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Abstract

Many natural and man-made structures have a boundary that shows a certain level of bilateral symme-

try, a property that plays an important role in both human andcomputer vision. In this paper, we present

a new grouping method for detecting closed boundaries with symmetry. We first construct a new type of

grouping token in the form of symmetric trapezoids by pairing line segments detected from the image.

A closed boundary can then be achieved by connecting some trapezoids with a sequence of gap-filling

quadrilaterals. For such a closed boundary, we define a unified grouping cost function in a ratio form: the

numerator reflects the boundary information of proximity and symmetry and the denominator reflects the

region information of the enclosed area. The introduction of the region-area information in the denomi-

nator is able to avoid a bias toward shorter boundaries. We then develop a new graph model to represent

the grouping tokens. In this new graph model, the grouping cost function can be encoded by carefully

designed edge weights and the desired optimal boundary corresponds to a special cycle with a minimum

ratio-form cost. We finally show that such a cycle can be foundin polynomial time using a previous graph

algorithm. We implement this symmetry-grouping method andtest it on a set of synthetic data and real

images. The performance is compared to two previous grouping methods that do not consider symmetry

in their grouping cost functions.

Keywords – Perceptual organization, edge grouping, boundary detection, boundary symmetry, edge

detection, graph models.

1 Introduction

The boundaries of many structures of interest encountered in the real world show a certain level of

(bilateral) symmetry [4, 5]. For example, most objects (or their components) that are machine fabricated

have a revolved surface that is perfectly symmetric over a straight axis. Many natural objects, such as

leaves and animals, also have a boundary with a certain levelof symmetry, where the symmetry axes may
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not be perfectly straight, as shown in Fig. 1(c). In computervision, symmetry has been shown to be an

important property in both boundaryinterpretation/matching, where the goal is to analyze and match given

boundaries, andgrouping, where the goal is to extract salient structural boundariesfrom real images [10].

As shown in Fig. 1, the goal of this paper is to develop an effective method to address the latter problem of

grouping for symmetric boundaries, which, as pointed out in[10], is a particularly challenging problem.

(b)(a) (c) (d)

Figure 1: Four samples of structural boundaries that show symmetry. Structural boundaries are shown in
black while the symmetry axes are shown in red.

Several reasons make the grouping for symmetric boundariesa challenging problem. First, unlike many

other grouping cues, boundary symmetry is not a simple localmeasure: two symmetric fragments along

the resulting boundary may be located far away from each other. As a result, it is usually difficult to

encode symmetry into the simple locally-constructed grouping tokens, such as image pixels or boundary

fragments, which have been widely used in previous groupingmethods. Second, while symmetry is an

important grouping cue, other cues, such as Gestalt laws of proximity and closure, are also crucial to

achieve a successful grouping [16]. This calls for a unifiedgrouping cost (function)that can flexibly

integrate different grouping cues. Third, the grouping cost should be designed to avoid undesirable explicit

or implicit biases, such as a bias toward shorter boundaries, which occurs in many previous grouping

methods [37]. Finally, it is usually a challenging problem to develop an optimization algorithm for finding

a grouping that minimizes the selected grouping cost.

In this paper, we developed a new grouping method for detecting2D closed boundaries with symmetry.

Particularly, we propose a new grouping cost function that takes a ratio form: the numerator reflects the

boundary information of proximity and symmetry and the denominator reflects the region information of

the enclosed area. The use of the enclosed region area makes the resulting grouping biased to detecting

longer and rounder boundaries and therefore, promotes the robustness to image noise and texture. This

grouping cost function can be expanded to include other boundary information, such as boundary continu-

ity (smoothness), and region information, such as region intensity homogeneity. To quantify and encode
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this grouping cost, we construct a new type of grouping tokenin the form of trapezoids by pairing line

segments detected from the image. Based on these trapezoids, the problem of grouping for symmetric

boundaries can be formulated as identifying and connectinga sequence of trapezoids into a closed bound-

ary. Finally, we construct a new graph model where candidateboundaries are represented as special cycles

in this graph, and apply a known graph algorithm to find the optimal cycle that corresponds to the boundary

with the minimum grouping cost. Note that the work in this paper is only concerned with the case where

the boundary of interest shows bilateral symmetry on the2D image plane. We do not consider the case

where the surface of an object shows symmetry over an axis in3D space but the resulting2D boundary

does not show bilateral symmetry on the2D image plane due to the perspective-projection transformation,

as in [36, 18, 22, 7].

The important role and use of symmetry has been studied in both human vision and computer vision

[35, 41, 30, 27, 26, 11]. Particularly, prior research has shown that symmetry is non-accidental [21, 40] and

therefore, can be used as a grouping cue to distinguish salient structures from noisy background. Symme-

try analysis of a given object boundary is usually conductedby deriving itssymmetry axis. Symmetry-axis

information has been incorporated to facilitate boundary interpretation, matching, and recognition in many

prior research [5, 6, 19, 42]. Note that, different from the problems of boundary interpretation, matching,

and recognition, the work presented in this paper aims to solve the grouping problem, where the structural

boundaries are not available and our goal is to extract them from real images.

The related work includes the long-line research onedge grouping[2, 3, 8, 9, 12, 14, 15, 23, 28, 29,

33, 37, 38, 39]. These methods aim to extract perceptually salient boundaries from a set of line segments,

which are usually detected from an image by edge detectors and line-fitting operators. In previous edge-

grouping methods, the grouping cost usually combines well known Gestalt laws, such as (a)closure,

which requires the resulting boundary to be always closed, (b) proximity, which requires the gap length to

be short in connecting the detected line segments into a closed boundary, (c),continuity, which requires the

resulting boundary to be as smooth as possible, and (d)convexity, which requires the resulting boundary to

be convex. However, these edge-grouping methods do not consider the boundary symmetry in grouping.

Mohan and Nevatia [24] developed a grouping method, where boundary symmetry is considered along

with closure and proximity. It applies both edge detection and corner detection to extract a set of line

segments and corner points as the grouping tokens. The grouping cost is defined by a collinearity measure

that actually reflects the proximity and continuity of the boundary. Symmetry is applied as a cue to couple
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the extracted curves by producing a set ofribbons. These ribbons are then grouped into structures by some

heuristic algorithms. This method does not introduce a unified grouping cost function and the developed

grouping algorithm is not globally optimal. The locality ofthe grouping algorithm may lead to many

small ribbons and may not handle the boundary occlusion verywell. Another work that is closely related

to the proposed work is the grouping method developed by Liu,Geiger, and Yuille [20], which identifies

the local symmetry-axis segments and then applies a shortest-path algorithm to connect some of them into

a complete symmetry axis. The grouping cost function is defined as the sum of a predefined local cost

along the symmetry axis. By manually selecting a starting pair of points that are symmetric to each other,

this method produces an open boundary. Since this method does not consider region information or other

normalization in the cost function, it presents a bias toward shorter boundaries, which may have difficulty

in detecting the symmetry axis shown in Fig. 1(d).

In recent years, many methods have also been developed for detecting structures with symmetric ap-

pearance [25, 13, 31, 32]. For example, Prasad and Yegnanarayana [26] develop a voting-based method

to detect axes of bilateral symmetry directly from images based on edge-gradient information. Note that

these methods are quite different from the grouping method proposed in this paper from the following three

perspectives: (a) most of these methods assume the appearance symmetry while the proposed method only

assumes the boundary-shape symmetry, (b) these methods usually assume the symmetry axes to be straight

while the proposed method quantifies symmetry as a continuous value, and (c) these methods usually de-

tect only the symmetry axes, but not the final structural boundaries, while the proposed method detects

both symmetry axes and resulting structural boundaries.

