Globally Optimal Grouping for Symmetric Closed Boundaries By
Combining Boundary and Region I nfor mation

Joachim S. Stahl, Song Wahg
Abstract

Many natural and man-made structures have a boundary thatssd certain level of bilateral symme-
try, a property that plays an important role in both human emaputer vision. In this paper, we present
a new grouping method for detecting closed boundaries wittmsetry. We first construct a new type of
grouping token in the form of symmetric trapezoids by parlime segments detected from the image.
A closed boundary can then be achieved by connecting sompezibals with a sequence of gap-filling
guadrilaterals. For such a closed boundary, we define a drgfieuping cost function in a ratio form: the
numerator reflects the boundary information of proximitglaaymmetry and the denominator reflects the
region information of the enclosed area. The introductibthe region-area information in the denomi-
nator is able to avoid a bias toward shorter boundaries. \&fe tevelop a new graph model to represent
the grouping tokens. In this new graph model, the groupirg} nction can be encoded by carefully
designed edge weights and the desired optimal boundargsgwnds to a special cycle with a minimum
ratio-form cost. We finally show that such a cycle can be fomnblynomial time using a previous graph
algorithm. We implement this symmetry-grouping method #a®l it on a set of synthetic data and real
images. The performance is compared to two previous grgumiethods that do not consider symmetry
in their grouping cost functions.

Keywords — Perceptual organization, edge grouping, boundary detedboundary symmetry, edge

detection, graph models.
1 Introduction

The boundaries of many structures of interest encounterabe real world show a certain level of
(bilateral) symmetry [4, 5]. For example, most objects (@it components) that are machine fabricated
have a revolved surface that is perfectly symmetric overaigit axis. Many natural objects, such as

leaves and animals, also have a boundary with a certaindéggimmetry, where the symmetry axes may
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not be perfectly straight, as shown in Fig. 1(c). In compuision, symmetry has been shown to be an
important property in both boundamyterpretation/matchingwvhere the goal is to analyze and match given
boundaries, angrouping where the goal is to extract salient structural bounddraes real images [10].

As shown in Fig. 1, the goal of this paper is to develop an &ffeenethod to address the latter problem of

grouping for symmetric boundaries, which, as pointed o(i10], is a particularly challenging problem.
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Figure 1: Four samples of structural boundaries that shamnsgtry. Structural boundaries are shown in
black while the symmetry axes are shown in red.

Several reasons make the grouping for symmetric boundaballenging problem. First, unlike many
other grouping cues, boundary symmetry is not a simple lowdsure: two symmetric fragments along
the resulting boundary may be located far away from eachrotAe a result, it is usually difficult to
encode symmetry into the simple locally-constructed gnogipokens, such as image pixels or boundary
fragments, which have been widely used in previous groupiethods. Second, while symmetry is an
important grouping cue, other cues, such as Gestalt lawsaxirpity and closure, are also crucial to
achieve a successful grouping [16]. This calls for a unifigouping cost (functionjhat can flexibly
integrate different grouping cues. Third, the groupingsb®uld be designed to avoid undesirable explicit
or implicit biases, such as a bias toward shorter boundanw&gh occurs in many previous grouping
methods [37]. Finally, it is usually a challenging problesrdievelop an optimization algorithm for finding
a grouping that minimizes the selected grouping cost.

In this paper, we developed a new grouping method for deig2D closed boundaries with symmetry.
Particularly, we propose a new grouping cost function thkés a ratio form: the numerator reflects the
boundary information of proximity and symmetry and the deiator reflects the region information of
the enclosed area. The use of the enclosed region area niekesstilting grouping biased to detecting
longer and rounder boundaries and therefore, promotesothesiness to image noise and texture. This
grouping cost function can be expanded to include other thaynnformation, such as boundary continu-

ity (smoothness), and region information, such as regitensity homogeneity. To quantify and encode
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this grouping cost, we construct a new type of grouping taketie form of trapezoids by pairing line
segments detected from the image. Based on these trapett@dsroblem of grouping for symmetric
boundaries can be formulated as identifying and conneetsgguence of trapezoids into a closed bound-
ary. Finally, we construct a new graph model where candidatmdaries are represented as special cycles
in this graph, and apply a known graph algorithm to find theakcycle that corresponds to the boundary
with the minimum grouping cost. Note that the work in this gajs only concerned with the case where
the boundary of interest shows bilateral symmetry on2beémage plane. We do not consider the case
where the surface of an object shows symmetry over an axd®iapace but the resultir@D boundary
does not show bilateral symmetry on 222 image plane due to the perspective-projection transfoama
asin[36, 18, 22, 7].

