���� is a geomet-
rically homologous mapping (an important feature in bio-
logic deformation); (c) ���� represents well the biologic de-
formation between � and ����; (d) ���� is invariant un-
der the affine or rigid transforms; and (e) The loss function
���� �� is robust against noise and outliers;

From regularization theory, ���� can be defined as a norm
in a reproducing kernel Hilbert space (or subspace) which
can be uniquely represented by a positive definite (or con-
ditionally positive definite) kernel function �������. For
medical image segmentation, we propose to use the thin-
plate kernel [2] ������� � ��� ���� ��	 ��� ���, where
����, also named the bending energy, is given by

���� �

��
�

��

���	� 
 ��
�����
 (2)

where ���� � � ��

���
�� 
 �� ��

����
�� 
 � ��

���
��.

A popular loss function is ������ ������ � �����������
�.

In this case, the model becomes the traditional thin-plate
splines [2]. However, it is well known that the squared er-
ror loss function is not robust against outliers. To avoid
this problem, various robust loss functions have been de-
veloped. Two examples are the modulo function and the
Huber’s function [6]. Here we adopt the linear �-insensitive
function used in SVM [15] for the following reasons: (a) It
is more robust than the squared error loss function; (b) With

the insensitive margin parameter �, landmark points can be
identified as support vectors or non-support vectors. This
result can be used to improve ��. This step is discussed in
detail in Section 2.4.

The �-insensitive function is defined by

���� � �������

�

�
� if ���� � ������ � �

���� � ������ � � else�

When � � �, this is just the modulo loss function.
The only remaining component of the regression model

is the additional constraints that should be placed on the de-
sired deformation ����. Obviously, we hope that the desired
����� lie in the normal direction of the shape centered at ��,
i.e.,

����� � �� 
 ����� � � �� �� � � � � � (3)

where �� � �.
Since �� is detected along the normal directions of �,

we have

��� � �� 
 ����� � � �� �� � � � � � (4)

where �� � �� � � �� �� � � � � � are known. Noting that
� � �	� 
� and ���� � �� � � �� �� � � � � �, the regression
problem can be rewritten as

Problem 1:

�
�
���

������ �
�

�

��
���

��� � ���� 
 �����

subject to constraints (3), where � � ���� ��� � � � � ���
� .

The thin-plate kernel is conditionally positive definite
and the linear functions form the null space of the result-
ing � � �	� 
�, which must be of the form [2]
�

	��� � �� 
 ���
 ��
 

��

��� ���������

��� � �� 
 ���
 ��
 


��
��� ����������

(5)

To solve Problem �, we first fix � and minimize ������
with respect to � under constraints (3). This is equivalent to
seeking � minimizing

��
�

��
���	� 
 ��
�����
 subject to

the constraint that �must map �� to ����� �
�� � ��
����, � �
�� �� � � � � �. It is a typical thin-plate interpolation problem
and the parameters � � ���� ��� ���

� , � � ���� ��� ���
� ,

� � ���� ��� � � � � ���
� and � � ���� ��� � � � � ���

� in (5)
can be calculated by solving the following equation:

�
� 	

	� 


��
� �

� �

�
�

�
�� �



 


�
(6)

where ��� � ��������, �� � � �� �� � � � � � are the ele-
ments of matrix � and 	 � �����
�. Note that � �
���� ��� � � � � ���

� , 
 � �
�� 
�� � � � � 
��
� , �� � ���� 
��,

�� � ����� ���� � � � � ����
� and �
 � ��
�� �
�� � � � � �
��

� .
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In the above thin-plate interpolation, the resulting mini-
mal bending energy is given by

���� � ����� ���� �
�

��
�������� �������� (7)

where � is the �� � upper left sub-matrix of

�
� �

�� 	

�
��

(8)

which is positive semi-definite.
Substituting (7) into Problem � yields the following un-

constrained problem.
Problem 2:

�	

�

���� �
�

�

��
���

��� � ���� �
�

��
�������� �������

Using the standard SVM technique, we can formulate
the problem as follows.

Problem 3:

�	

������

���� �� ��� �
�

�

��
���

��� � ����

�
�

��

�
���
���

�����
���

��� �
���
���� �
���

�

subject to

�� � �� � �� ��� 	 � �� 
� 
 
 
 � �
�� � �� � �� �� 	 � �� 
� 
 
 
 � �

��� ��� � � 	 � �� 
� 
 
 
 � �

where � � ���� ��� 
 
 
 � ���
� , �� � ����� ���� 
 
 
 � ����

� ,

� � diag����� ���� 
 
 
 � ���� and 
� � diag�����
���� 
 
 
 � ���� with �� � ����� ����.