The method proposed in this paper is inherited from the previous ratio-contour method [37], an edge-

grouping method for detecting smooth closed boundaries. Particularly, both of them use the same graph

algorithm: the minimum-ratio alternate cycle algorithm, for solving the final graph problems. However,

both the research goals, the problem formulations, and the graph modelings introduced in this paper are

completely different from the ones introduced in [37]. The research goal in this paper is to develop

a grouping method to detect boundaries with good bilateral symmetry, which is not considered in the

ratio-contour method. To achieve this goal, in this paper weintroduce different grouping tokens, define

a different grouping cost with a normalization over the enclosed region area, construct a different graph

model with “mirror” edges and auxiliary edges, and define different graph edge weight functions to encode

the region-area information. In Section 5, we also compare the performance of the proposed method and
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the ratio-contour method on both synthetic data and real images.

The remainder of this paper is organized as follows. In Section 2, we formulate the problem of grouping

with symmetry by introducing the general edge-grouping methodology, the new grouping tokens in the

form of symmetric trapezoids, and the new unified grouping cost function. In Section 3, we introduce the

graph modeling of the formulated problem and apply a graph algorithm to solve this grouping problem

in a globally optimal fashion. In Section 4, we introduce a more accurate way to measure the gap length

along the boundary. In Section 5, we discuss implementationdetails and report experiment results on both

synthetic and real images. In Section 6, we discuss the possible extensions of the proposed method to

incorporate other boundary or region information. In Section 7, we discuss the complexity and running

time of the proposed grouping method. Section 8 presents theconclusions.

2 Problem Formulation

The proposed grouping method has its roots inedge grouping, where grouping tokens are a set of

line segments (or more generally, curve segments) and the output is one or several perceptually-salient

boundaries formed by connecting a subset of the line segments. However, to encode and quantify the

boundary symmetry, we further pair the line segments to construct a new type of grouping token in the

form of symmetric trapezoids. In this section, we start the problem formulation by introducing the typical

process of edge grouping. We then elaborate on the trapezoid-type token construction and the grouping-

cost definition.

2.1 Edge Grouping

In edge grouping, a set of line segments is first constructed from the input image, as shown in Fig. 2(a),

by edge detection and line fitting operations, as shown in Fig. 2(b). A new set of line segments, as shown

by dashed lines in Fig. 2(c), is then constructed to fill the gap between each pair of initial line segments. For

convenience, we call the initial line segments resulting from edge detection thedetected (line) segments

and the newly constructed ones thegap-filling (line) segments. A (closed) boundaryof interest is then a

simple cycle that traverses a set of detected and gap-fillingsegmentsalternately, as shown in Fig. 2(d).

Note that we do not show all the constructed gap-filling segments in Fig. 2(c) to prevent the figure from

being too crowded. In the ideal case, withn detected segments, we have2n segment endpoints, and

therefore, we may need to constructn(2n − 2) gap-filling segments if we construct a gap-filling segment
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between any possible two segment endpoints except for the two endpoints of the same detected segment.

Finally, we define a grouping cost function for the boundaries and develop an algorithm to find from all

boundaries the one with the minimum grouping cost, also as shown in Fig. 2(d). As mentioned above,

various grouping cues, such as proximity, closure, continuity, and convexity have been incorporated into

edge grouping trying to extract the perceptually salient structural boundaries from a noisy background

[12, 23, 28, 29, 33, 37, 38]. In prior edge-grouping methods,the grouping cost is usually defined to be a

function of some local weights associated to each individual detected/gap-filling segment. However, it is

difficult to incorporate symmetry into these edge-groupingmethods because of the difficulty of encoding

symmetry into each individual line segment. In the next section, we construct new trapezoid-type tokens

from these line segments to encode boundary symmetry.

(a) (b) (c) (d)

Figure 2: An illustration of the process of edge grouping.

2.2 Symmetric Trapezoids as Grouping Tokens

While it is difficult to encode symmetry into each individualline segment, symmetry can be encoded

to a pair of segments. For each pair of line segmentsP1P2 andP3P4, as shown in Fig. 3, we can identify

their symmetric portions by following three steps:

1. Find the angle-bisector linel betweenP1P2 andP3P4, as shown in Fig. 3(a). IfP1P2//P3P4, thenl

is the line equidistant to bothP1P2 andP3P4.

2. Find the projections of both segmentsP1P2 andP3P4 to l and denote themP ′
1P

′
2 andP ′

3P
′
4 respec-

tively. The overlap of segmentsP ′
1P

′
2 andP ′

3P
′
4, as shown byP ′

1P
′
2 in Fig. 3(b), is denoted as the

axis segmentbetweenP1P2 andP3P4. We refer toP ′
1 andP ′

2 as theaxis-segment endpoints.

3. Map this axis segment back to segmentsP1P2 andP3P4. This results in a(symmetric) trapezoid

P1P2P
′′
2 P ′′

1 , as shown in Fig. 3(c).
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In this paper, we construct such symmetric trapezoids (withaxis segments) by pairing every two de-

tected segments, as shown in Figs. 3(a-c), and pairing each gap-filling segment with each detected segment,

as shown in Figs. 3(d-e). Note that, for some pairs of segments, their projections tol have no overlap. In

this case, no symmetric trapezoid will be constructed for them. These trapezoids are used as new grouping

tokens in the proposed method. We construct a trapezoid by pairing a gap-filling segment with a detected

segment to handle the case shown in Fig. 4, where the desired symmetric boundary (in black) and its sym-

metric axis (in red) are shown in Fig. 4(a). However, the symmetric portion of many detected segments,

such asP1P2, P3P4, andP6P7, are not detected and therefore, correspond to gap-filling segments. In this

case, we can represent the desired symmetric boundary only by pairing gap-filling segments with detected

segments, as shown in Fig. 4(b). For convenience, in the remainder of the paper we usually display trape-

zoids by assuming that they are constructed from two detected segments and therefore, use solid lines for

both non-parallel opposite sides, as illustrated in Fig. 3(c). However, we will consider both cases shown

in Figs. 3(c) and (e) in developing the proposed grouping method.

P1

P2

P3

P4

P2

P1
P1

P2

P1P1

P2

P3

P4

P2

P1P1

P2

P3

P2

P1

P4

P1

P2

P4

P3

P1

(d)

l

(e)

P2

(a) (b) (c)

l

l

P2

Figure 3: An illustration of constructing a symmetric trapezoid from a pair of segments: (a-c) pairing two
detected segments, and (d-e) pairing a gap-filling segmentP1P2 with a detected segmentP3P4.

P1

P2

P3

P4P5

P6

P7

P8 P1

P2

P3

P4P5

P8

P7

P6

(a) (b)

P2

P3
P6

P7

Figure 4: An illustration of the case that needs the construction of trapezoids by pairing gap-filling seg-
ments with detected ones. (a) The desired symmetric boundary with its detected segments (solid black
lines), gap-filling segments (dashed black lines), and symmetric axis (red line), (b) trapezoids constructed
by pairing gap-filling segments with detected ones.
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2.3 Trapezoid Grouping and Grouping Cost

Analogous to edge grouping, we formulate the problem of symmetry grouping as a problem of identify-

ing a subset of trapezoids and connecting them sequentiallyinto a closed boundary. The gap between two

sequential trapezoids in the connection is filled by a(gap-filling) quadrilateral. Two examples are shown

in Figs. 5(a) and (b), where two gap-filling quadrilateralsG1 = {P2P3P10P11} andG2 = {P4P5P8P9} are

constructed to connect three trapezoidsT1 = {P1P2P11P12}, T2 = {P3P4P9P10}, andT3 = {P5P6P7P8}

into a closed polygonal boundaryP1P2 . . . P12. The axis segments ofT1, T2, andT3, shown as red solid

lines, are also connected by the axis segments of the quadrilateralsG1 andG2, shown as red dashed lines, to

generate the polylineQ1Q2 . . . Q6, which is the(boundary) axisof the closed boundaryP1P2 . . . P12. We

callQ1 andQ6 theboundary-axis endpoints. Note that the gap-filling quadrilaterals are simply constructed

by connecting a parallel side of one trapezoid and a parallelside of another trapezoid. They may not be

symmetric and its axis segment is constructed simply by connecting the endpoints of the axis segments

of the two neighboring symmetric trapezoids. As in edge grouping, in the ideal case, we may construct

quadrilaterals between each pair of trapezoids. Since the axis segment of a trapezoid has two endpoints,

there are four different gap-filling quadrilaterals that can be constructed between a pair of trapezoids. As

discussed later, in practice we do not need to construct all possible gap-filling quadrilaterals because many

of them are not likely to be included in the desired optimal boundary.