The important role and use of symmetry has been studied im lnatnan vision and computer vision
[35, 41, 30, 27, 26, 11]. Particularly, prior research hasghthat symmetry is non-accidental [21, 40] and
therefore, can be used as a grouping cue to distinguismsatieictures from noisy background. Symme-
try analysis of a given object boundary is usually condubtgderiving itssymmetry axisSymmetry-axis
information has been incorporated to facilitate boundatgrpretation, matching, and recognition in many
prior research [5, 6, 19, 42]. Note that, different from thielgems of boundary interpretation, matching,
and recognition, the work presented in this paper aims teesthle grouping problem, where the structural
boundaries are not available and our goal is to extract tmem feal images.

The related work includes the long-line researchedige grouping2, 3, 8, 9, 12, 14, 15, 23, 28, 29,
33, 37, 38, 39]. These methods aim to extract perceptudigngdoundaries from a set of line segments,
which are usually detected from an image by edge detectat$iraHfitting operators. In previous edge-
grouping methods, the grouping cost usually combines watiwkn Gestalt laws, such as (elpsure
which requires the resulting boundary to be always clog®dyroximity, which requires the gap length to
be short in connecting the detected line segments into adlbsundary, (c);ontinuity, which requires the
resulting boundary to be as smooth as possible, ancbfa)exity which requires the resulting boundary to
be convex. However, these edge-grouping methods do noidesrike boundary symmetry in grouping.

Mohan and Nevatia [24] developed a grouping method, whevad@ry symmetry is considered along
with closure and proximity. It applies both edge detectiod aorner detection to extract a set of line
segments and corner points as the grouping tokens. Theiggapst is defined by a collinearity measure

that actually reflects the proximity and continuity of theubdary. Symmetry is applied as a cue to couple
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the extracted curves by producing a setibbons These ribbons are then grouped into structures by some
heuristic algorithms. This method does not introduce a @ahi§rouping cost function and the developed
grouping algorithm is not globally optimal. The locality tfe grouping algorithm may lead to many
small ribbons and may not handle the boundary occlusionwetlyy Another work that is closely related
to the proposed work is the grouping method developed by Geiger, and Yuille [20], which identifies
the local symmetry-axis segments and then applies a shqaésalgorithm to connect some of them into
a complete symmetry axis. The grouping cost function is eefias the sum of a predefined local cost
along the symmetry axis. By manually selecting a startinggfgoints that are symmetric to each other,
this method produces an open boundary. Since this methadraeonsider region information or other
normalization in the cost function, it presents a bias tasdrorter boundaries, which may have difficulty
in detecting the symmetry axis shown in Fig. 1(d).

In recent years, many methods have also been developedttmtidg structures with symmetric ap-
pearance [25, 13, 31, 32]. For example, Prasad and Yegnama§26] develop a voting-based method
to detect axes of bilateral symmetry directly from imagesdobhon edge-gradient information. Note that
these methods are quite different from the grouping methoggsed in this paper from the following three
perspectives: (a) most of these methods assume the appeasanmetry while the proposed method only
assumes the boundary-shape symmetry, (b) these methally@ssume the symmetry axes to be straight
while the proposed method quantifies symmetry as a contswalue, and (c) these methods usually de-
tect only the symmetry axes, but not the final structural lolauies, while the proposed method detects
both symmetry axes and resulting structural boundaries.

The method proposed in this paper is inherited from the pres/ratio-contour method [37], an edge-
grouping method for detecting smooth closed boundariegicBErly, both of them use the same graph
algorithm: the minimum-ratio alternate cycle algorithrar golving the final graph problems. However,
both the research goals, the problem formulations, and ridgghgmodelings introduced in this paper are
completely different from the ones introduced in [37]. Thesearch goal in this paper is to develop
a grouping method to detect boundaries with good bilatgrainsetry, which is not considered in the
ratio-contour method. To achieve this goal, in this papelintduce different grouping tokens, define
a different grouping cost with a normalization over the eseld region area, construct a different graph
model with “mirror” edges and auxiliary edges, and definéedént graph edge weight functions to encode

the region-area information. In Section 5, we also compaeegoerformance of the proposed method and
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the ratio-contour method on both synthetic data and reaj@na

The remainder of this paper is organized as follows. In $a@i we formulate the problem of grouping
with symmetry by introducing the general edge-groupinghdology, the new grouping tokens in the
form of symmetric trapezoids, and the new unified groupingt éanction. In Section 3, we introduce the
graph modeling of the formulated problem and apply a gragbrihm to solve this grouping problem
in a globally optimal fashion. In Section 4, we introduce arenaccurate way to measure the gap length
along the boundary. In Section 5, we discuss implementabails and report experiment results on both
synthetic and real images. In Section 6, we discuss the ldessxtensions of the proposed method to
incorporate other boundary or region information. In Sacty, we discuss the complexity and running

time of the proposed grouping method. Section 8 presentsahelusions.
2 Problem Formulation