Introduce the Lagrange multipliers � � ���� ��� 
 
 
 �
���

� , �� � ����� ���� 
 
 
 � ����
� , � � �
�� 
�� 
 
 
 � 
��

�

and �� � ��
�� �
�� 
 
 
 � �
��
� , the Lagrangian function for

Problem � is

���� �� ����� ����� ��� �

�

��
���

��� � ���� �
�




�
���
���

���� �
���

��� �
���
���� �
���

�

�

��
���

����� �� � �� � ���

�

��
���

������ ��� � �� � ����

��
���

�
��� � �
� ����

where � � ��
��

.
Imposing the first-order necessary conditions (setting the

derivatives of the Lagrangian � with respect to �, � and ��
to zero) yields

� � ����� ��� 
 (9)

and

�� � 
� � � 	 � �� 
� 
 
 
 � �

��� � �
� � � 	 � �� 
� 
 
 
 � �

��� ���� 
�� �
� � � 	 � �� 
� 
 
 
 � �

where

� � �
�
��
� �
�

� �
��
��


 � ��
�
��� �
�

� ���


Substituting these results into Problem � gives the fol-
lowing equivalent formulation

Problem 4:

�	

����

����� ��� �
�



��� �������� ���

��
� ��� ��� ��� � �� ��� ��� (10)

subject to

� � ��� ��� � � 	 � �� 
� 
 
 
 � �

where � � ���� ��� 
 
 
 � ���
� and � � ��� �� 
 
 
 � ��� .

Problem � is a simple quadratic programming problem
which can be solved using standard algorithms. After the
optimal �� �� are obtained, the desired � in Problem � can
be calculated from (9). Finally, we apply (6) and (5) to get
the desired �.

2.4 Updating ��

The next step in our iterative algorithm is to improve the
estimation of �� from ��� 	 � �� 
� 
 
 
 � � based on the re-
sults from the shape fitting step. To do so, we invoke the
Kuhn-Tucker condition for Problem �, which states

����� � �� � �� ��� � � 	 � �� 
� 
 
 
 � �

������ � �� � �� ���� � � 	 � �� 
� 
 
 
 � �
�� � ����� � � 	 � �� 
� 
 
 
 � �

�� � ������� � � 	 � �� 
� 
 
 
 � �


It is obvious that �� � ��� � �� 	 � �� 
� 
 
 
 � �. The input
data �� for which �� or ��� have nonzero values are called
support vectors. Otherwise, �� is a non-support vector.

As shown in Fig.2, if �� is a non-support vector, then
the current ��� lies inside the �-insensitive margin centered
at the resulting ����, i.e., ��� � ��� � �. From (10), it
also easy to see that ��� will have no effects on the final
regression and has no contribution to the bending energy. In
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Figure 2. Support vector �� and non-support
vector ��.

this case, the current ��

� can be regarded as being accurate
enough with the permissible error margin �. On the other
hand, any support vector lying outside the margin need to
be improved if possible. Based on this consideration, the
following simple exchanging strategy is adopted to update
�

�.

1. For non-support vector ��, we leave the current ��

� un-
changed;

2. For support vector ��, if another candidate in �� lies
in the �-insensitive margin, then we adopt it as the new
�

�

�.

This strategy will reduces the bending energy if � is fixed.
The remaining problem is the selection of �. Inspired by

the area-shrinking technique used in SOM (self-organizing
mapping), we reduce � gradually in the iteration process un-
til it approaches zero. This is quite reasonable since the ac-
quired ���� is usually inaccurate at the beginning of the
iteration for some mis-selected ��

�. Thus a large � may in-
crease the chance of including the true �� inside the insen-
sitive margin while eliminating bad outliers. As ���� be-
comes more and more accurate, we can reduce � to improve
the resolution of the final results, which is similar to what is
done in multiscale image analysis [9].

2.5 Summary of the algorithm

The proposed algorithm is summarized below.

1. Based on the template shape�, detect a landmark can-
didate set ��� � � �� �� � � � � � in the input image along
the normal direction of �.

2. Randomly select �� from ��� � � �� �� � � � � � and ini-
tialize �;

3. Perform SVM regression using a thin-plate kernel.
Find the deformed shape ���� and label the support
vectors and non-support vectors;

4. Update�� by replacing the support vectors with better
candidates in ��� � � �� �� � � � � �. If no one is updated,
reduce �. Return to step �. If no one is updated and

� � �, stop the algorithm and return current ���� as
the desired shape.

3 Discussion

This section discusses two related issues in practical ap-
plication of the proposed algorithm: (a) how to select the
regularization parameter � (or � which bounds the � and
��), and (b) how to deal with the case when some �� is
empty.

3.1 Selection of �

The regularization parameter� plays an important role in
the deformation. The optimal � is chosen for our problem
by minimizing the ordinary cross-validation (OCV) func-
tion

����� �
�

�

��

���

���

� � �
���
� ������

where ����� is the minimizer of Problem � except that the �th

landmark point is left out, i.e., ����� minimizes

�

�

��

����� ���

���� � ������� � �		�
 (11)

subject to constraints (3). This is obtained using the princi-
ple of “leave-out-one” cross-values for cross validation. In
this case, the ��� is also set as an unknown which is allowed
to vary freely along the normal direction ��. Similar to the
analysis in Section 2.3, solution to this problem can be ob-
tained by solving the quadratic programming in Problem �
together with two additional constraints


�� �
� � ��

In this case, �� are fixed to be a non-support vector and ��
(so ���) will not affect the results. Based on the acquired �
and ��, we can apply (9), (6),and (5) to get � and �.