P7

P8
P9

P10

P11 P12

1Q

P1

P2

P3P4

P5

P6

Q6

Q5

Q4

Q3

Q2

P3

P2

Q2

P11P10

P12

1Q

P1

Q6

P6

P7

P8 P9

P4

P5

Q3

Q4

Q5

(a) (b)

Figure 5: Two examples of grouping detected trapezoids intoa closed boundary.

Based on the above formulation, we can measure the symmetry of a closed boundary using the collinear-

ity (straightness) of its boundary axis, as shown by the red polylines in Fig. 5. Specifically, we define the

grouping cost function for a closed boundaryB as

φ(B) =
|BD| + λ · ρ(axis(B))

area(B)
, (1)
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where|BD| is the total gap length along the boundaryB. Note that not only quadrilaterals but also trape-

zoids may contribute to|BD|, because (a) trapezoids may be constructed by pairing a gap-filling segment

with a detected segment, as shown in Figs. 3(d-e), and (b) a parallel side of a trapezoid may contribute

to the boundary gap-length|BD| when this side contains a boundary-axis endpoint, e.g., theparallel sides

P1P12 andP6P7 need to be included in calculating|BD| in Fig. 5. In Section 4, we will further discuss

a more accurate way to measure|BD| in practice. The term of|BD| reflects the preference of a boundary

with good proximity. The term ofρ(axis(B)) is a measure related to the collinearity ofB’s axis (e.g., the

red polylines in Fig. 5). This term reflects the preference ofa boundary with good symmetry and we will

elaborate on this term in Section 3. The term ofarea(B) is the region area enclosed by the boundaryB.

A normalization over this term sets a preference to produce larger rounder structures, which improves the

robustness against image noise by avoiding a bias toward shorter boundaries. Note that, in practice such

a preference may not prevent the detection of small salient structures if they show good proximity and

symmetry, as we will see in many experiments reported in Section 5. λ > 0 is a preset factor that balances

the weights of the proximity and symmetry terms. As discussed later, we simply set a consistentλ = 10

in all the experiments reported in this paper.

3 Graph Modeling and Algorithm

In this section we construct a new graph model to describe theabove formulated problem. In this graph

model, trapezoids and gap-filling quadrilaterals are represented by graph edges. By encoding the grouping

cost (1) into the graph edge weights, we then reduce the grouping problem to a problem of finding an

optimal cycle with minimum ratio cost in this new graph. We finally apply a known graph algorithm to

address this cycle-finding problem. Specifically, the graphconstruction consists of two sequential steps:

(a) constructing solid and dashed edges to represent trapezoids and gap-filling quadrilaterals, respectively,

and (b) further constructing auxiliary edges between the vertices corresponding to potential axis endpoints.

We elaborate on these two steps in the following.

3.1 Graph Construction I: Solid/Dashed Edges

We construct an undirected graphG = (V, E) with vertex setV and edge setE to model the trapezoids

and gap-filling quadrilaterals. To encode the enclosed region areaarea(B), we construct a pair ofsolid

edgese+
T ande−T for each trapezoidT , and a pair ofdashededgese+

G ande−G for each quadrilateralG, as
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shown in Fig. 6. We call the pair of the edges constructed for the same trapezoid or quadrilateral to be the

mirror edges of each other. For convenience, we can treat each pair of mirror edges to be an abstraction of

the axis segment of the corresponding trapezoid or quadrilateral. For example,e+
T ande−T model the axis

segmentQ1Q2 in Fig. 6(a). Accordingly, we construct a pair of vertices for each axis-segment endpoint

(or each parallel side of each trapezoid). For example, vertex pairu(1)
1 andu

(2)
1 are constructed for axis-

segment endpointQ1 in Fig. 6(a).

Q1

Q2

Q3

Q4

u1
(1) u3

(1)

eGT

(a) (b)

GT

e

u1
(2)

u2
(2)u2

(1)

u3
(2)

u4
(2)u4

(1)

+ eT
− eG

+ −

Figure 6: An illustration of the solid/dashed edges. (a) Fora trapezoidT , we construct a pair of solid
edgese+

T ande−T . Each axis-segment endpointQi is then modeled by two verticesu(1)
i andu

(2)
i . (b) For

a gap-filling quadrilateralG, we proceed similarly as in (a), except that the two constructed edges are
dashed.

In the proposed grouping, two neighboring trapezoids are connected by a quadrilateral as shown in

Fig. 5. Therefore, in constructing the graphG = (V, E), we connect two pairs of solid edges by a pair

of dashed edges, since each trapezoid and quadrilateral is represented by two mirror edgese+ ande−, We

apply the following two steps to determine the edge connection in constructing the graphG = (V, E).

First, we consider only the quadrilateral that leads to a non-intersected boundary. Particularly, when

connecting two trapezoids by a quadrilateral, the two sidesof the selected quadrilateral that are not shared

with the two trapezoids must not intersect with each other. For example, in Fig. 7, we construct the

quadrilateral in the form ofP2P3P6P7 with two sidesP2P3 andP6P7, instead of the quadrilateralP2P6P3P7

with two sidesP2P6 andP3P7, to connectT1 andT2.

Second, we distinguish two mirror edgese+ ande− by associating an implicit direction to the corre-

sponding trapezoid or quadrilateral. Particularly, we setedgee+ to imply that its corresponding trapezoid

or quadrilateral has a counterclockwise direction and edgee− to imply that its corresponding trapezoid

or quadrilateral has a clockwise direction. Then the edge connection will be uniquely determined by

requiring the resulting boundary to be of a consistent direction, either clockwise or counterclockwise.
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Q2

P1

P2

P3

P4

5P

8P

P7

P6
2

1T

Q

T

1

Q4

3Q

Figure 7: An illustration of determining the gap-filling quadrilateral between two trapezoidsT1 =
{P1P2P7P8} andT2 = {P3P4P5P6}.

Figures 8(a-d) illustrate the four possible cases. When theclockwiseT1 is connected to the clockwiseT2

by a gap-filling quadrilateral (this implies that the counterclockwiseT1 is connected to the counterclock-

wiseT2), we connect their corresponding edges with same signs, as shown in Figs. 8(a) and (c). When

the clockwiseT1 is connected to the counterclockwiseT2 by a gap-filling quadrilateral (this implies that

the counterclockwiseT1 is connected to the clockwiseT2), we connect their corresponding edges with

opposite signs, as shown in Figs. 8(b) and (d). The sign of theedge corresponding to the quadrilateral can

also be uniquely determined by following the directions of the trapezoids. For example, in Fig. 8(a), the

quadrilateral between the clockwiseT1 and the clockwiseT2 has a clockwise direction. This indicates that

the dashed edge betweene+
T1

ande+
T2

is e+
G and the dashed edge betweene−T1

ande−T2
is e−G.
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Figure 8: An illustration of the edge connection for modeling the construction of a quadrilateral between
two trapezoids.
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There is a special case where the constructed gap-filling quadrilateral contains a self intersection, as

shown by the quadrilateralP2P3P6P7 in Fig. 9. Note that this self intersection is caused by the two sides

P3P6 andP2P7 from the two neighboring trapezoids and will not be includedin the resulting boundary.

Therefore, different from the quadrilateral self-intersection mentioned before, this kind of self-intersected

quadrilateral is allowed as it does not lead to self-intersected boundaries. In this case, the quadrilateral is

divided into two trianglesR1 andR2 with opposite directions, i.e., ifR1 is counterclockwise, thenR2 is

clockwise, also as shown in Fig. 9. We set this quadrilateral’s direction to be the direction of the triangle

with a larger area and set the area of this quadrilateral as|area(R1) − area(R2)|.

R1

R2

P7

P8 P1

P2

P3P4

P5

P6

Figure 9: An illustration of an allowed self-intersected quadrilateral.

For each edgee in this graph, we define two weight functionsw1(e) andw2(e). If e is solid, we define

w1(e) = 0 if the corresponding trapezoid was constructed from two detected segments, e.g., the trapezoid

shown in Fig. 4(c), otherwise we setw1(e) to be the length of the gap-filling segment included in the

trapezoid construction, e.g.,|P1P2|, the Euclidean distance betweenP1 andP2, in Fig. 4(e). Ife is dashed,

e.g., corresponding to axis segmentQ2Q3 in Fig. 7, we define

w1(e) = |P2P3|D + |P7P8|D + λ · ρ(e)

where|P2P3|D + |P7P8|D is the total gap length (along the boundary) that results from the quadrilateral

corresponding toe. In this paper, we use an improved gap-length measure|PiPj |D instead of the Euclidean

distance|PiPj| to handle the case where a gap-filling quadrilateral may (partially) coincide with detected

segments. We will discuss this improved gap-length measurein Section 4.ρ(e) = | sin(∠Q1Q2Q4)| +

| sin(∠Q1Q3Q4)| measures the collinearity (straightness) of the polylineQ1Q2Q3Q4, giving a lower cost

to polylines with good collinearity, as shown in Fig. 7. We can see that the first edge weightw1(e) is

always nonnegative and for a pair of mirror edgese+ ande−, we havew1(e
+) = w1(e

−). The second

edge weight,w2(e), is simply the signed area of the trapezoid or quadrilateralcorresponding toe, i.e.,
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w2(e
+) = −w2(e

−) > 0. We introduce the negative area to handle the nonconvex boundaries, where the

inclusion of an additional trapezoid or quadrilateral may contribute negatively to the resulting enclosed

areaarea(B), as shown by the trapezoidP1P2P11P12 in Fig. 5(b).

3.2 Graph Construction II: Auxiliary Edges

In order to include the boundary information around the two boundary-axis endpoints, e.g., the gap

length alongP6P7 andP1P12 in Fig. 5, we further construct a set of new dashed edges, named auxiliary

edges, between the vertices corresponding to the two boundary-axis endpoints. Letu(1)
1 andu

(2)
1 be the

vertex pair corresponding to an boundary-axis endpoint, e.g., Q1 in Fig. 5(a) (or (b)), andu(1)
6 andu

(2)
6

be the vertex pair corresponding to the other boundary-axisendpoint, e.g.,Q6 in Fig. 5(a) (or (b)). We

construct fourdashed edges(u(i)
1 , u

(j)
6 ), i, j = 1, 2 asauxiliaryedges, as shown by blue curves in Fig. 10(a)

(or (b)). For these four auxiliary edges, we set their secondedge weights to be zero and the first edge

weights to be the total gap length around these two boundary-axis endpoints. For example, in Fig. 5(a) (or

(b)), the first weightw1(e) of the four auxiliary edges that reflects the connection betweenQ1 andQ6 is

defined by

w1(e) = |P1P12|D + |P6P7|D,

where|PiPj|D is the gap length betweenPi andPj , to be detailed in Section 4. Since the optimal closed

boundary and its boundary-axis endpoints are unknown before the grouping, we can treat all axis-segment

endpoints as potential boundary-axis endpoints and construct auxiliary edges between all of them. In

practice, however, we do not need to construct auxiliary edges between all axis-segment endpoints and we

will discuss this in more detail in Section 5.

In the graphG = (V, E), each boundaryB is represented by two “mirror” cyclesC+ andC−, e.g., if an

edge is included inC+, its mirror edge must be included inC−, and vice versa. In addition, each of them

contains an auxiliary edge, as shown in Fig. 10. These two cycles traverse a sequence of solid and dashed

edges alternately and therefore, we call themalternatecycles. It is easy to verify that (a) the total first

edge weights along bothC+ andC− are always equal to the numerator of the costφ(B) in Eq. (1), and (b)

the total second edge weights alongC+ andC− have the same absolute value equal toarea(B), but with

opposite signs. This way, we have

φ(B) =

∑
e∈C+ w1(e)∑
e∈C+ w2(e)

= −

∑
e∈C− w1(e)∑
e∈C− w2(e)

,
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Figure 10: An illustration of the cycles corresponding to the boundaries shown in Figs. 5(a) and (b), re-
spectively. (a) For the boundary in Fig. 5(a), the corresponding cycleC+ traversesu(1)

i , i = 1, 2, . . . , 6

sequentially andC− traversesu
(2)
i , i = 1, 2, . . . , 6 sequentially. (b) For the boundary shown in

Fig. 5(b), the corresponding cycleC+ traversesu(2)
1 , u

(2)
2 , u

(1)
3 , u

(1)
4 , u

(1)
5 , u

(1)
6 sequentially andC− traverses

u
(1)
1 , u

(1)
2 , u

(2)
3 , u

(2)
4 , u

(2)
5 , u

(2)
6 sequentially. Verticesu(1)

i andu
(2)
i correspond to the axis-segment endpoint

Qi, i = 1, 2, . . . , 6 in Fig. 5. Auxiliary edges are shown by blue dashed curves.

and locating the optimal boundaryB that minimizes the cost (1) is reduced to finding an alternatecycleC

in graphG = (V, E) such that this cycleC minimizes the cycle ratio

ϕ(C) =
W2(C)

W1(C)
=

∑
e∈C w2(e)∑
e∈C w1(e)

. (2)

The correctness of this reduction comes from the following two facts. First, any alternate cycleC has two

mirror versionsC+ andC− with opposite signs on the total second weights. Without loss of generality, we

assumeW2(C
+) = −W2(C

−) > 0. Clearly, the cycleC that minimize the cost (2) must be of aC− version

and has a negativeW2(C). The mirror of this optimal cycleC is then of aC+ version that maximizesW2(C)
W1(C)

and therefore, minimizesW1(C)
W2(C)

subject toW2(C) > 0. The ratioW1(C)
W2(C)

subject toW2(C) > 0 is exactly

the same asφ(B), wherearea(B) is always positive. Therefore, we haveφ(B) = − 1
ϕ(C)

and the alternate

cycleC with the minimum cycle ratioϕ(C) corresponds to the boundaryB with the minimum costφ(B).

Second, we prove by contradiction that the resulting optimal alternate cycleC does not contain more

than one auxiliary edge. Otherwise, the resulting boundaryB would contain multiple separate closed

boundaries with unaligned axes. Assume the resulting cycleC containsk auxiliary edges withk > 1.

This meansC containsk alternate pathsP1, P2, . . ., Pk after thesek auxiliary edges are removed. From

thesek paths, we can constructk new alternate cyclesC1, C2, . . ., Ck by including the auxiliary edges

between the two endpoints of each path. Given the cycle ratiodefined in Eq. (2), it is not difficult to see

14



thatϕ(C) = W2(C)
W1(C)

=
P

k

i=1
W2(Ci)

P

k

i=1
W1(Ci)

. This shows that at least one cycle, sayCm, out ofCi, i = 1, 2, . . . , k, has

a smaller cycle ratio thanC, i.e., ϕ(Cm) = W2(Cm)
W1(Cm)

≤ ϕ(C). This contradicts the assumption thatC is a

cycle with minimum cycle ratio.

Finally, we use an available graph algorithm to find an alternate cycleC that minimizes the cycle ratio

(2) [37, 1]. This minimum-ratio alternate cycle algorithm finds the desired optimal cycle in polynomial

time.

4 An Improved Gap-Length Measure |PiPj |D

The main goal of introducing|PiPj|D is to handle the case where a gap-filling quadrilateral may coincide

with detected segments. As shown in both Figs. 11(a) and (b),a gap-filling quadrilateralP2P3P6P7 is

constructed to connect two trapezoidsT1 andT2. The contribution of this quadrilateral to the term|BD|,

if it is included in the boundaryB, is not|P2P3| + |P6P7|, as a portion ofP2P3 is in fact coincident with

detected segments, e.g.,P3P9 in Fig. 11(a) andP9P10 in Fig. 11(b). To get an accurate estimate of|BD|,

we locate such coincident portions and deduct them from the calculation of the gap length.