Wahba [16] has conducted a thorough study on how to
estimate � for the scalar function approximation splines
and also extended the OCV to generalized cross validation
(GCV). The main principle can also be adapted to select
optimal � for our SVM-based shape deformation.

3.2 No landmark candidate

It is possible that no landmark candidates can be identi-
fied for some ��. Assume � � ���� � � � ���� � ��.
In this case, we can only use the remaining landmarks de-
tected. According to the resulting function �, the undetected
landmarks can be directly calculated from �����. The prob-
lem can be formulated as minimizing

�

�

��

����� ���

���� � ������� � �		�


0-7695-1143-0/01 $10.00 (C) 2001 IEEE
Proceedings of the Eighth IEEE International Conference on Computer Vision (ICCV’01) 
0-7695-1143-0/01 $17.00 © 2001 IEEE 



subject to constraints (3).
This can be regarded as the “leave-several-out” test

which is a generalization of (11) and has a similar solution.
At first, we solve Problem � with additional constraints

�� � ��� � �� �� � � �

which disable �� � � � � . Then based on the acquired� and
��, we can use (9), (6) and (5) to get the optimal � and �.

This property is useful for two reasons: (a) We can pur-
posely exclude “bad” landmark candidate sets �� in the fit-
ting step. (b) When the object to be segmented is partly
occluded, this method can combine the object shape in the
template to get a reasonable and accurate segmentation.

However, it should be noted that the number of non-
empty ��’s must be sufficient large to capture the shape de-
formation between the template and the input image. Deter-
mining the minimum number of landmark points required
for a given shape has not been solved.

4 Experiments

We have used the proposed method to extract the scalp
contour from a series of brain cryosection images from the
Visual Human Project. Fig.3(a) shows the initial template
slice with the manually extracted scalp contour composed
of ��� landmark points distributed uniformly.

(d)(c)

correct one
(a) (b)

Figure 3. (a) Initial template image with the
manually extracted scalp contour; (b) The in-
put image with the unprocessed scalp con-
tour from the template overlaid; (c) Detected
�� based on one special ��; (d) Detailed il-
lustration shows there are � landmark candi-
dates in ��.

We used the edge detection method to extract the land-
mark candidates ��� � � �� �� � � � � �. Noting that the in-
tensity of pixels just outside the scalp contour is smaller

than that of those just inside the contour, we extracted ��

by searching a rising-edge (from outside to inside) along
�� near ��. An example is illustrated in Figs.3(c) and (d)
where � landmark candidates are detected corresponding to
one ��.

Our first experiment is to segment an image (shown in
Fig.3(b)) �� slices away from the template. The shape de-
formation process is shown in Fig.4. At the beginning (left
column of Fig.4), some ��

� are mis-selected. However, the
regularized shape can match the desired contour much bet-
ter although some error still exists in some local areas. After
updating ��

� corresponding to the support vectors, we can
see that many outliers are removed.

The second experiment is to verify the effectiveness of
the proposed algorithm when part of the input image is oc-
cluded. Fig.5(a) is a simulated “occluded” image with the
template shape overlapped. Using the proposed method to-
gether with the additional constraints discussed in Section
3.2, quite accurate segmentation was acquired, as shown in
Fig.5(b). In this experiment, only �� out of ��� landmarks
are allowed to slide freely along their normal directions.

Finally, we used the proposed deformation method to
segment the cryosection brain images slice by slice. Be-
ginning from the manual segmented template shown in
Fig.3(a), the shape in the template is deformed to match
its neighbors. Then the segmented slices are treated as new
templates to process their unsegmented neighbors. The first
and last images in Fig.6 are �� slices away from the ini-
tial template image. Only the slices with odd numbers are
shown here.

5 Conclusion

A novel landmark-based shape deformation method has
been described in this paper. This method provides effective
solution to two problems inherent in landmark-based shape
deformation: (a) identification of landmark points from a
given input image, and (b) regularized deformation of ob-
ject shape embedded in a template. The first problem is
solved using a combination of edge detection and shape fit-
ting. The second problem is solved using a new constrained
SVM regression technique, in which a thin-plate kernel
is utilized to provide non-rigid shape deformations. This
method offers several advantages over existing landmark-
based methods. First, it has a unique capability to detect
and use multiple candidate landmark points in an input im-
age to improve landmark detection. Second, it can handle
the case of missing landmarks, which often arises in dealing
with occluded images.

The proposed method is especially suitable for segment-
ing 3D images slice by slice, where there are only small
shape variations across the neighboring slices. In this type
of applications, the segmented shape in one slice can be
used as a template for its unsegmented neighborings. We
have applied the proposed method to extract the scalp con-
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Figure 4. Segmentation to the input image shown in (Fig.3). The top row is the updated�� (connected
as a polygon). The middle row shows the acquired ����. The bottom row is the local enlargement of
the middle row. From the left to right column shows the intermediate results with � of �, �, � and �,
respectively.

(b)(a)

Figure 5. Segmentation to a simulated oc-
cluded image.

tours in cryosection head images with very encouraging re-
sults.
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