(a) (b)

2T
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P5

P2

P1 P8

P3

P4

9P
P2

P1

2T

T1

P3

P4

P8

P7

P5

P6

P10

P9

P2

P3

P9

P3P9

P10

P9

P2 P10

(c) (d)

Figure 11: An illustration of measuring the gap length by excluding the projections from coincident de-
tected segments: (a) & (b) two examples where the sideP2P3 of the quadrilateralP2P3P6P7 is coincident
with a detected segment, and (c) & (d) calculating|P2P3|D for the two examples shown in (a) and (b)
respectively.

Specifically, in calculating the gap length between two points, sayP2 andP3 in Figs. 11(c) and (d),

we construct a rectangular box, shown in blue in Figs. 11(c) and (d), around the segmentP2P3. All

the detected segments, e.g.,P9P10 in Fig. 11(d), or the portions of the detected segments, e.g., P9P3 in

Fig. 11(c), that are located inside of this rectangular box are projected onto the segmentP2P3. We then only

count the portions alongP2P3 that do not overlap with any such detected-segment projections to calculate

the gap-length betweenP2 andP3. For example, the gap length betweenP2P3 will be |P2P3|D = |P2P9|
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for the case shown in Fig. 11(c) and|P2P3|D = |P2P
′
10|+ |P3P

′
9| for the case shown in Fig. 11(d). Using a

small rectangular box for searching coincident detected segments improves the robustness by not requiring

exact coincidence between the considered gap and the detected segments, as shown in Fig. 11(d). The only

free parameter in this processing is the width of the rectangular box. In all our experiments, we set this

width to be2 pixels.

5 Experiments

We implemented the proposed method and tested its performance on synthetic data and on a set of real

images2. For the synthetic data, we synthesize detected segments directly and all the detected segments

are located within a square region of size96 × 96. All the real images are scaled to be no larger than

250× 250 while maintaining their aspect ratio. For all our experiments we setλ = 10 in the cost function

(1). We will discuss the selection of this parameter later inSection 5.4.

In constructing the trapezoids, we pair (a) every two detected segments, and (b) every gap-filling seg-

ment with every detected segment, when they have overlappedprojections on their angle-bisector line, as

shown in Fig. 3. For the gap-filling segments, we consider no more thanK shortest gap-filling segments

incident from each detected-segment endpoints, whereK is a preset constant number and we setK = 5

in our experiments. This way, we consider onlyO(n) gap-filling segments out of all possibleO(n2) ones,

with n being the number of detected segments. This indicates that we may constructO(n2) trapezoids.

If we construct quadrilaterals to fill the gaps between each pair of trapezoids, we may then haveO(n4)

quadrilaterals, which lead toO(n4) dashed edges in the constructed graph. To reduce the number of dashed

edges, we develop three practical strategies to avoid constructing the quadrilaterals that are unlikely to be

included in the desired optimal boundary.

The first strategy is to consider the construction of only onequadrilateral between each pair of trape-

zoids. As discussed above, we can construct four different gap-filling quadrilaterals to connect two trape-

zoids because the axis segment of a trapezoid has two endpoints. For example, to connect the two trape-

zoids shown in Fig. 12(a), the axis-segment of the constructed quadrilateral can beQ1Q3, Q1Q4, Q2Q3,

or Q2Q4. Usually, only one of these four quadrilaterals is likely tobe included in the desired optimal

boundary. Based on the proximity preference, we only consider the quadrilateral that has the shortest axis

segment out of the four choices. For the example shown in Fig.12(a), we only consider one quadrilateral

2The software and images used in this section are available athttp : //www.cse.sc.edu/∼songwang/document/SRC.tgz.
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Figure 12: An illustration of the three strategies implemented to reduce the number of quadrilaterals.

with the axis segmentQ2Q3 to connect the trapezoidsT1 andT2. Furthermore, if the considered quadri-

lateral introduces a total gap length that is larger than a given threshold value, we simply do not construct

it. In our experiments we set this threshold value toD1 = 30 pixels. Each quadrilateral introduces two

gaps described by its two sides across the two neighboring trapezoids, e.g., the gap length introduced by

the quadrilateralP2P3P6P7 in Figs. 11(a) (or (b)) is|P2P3|D + |P6P7|D.

Our second strategy is to avoid constructing a quadrilateral to connect two trapezoids that share a same

portion of a detected segment. For example, the two trapezoids T3 andT4 shown in Fig. 12(b) share a

same portion of the detected segmentP3P4. Therefore, no quadrilateral will be constructed between them

since the resulting closed boundary should not traverse (a portion of) a line segment more than once.

However, for two trapezoidsT1 andT2 shown in Fig. 12(b), although both of them are constructed from

the detected segmentP1P2, we still consider constructing a quadrilateral to connectthem since they use

different portions ofP1P2.

Our third strategy is to avoid constructing quadrilateralsthat lead to an axis with low collinearity, be-

cause we are only interested in detecting symmetric boundaries. Specifically, for the two trapezoids shown

in Fig. 12(c), we require that| sin(∠Q1Q2Q4)| and| sin(∠Q1Q3Q4)| are both less than a certain threshold

for constructing a quadrilateral between them. These two terms are exactly the ones used in the grouping

cost (1) for measuring the local boundary symmetry. In our experiments we set this threshold toD2 = 0.5.

Applying these three strategies can substantially reduce the number of dashed edges in the constructed

graph.

Similarly, the number of the auxiliary edges would beO(n4) if we consider connecting every possi-

ble pair of the axis-segment endpoints. To reduce the numberof auxiliary edges, we only consider the

axis-segment endpoints that are likely to be boundary-axisendpoints for constructing auxiliary edges.
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Specifically, we only consider the axis-segment endpoints around which the gap length is less than a given

threshold. For example, in Fig. 5(a), we may considerQ1 as a potential boundary-axis endpoint for con-

structing auxiliary edges because the gap length betweenP1 andP12 is small. But we may not consider

Q5 because the gap length betweenP5 andP8 is larger than the given threshold. In our experiments we set

this threshold toD3 = 20. In addition, if both endpoints of a trapezoid axis segment satisfy this condition

to be potential boundary-axis endpoints, we only consider the one with the smaller gap length. Note that

the gap length is measured by the method introduced in Section 4.

Note that all these strategies are developed for speeding upthe algorithm in practice. Without these three

strategies, the number of constructed edges in the graph is still a polynomial function ofn. Therefore, the

complexity of the proposed grouping algorithm is still polynomial in terms ofn. The robustness of the

method to these thresholds is examined in section 5.4.

5.1 Experiments on Synthetic Data

To evaluate the proposed method quantitatively, we construct a set of synthetic data with a known ground

truth of the desired symmetric boundary. Each synthetic data sample is constructed in the form of a set of

detected segments, which come from two sources: a pair of synthetic boundaries (one desired symmetric

boundary and one non-symmetric boundary) and random noise.Figure 13 shows the boundary pairs that

are used for constructing synthetic data. The desired symmetric boundaries are shown in bold. We can see

that the pair of boundaries in Fig.13 may or may not overlap each other since both cases may happen in

practice. Particularly, Fig.13(e) simulate the case wherea symmetric structure generates a non-symmetric

shadow. In some cases, such as the ones shown in Fig.13(d), the desired symmetric boundary encloses

a smaller area than the other non-symmetric boundary does. We intentionally design such cases to see

whether the consideration of the boundary symmetry can helpdetect the desired symmetric boundary,

even if the grouping cost prefers a boundary with a larger enclosed region area.

We sample the boundaries shown in Fig. 13 to construct disjoint detected segments with gaps. Specif-

ically, we uniformly subdivide each boundary into a set of line segments of equal length (5% of the

perimeter) and then randomly remove a certain number of these line segments. The remaining ones are

then included as detected segments in constructing a synthetic data sample. We further add randomly

generated detected segments to simulate the image noise andfor simplicity, we call themnoise segments.

For these noise segments, their directions conform to a uniform distribution over all possible directions,

18



(a) (b) (d) (e)(c)

Figure 13: Five boundary pairs used for constructing synthetic data. Desired symmetric boundaries are
shown in bold.

their locations conform to a uniform distribution within a square region of size96 × 96, and their lengths

are uniformly distributed within the range of[5, 15] pixels. Figure 14(a) shows an example of adding40

noise segments to the boundary pair shown in Fig. 13(a). Figure 14(b) shows one synthetic data sample,

which consists of the detected segments sampled from the boundary pair shown in Fig. 13(a) and the noise

segments shown in Fig. 14(a). Particularly, we remove30% of the subdivided line segments along the

boundary pair shown in Fig. 13(a) to construct the syntheticdata sample in Fig. 14(b). Based on such a

synthetic data sample, we can directly apply the proposed grouping method to detect an optimal boundary,

as shown in Fig. 14(c).

(a) (b) (c) (d) (e)

Figure 14: An illustration of a synthetic data sample. (a) A boundary pair and random noise segments. (b)
Synthesized detected segments by combining the ones from the boundary pairs and the noise segments.
(c) Optimal boundary detected by the proposed grouping method, with symmetry axis shown in red. (d)
Optimal boundary detected by RC. (e) Optimal boundary detected by EZ.

For each of the five boundary pairs shown in Fig. 13, we sample them in seven different ways so that

the resulting gaps along the boundaries account for0%, 5%, 10%, 20%, 30% , 40% and 50% of the

boundary length, respectively. The number of noise segments are also chosen to be0, 10, 20, 30, 40 and

50 in different settings. By doing all possible combination ofthe sampled boundary pairs and the noise

segments, we have a total number of5 × 6 × 7 = 210 different settings. Under each setting, we further

randomly generate the expected number of noise segments andthe expected gap percentage along the
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underlying boundary pair10 times, which finally results in210 × 10 = 2100 synthetic data samples. In

the experiments, we apply the proposed grouping method to all these2100 data samples. For comparison,

we also apply two previous edge-grouping methods: the ratio-contour method (RC) [37] and the Elder

and Zucker method (EZ) [9] to the same2100 synthetic data. The implementation of both RC and EZ are

the same as in [37]. Note that both RC and EZ consider only boundary closure, proximity, and continuity

(smoothness), but not boundary symmetry and enclosed region area, in grouping. Sample grouping results

by RC and EZ are shown in Fig 14(d) and (e) respectively.

As in [37], on each data sample, we define the grouping performance using a region coincidence mea-

sure|R∩R′|
|R∪R′|

, whereR andR′ are the regions enclosed by the desired ground-truth boundary and the detected

boundary respectively, and|R| indicates the area of regionR. The larger this measure, the better the coin-

cidence between the ground truth boundary and the detected boundary. For example, the grouping results

shown in Figs. 14(c), (d) and (e) have a performance of0.98, 0.68 and0.19 respectively. Figures 15(a)

and 15(b) show the average performance of the proposed method, RC, and EZ on all2100 data samples,

in terms of the gap-percentage along the boundary pairs and the number of noise segments, respectively.

Note that, for each setting of the gap percentage along the boundary pair in Fig. 15(a), the average is

taken over300 data samples since we have5 boundary pairs,6 levels of the number of noise segments,

and10 rounds of noise-segment and boundary-gap generation. Similarly, for each setting of the number

of noise segments in Fig. 15(b), the average is taken over350 data samples since we have5 boundary

pairs,7 levels of the gap percentage in sampling the boundary pair, and 10 rounds of noise-segment and

boundary-gap generation. From Fig. 15, we can see that when the desired boundaries are symmetric, the

proposed grouping method performs better than RC and EZ, where boundary symmetry is not considered.

5.2 Experiments on Real Images

We also test the proposed grouping method on real images and compare it to RC and EZ. The test real

images are selected from the Corel image database and Googleimage search. On real images, we construct

the detected segments by edge detection and line fitting. Foredge detection we use the Canny detector

provided with Matlab’s Image Processing Toolbox (R2006a),leaving its parameters at their default values.

For line fitting we used the Matlab function developed by Kovesi [17] by setting the minimum length for

an edge to be considered to30 pixels and the maximum deviation between an edge and its fitting line to2

pixels. Sample edge detection and line-fitting results for20 real images are shown in the second and third
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Figure 15: The average performance of the proposed method, RC, and EZ on all2100 synthetic data
samples, in terms of (a) the gap percentage along the synthetic boundary pairs, and (b) the number of
noise segments.

columns of Figs. 16 and 17 respectively. Based on these detected segments, all the other settings for the

proposed grouping method are the same as the ones used in the above synthetic-data experiments.

The fourth, fifth and sixth columns of Figs. 16 and 17 show the optimal boundaries obtained by the pro-

posed grouping method, RC and EZ respectively. From Figs. 16(a-d,f,i,j) and 17(a,c,d,f,h-j), we can see

that, by considering the symmetry cue, the proposed method can detect boundaries with good symmetry.

These experiments on real images also show that, when the whole structure is not symmetric, the proposed

method may only detect a symmetric component of the structure, as shown in Figs. 16(c,e) and 17(a,b,e,f).

In such cases, the edge-grouping methods without considering symmetry may detect the structural bound-

ary more completely, as shown in Fig. 17(b). On several images, such as the ones shown in Figs. 16(a,e)

and 17(e,g), RC or EZ produce similar symmetric boundaries as the proposed method does. This indicates

that the symmetric boundaries found in these several imagesby the proposed method also minimize the

RC or EZ grouping costs, which consider closure, proximity and continuity, but not symmetry.
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Figure 16: Grouping results on10 real images. Column 1: input real images; Column 2: Canny edge
detection results; Column 3: detected segments after line fitting; Column 4: the optimal boundary obtained
by the proposed grouping method. Detected boundary axes areshown by red dashed curves; Column 5:
the optimal boundary obtained by RC; and Column 6: the optimal boundary obtained by EZ.
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Figure 17: Grouping results on10 more real images. The columns depict the same information asin
Fig. 16.
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5.3 Detecting Multiple Boundaries

In the previous sections, the proposed grouping method is developed and tested to detect the single op-

timal boundary that minimizes the grouping cost. In practice, most real images contain multiple structures

of interest and there is a strong motivation to extend the proposed grouping method to detect multiple

symmetric boundaries from the same image. In addition, due to noise, texture and other undesirable struc-

tures in real images, the optimal boundary that minimizes the grouping cost may not be the desired one.

A more reasonable way is to detect a small number of optimal boundaries with small grouping cost and

expect that the desired ones are among them.

We extend the grouping method to detect multiple optimal boundaries by repeating the proposed group-

ing method on the same image: after detecting the first optimal boundary, we remove all the trapezoids

along the detected boundary and then repeat the same grouping method on the remaining trapezoids to

detect the second optimal boundary. This process can be further repeated to detect multiple symmetric

boundaries. The implementation of this strategy is simple:each trapezoid corresponds to two edges, and

we only need to delete the edges present in the detected optimal cycle (and its mirror cycle) and re-run the

minimum-ratio alternate cycle algorithm on the remaining graph to detect the next optimal boundary.

One problem of this multiple-boundary detection is that thesame boundary may be detected in different

rounds when repeating the proposed grouping algorithm. An example is shown in Fig. 18: the first round

of grouping may produce a boundary consisting of the trapezoidsT1 andT2. After removingT1 andT2, the

second round of grouping may produce a boundary consisting of the trapezoidsT3 andT4. We can see that

the boundaries produced in these two rounds are in fact the same boundary. However, this mainly happens

for a boundary with multiple different symmetry axes, as shown in Figs. 18(b) and (c). In practice, this is

not a serious problem since we can easily check the detected multiple boundaries and for the boundaries

that are detected more than once, we only keep one of them and discard the redundant ones.

We conducted experiments on real images by detecting the first three optimal boundaries, as shown in

columns four, five, and six of Fig. 19. We can see that, the optimal boundaries detected in the second

or third rounds may be more desirable than the one detected inthe first round. In Fig. 20, we further

show several examples where the proposed grouping method may detect different symmetric boundaries

in different rounds. It also shows an example where the proposed grouping method may detect the same

symmetric boundary in different rounds, as shown in columns3, 4 and5 of Fig. 20(a).
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Figure 18: An illustration of detecting the same boundary when repeating the proposed grouping method.
(a) A set of detected segments. (b) A symmetric boundary consisting of two trapezoidsT1 andT2. (c) The
same symmetric boundary consisting of two different trapezoidsT3 andT4.

Note that we do not remove all the detected/gap-filling segments along the detected boundary and then

repeat the same grouping method on the remaining line segments to detect multiple boundaries. The reason

is that, removing one segment may correspond to removing many trapezoids, given that the same segment

may be used to construct different trapezoids, and this may introduce two problems: (a) for an image with

two neighboring structures that share a portion of the theirboundaries, the detection of one may prevent

the detection of the other, since the segments corresponding to the shared boundary may be removed after

the detection of the first boundary, and (b) if the boundariesdetected in the previous rounds are not the

desired ones but include some segments along the desired boundaries, the removal of such segments may

prevent the detection of the desired symmetric boundaries in the later rounds.

5.4 The Selection of λ and Other Thresholds

The proposed grouping cost function (1) has a free parameterλ, which needs to be selected by the user.

This parameter balances the boundary proximity and the boundary symmetry in grouping. A largerλ may

lead to more symmetric boundaries with poorer proximity anda smallerλ may lead to less symmetric

boundaries with better proximity. In most of our experiments, we found that, the same or similar grouping

results are obtained whenλ takes a value in a certain range. Figure 21 shows an example ofthe proposed

grouping with different values ofλ. For this image, whenλ takes a value in the range[1, 50], the detected

boundaries are very similar and well aligned with the barrelpresent in this image. In general, the selection

of λ is related to the image size, since the proximity term|BD| is related to image size and the symmetric

termρ(axis(B)) is not. As mentioned earlier, we scale the images to be no larger than250 × 250 while

maintaining their aspect ratio in all our experiments on real images. We empirically selectλ = 10 for all

25



(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Figure 19: Experiment results of detecting multiple optimal boundaries from10 real images. Column 1:
input real images; Column 2: Canny edge detection results; Column 3: detected segments after line fitting;
Column 4, 5 and 6: the first three optimal boundaries by repeating the proposed grouping method; Column
7: the optimal boundary obtained by RC; and Column 8: the optimal boundary obtained by EZ.
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(b)

(c)

(a)

Figure 20: An illustration of detecting different boundaries or the same boundary in different rounds when
repeating the proposed grouping method. From left to right,Column 1: input real images; Column 2:
Canny edge detection results; Column 3: detected segments after line fitting; Columns 4-8: the first five
optimal boundaries by repeating the proposed grouping method.

our experiments.

(a) (b) (c) (d) (e)

Figure 21: An illustration of the optimal boundaries detected by the proposed method using different
values ofλ. (a)λ = 1 or 5, (b) λ = 10 or 25, (c) λ = 50 or 75, (d) λ = 100, and (e)λ = 1000. The input
image and the detected segments are the same as the ones shownin Fig. 16(a).

At the beginning of Section 5, we also introduce several thresholds to reduce the constructed graph size.

Particularly, we chooseD1 = 30, D2 = 0.5 andD3 = 20 in our experiments. Using these thresholds, we

can avoid constructing the gap-filling quadrilaterals and boundary-axis endpoints that are unlikely to be

included in the optimal boundary with the minimum grouping cost. Figure 22 shows the grouping results

by varying the value of these thresholds. By choosing largervalues forD1, D2 andD3, we construct more

gap-filling quadrilaterals and consider more potential boundary-axis endpoints. However, the grouping

results largely keep unchanged when we choose them to be larger than the ones used in our experiments.

In fact, by turning off all three thresholds, i.e., settingD1 = +∞, D2 = 1.0 andD3 = +∞, we get the
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same grouping result as shown in the first column of Fig. 22. However, when turning off all of them, the

constructed graph has3, 384, 762 edges and the proposed grouping takes678.69 seconds, compared with

87, 292 edges and3.95 seconds when settingD1 = 30, D2 = 0.5 andD3 = 20.

(a)

(b)

(c)

Figure 22: An illustration of the optimal boundaries detected by the proposed method using different val-
ues ofD1, D2 andD3. (a) FixingD2 = 0.5, D3 = 20 and varyingD1 = 25, 30, 40, 50, 100, 150, 200, 250
or +∞ (left), D1 = 15 or 20 (middle) andD1 = 5 or 10 (right). (b) FixingD1 = 30, D2 = 0.5 and varying
D3 = 10, 20, 30, 40, 50, 100, 150 or +∞ (left), D3 = 1, 3 or 5 (middle) andD3 = 0 (right). (c) Fixing
D1 = 30, D3 = 20 and varyingD2 = 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 or 1.0 (left), D2 = 0.2 or 0.3 (middle) and
D2 = 0.1 (right). The input image and the detected segments are the same as the ones shown in Fig. 16(i).

5.5 Two Special Cases

In Section 3.2, we proved that the minimum-ratio alternate cycle contains no more than one auxil-

iary edge. However, it is possible that the minimum-ratio alternate cycle does not contain any auxiliary

edges. A minimum-ratio alternate cycle without an auxiliary edge may correspond to two special kinds

of grouping results that are produced occasionally in practice. The first kind of grouping result consists

of two disjoint closed boundaries that are symmetric to eachother over an axis in between, as shown in

Figs. 23(a-c). Specifically, from the detected segments shown in Fig. 23(a), we construct a set of trape-

zoids, three of which are shown in Fig. 23(b). One possible grouping result is to connect these three

trapezoids to form two disjoint closed boundaries as shown by black curves in Fig. 23(c), where the red

polygon with solid/dashed lines is the resulting symmetry axis (shown a little misaligned to visualize it

28



better). Along this symmetry axis, red solid lines represent the axis segments of the trapezoids and red

dashed lines represent the axis segments of the gap-filling quadrilaterals. We can see that the alternate

cycle corresponding to this grouping result contains no auxiliary edges, i.e., no boundary-axis endpoints

can be identified. However, such a grouping result is more likely to have a relatively smallerarea(B)

(the total area enclosed by the two resulting disjoint closed boundaries) and a relatively larger|BD| (be-

cause of the longer total boundary perimeters). Therefore,such a grouping usually has a larger grouping

cost and does not happen frequently in the proposed grouping. In Fig. 24, we show an example of such

a special grouping result on a real image. This is produced inthe 2nd round of repeating the proposed

grouping method on this image. In practice, however, we can achieve more such grouping results by not

constructing any auxiliary edges in the graphG = (V, E). The application of the same graph algorithm

will be forced to detect such symmetric boundary pairs. In practice, this may extend the proposed method

to detect the objects in pairs, such as eyes, eyeglasses, windows, and so on.

T1

T2

T3

4T

T1

(a) (b) (c)

T3

T2

(d) (e) (f)

Figure 23: An illustration of two special cases in the proposed grouping. Top row: the first special case of
detecting a symmetric pair of boundaries. Bottom row: the second special case of detecting two disjoint
boundaries that form a ring.

The second kind of special grouping result consists of two disjoint closed boundaries that form a ring, as

shown in the second row of Fig. 23. Based on the detected segments shown in Fig. 23(d), we can construct

trapezoids as shown in Fig. 23(e). One possible grouping result is to connect these four trapezoids to

form two disjoint closed boundaries as shown by black curvesin Fig. 23(f), where the red polygon with

solid/dashed lines is the resulting symmetry axis. In this case, the enclosed region areaarea(B) is the
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Figure 24: An example of the special grouping result on a realimage. Column 1: original image; Column
2: Canny edge detection result; Column 3: detected segmentsafter line fitting; Columns 4-5: the first and
second optimal boundaries obtained by repeating the proposed grouping method.

one bounded by these two disjoint closed boundaries. This special kind of grouping result also occurs

very rarely in practice since the enclosed region area is relatively small and the collinearity of the resulting

symmetry axis is usually poor, which results in a large grouping cost. In all our experiments, so far we did

not encounter any such special grouping results.

6 Extensions to Incorporate Other Boundary and Region Information

The proposed grouping method can be extended to incorporateother boundary or region information.

For example, boundary continuity, or smoothness, is widelyused in previous edge grouping methods

[9, 39, 37], and it can be incorporated in the proposed grouping by adding another term into the numerator

of the grouping cost (1) as

φ(B) =
|BD| + λ · ρ(axis(B)) + λ2 ·

∫
B

κ2(t)dt

area(B)
, (3)

whereκ(t) is the curvature along the boundaryB andλ2 is a weighting factor for this continuity term.

Since all the considered boundaries are polygons in this paper, cubic spline interpolations are used to

estimate the boundary curvature [34].

By making a small change on the first edge weight function, theproposed graph modeling and algorithm

can still be used to find the optimal boundary that minimizes new grouping cost [34]. However, we found

that, while the boundary continuity is important in previous edge grouping methods, it is not critical in the

proposed grouping for symmetric boundaries. The reasons are two fold: (a) with a normalization over the

enclosed region area in the grouping cost, the proposed method has a preference to produce boundaries

that enclose a large round area. This preference implicitlyreflects some level of continuity, and (b) as

many symmetric boundaries are not smooth everywhere, an explicit inclusion of a curvature term in the
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grouping cost (3) may affect the detection of such symmetricboundaries. Figure 25 shows an example

where the inclusion of the curvature-based continuity termprevents the detection of a symmetric boundary

with high-curvature points.

(a) (b) (c) (d)

Figure 25: An example of the grouping by using the modified grouping cost (3): (a) the optimal boundary
obtained by the proposed method based on the original grouping cost (1), (b-d) the optimal boundaries
obtained by the proposed method based on the modified grouping cost (3) withλ2 = 0.5, 1 and5, respec-
tively. The input image and the detected segments are the same as the ones shown in Fig. 17(h).

Other region information can also be incorporated by modifying the denominator of the grouping cost

(1). For example, we can extend the proposed method to detecta boundary that encloses a region with

good intensity homogeneity by modifying the grouping cost to

φ(B) =
|BD| + λ · ρ(axis(B))

∫∫
R(B)

(1 − |∇I(x, y)|)dxdy
, (4)

whereR(B) is the region enclosed by the boundaryB. Normalized to the range[0, 1], |∇I(x, y)| is the

magnitude of the intensity gradient at pixel(x, y). To find the optimal boundary that minimizes this

modified grouping cost, we only need to modify the definition of the second edge weight in the graph

construction from the signed enclosed area
∫∫

R(T )
dxdy (or

∫∫
R(G)

dxdy) to the signed value of
∫∫

R(T )
(1 −

|∇I(x, y)|)dxdy (or
∫∫

R(G)
(1 − |∇I(x, y)|)dxdy), whereR(T ) (or R(G)) is the region enclosed by the

trapezoidT (or the quadrilateralG) corresponding to the considered edge. The same graph modeling and

algorithm can then be used to find the optimal boundary. Figure 26(e) shows an example of the grouping

using the modified grouping cost (4). As a comparison, Figure26(f) show the grouping result on the same

image using the grouping cost (1). We can see that, with this extension, the proposed method detects a

boundary whose enclosed region has better intensity homogeneity.
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(a) (b) (c) (d) (e) (f)

Figure 26: An example of grouping by incorporating intensity homogeneity: (a) input real image, (b)
Canny edge detection result, (c) detected segments after line fitting, (d) the (normalized) magnitude of the
image intensity gradient, where darker pixels indicate larger gradient magnitudes, (e) the optimal boundary
obtained by the proposed grouping method based on the modified grouping cost (4), and (f) the optimal
boundary obtained by the proposed method based on the original grouping cost (1).

7 Complexity Analysis and Running Time

As discussed in Section 5, givenn detected segments, we may need to constructO(n2) trapezoids in

the worst case. If we construct quadrilaterals to fill the gaps between each pair of trapezoids, we may then

haveO(n4) quadrilaterals, which lead toO(n4) dashed edges andO(n4) auxiliary edges in the constructed

graph. The minimum-ratio alternate cycle algorithm has a time complexity ofO(|E|
7

4 ), where|E| is the

number of edges in the graph [37], in the worst case. The worst-case complexity of the proposed grouping

algorithm is thenO(n7). This is a very high complexity and an algorithm with such a complexity is not

usually useful in practice.

However, two reasons make the proposed grouping method still practically useful: (a)n, the number

of detected segments, is usually much smaller than the number of pixels in an image, and (b) we devel-

oped several special strategies to substantially reduce the number of edges in the constructed graph (see

Section 5). While it may be difficult to analytically derive atighter estimate of the algorithm complexity,

we implement the proposed grouping method using C++ and check its running time in processing a set of

real images. Table 1 shows the running time on the20 images shown in Figs. 16 and 17 and the size of

the graph constructed for them. Our experiments were run on Linux computers equipped with a3.4GHz

Xeon processor and 4GB RAM.

8 Conclusions

In this paper, we developed a new grouping method for detecting closed boundaries that show good

bilateral symmetry. Particularly, the proposed method candetect both boundaries and their symmetry
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Auxiliary Total Prop. Method RC
Size Lines Trapezoids Quads. Edges Edges CPU(sec) CPU(sec)

Fig. 16(a) 124×150 335 10400 251154 343620 605174 416.55 29.77
Fig. 16(b) 218×145 580 21620 523218 843700 1388538 1134.85 33.08
Fig. 16(c) 179×150 353 11124 256668 292612 560404 325.22 28.53
Fig. 16(d) 176×150 309 9282 229228 286524 525034 448.60 13.29
Fig. 16(e) 150×161 456 17256 588778 721200 1327234 2033.32 37.53
Fig. 16(f) 220×150 460 14270 245566 435244 695080 545.48 27.01
Fig. 16(g) 150×225 559 25838 699136 1307344 2032318 2468.40 68.11
Fig. 16(h) 150×150 290 7672 132560 135720 275952 73.85 16.85
Fig. 16(i) 200×133 161 3638 48010 35644 87292 3.95 14.04
Fig. 16(j) 231×150 512 25912 899050 1547040 2472002 2192.04 57.44
Fig. 17(a) 210×150 314 10210 200366 205440 416016 100.97 16.82
Fig. 17(b) 230×150 422 11574 223262 346944 581780 81.64 24.00
Fig. 17(c) 200×136 538 16964 321902 509040 847906 698.81 29.64
Fig. 17(d) 212×150 397 14102 362208 459840 836150 863.27 25.62
Fig. 17(e) 150×225 547 19718 340776 505012 865506 787.04 54.69
Fig. 17(f) 123×181 334 10274 166230 200344 376848 246.79 30.81
Fig. 17(g) 225×150 404 14324 416190 424120 854634 1740.18 53.79
Fig. 17(h) 166×150 143 3228 58618 62304 124150 6.47 12.45
Fig. 17(i) 231×150 412 12710 307544 448404 768658 525.75 20.04
Fig. 17(j) 184×125 390 13066 472338 619384 1104788 1433.91 18.56

Table 1: Running time and the constructed graph size for the20 images shown in Figs. 16 and 17.

axes. This is achieved by (a) defining a new grouping cost thatcombines the different boundary and region

information, (b) constructing a new type of trapezoidal grouping tokens by pairing line segments detected

from the input image, and (c) constructing a new graph model that can transform the proposed grouping

problem into a graph problem of detecting a cycle that minimizes a given ratio-form cost. We show that

this graph problem can be addressed by an available graph algorithm with polynomial-time complexity.

We implemented the proposed grouping method and tested its performance on a set of synthetic data

and real images. We also conducted experiments to compare its performance to the performance of two

previous edge-grouping methods. These experiments showedthat the proposed method performs more

favorably when the desired structure has a boundary with good bilateral symmetry.
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