The proposed grouping method has its rootedge groupingwhere grouping tokens are a set of
line segments (or more generally, curve segments) and ttpaibis one or several perceptually-salient
boundaries formed by connecting a subset of the line segmetbdwever, to encode and quantify the
boundary symmetry, we further pair the line segments to ttoasa new type of grouping token in the
form of symmetric trapezoids. In this section, we start thabpem formulation by introducing the typical
process of edge grouping. We then elaborate on the trapé&goédtoken construction and the grouping-

cost definition.
2.1 Edge Grouping

In edge grouping, a set of line segments is first constructed the input image, as shown in Fig. 2(a),
by edge detection and line fitting operations, as shown inZXig). A new set of line segments, as shown
by dashed lines in Fig. 2(c), is then constructed to fill thelgetween each pair of initial line segments. For
convenience, we call the initial line segments resultirgrfredge detection thdetected (line) segments
and the newly constructed ones tap-filling (line) segmentsA (closed) boundaryf interest is then a
simple cycle that traverses a set of detected and gap-féaggnentslternately as shown in Fig. 2(d).
Note that we do not show all the constructed gap-filling segsa Fig. 2(c) to prevent the figure from
being too crowded. In the ideal case, withdetected segments, we ha¥e segment endpoints, and

therefore, we may need to construg®n — 2) gap-filling segments if we construct a gap-filling segment
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between any possible two segment endpoints except for themapoints of the same detected segment.
Finally, we define a grouping cost function for the boundaaed develop an algorithm to find from all
boundaries the one with the minimum grouping cost, also as/shn Fig. 2(d). As mentioned above,
various grouping cues, such as proximity, closure, cotitiijnand convexity have been incorporated into
edge grouping trying to extract the perceptually salienictiral boundaries from a noisy background
[12, 23, 28, 29, 33, 37, 38]. In prior edge-grouping methaks,grouping cost is usually defined to be a
function of some local weights associated to each individatected/gap-filling segment. However, it is
difficult to incorporate symmetry into these edge-groupimgthods because of the difficulty of encoding
symmetry into each individual line segment. In the nextisectwe construct new trapezoid-type tokens

from these line segments to encode boundary symmetry.
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Figure 2: An illustration of the process of edge grouping.

2.2 Symmetric Trapezoids as Grouping Tokens

While it is difficult to encode symmetry into each individdale segment, symmetry can be encoded
to a pair of segments. For each pair of line segméhts, and P; P,, as shown in Fig. 3, we can identify

their symmetric portions by following three steps:

1. Find the angle-bisector linedbetweenP; P, and P; Py, as shown in Fig. 3(a). P, P,// P3Py, thenl
is the line equidistant to botR, P, and P; P;.

2. Find the projections of both segmeiits”, and P P, to [ and denote then® P, and P; P} respec-
tively. The overlap of segments ) and P; P;, as shown by P; in Fig. 3(b), is denoted as the

axis segmerttetweenP, P, and P; P,. We refer toP] and P, as theaxis-segment endpoints

3. Map this axis segment back to segmeht#, and P; P,. This results in §symmetric) trapezoid

PP, PPy, as shown in Fig. 3(c).



In this paper, we construct such symmetric trapezoids (axils segments) by pairing every two de-
tected segments, as shown in Figs. 3(a-c), and pairing egefiling segment with each detected segment,
as shown in Figs. 3(d-e). Note that, for some pairs of segsnémeir projections té have no overlap. In
this case, no symmetric trapezoid will be constructed fenthThese trapezoids are used as new grouping
tokens in the proposed method. We construct a trapezoidiopga gap-filling segment with a detected
segment to handle the case shown in Fig. 4, where the degmadatric boundary (in black) and its sym-
metric axis (in red) are shown in Fig. 4(a). However, the syetrin portion of many detected segments,
such asP, P, P3P, and P, P, are not detected and therefore, correspond to gap-fillkggnents. In this
case, we can represent the desired symmetric boundary pplgibng gap-filling segments with detected
segments, as shown in Fig. 4(b). For convenience, in theingl@aof the paper we usually display trape-
zoids by assuming that they are constructed from two detesggments and therefore, use solid lines for
both non-parallel opposite sides, as illustrated in Fig).3However, we will consider both cases shown

in Figs. 3(c) and (e) in developing the proposed groupingmzbt
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Figure 3: An illustration of constructing a symmetric trapel from a pair of segments: (a-c) pairing two
detected segments, and (d-e) pairing a gap-filling segigdt with a detected segmeit P;.
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Figure 4: An illustration of the case that needs the consttn®f trapezoids by pairing gap-filling seg-
ments with detected ones. (a) The desired symmetric boymvd#n its detected segments (solid black
lines), gap-filling segments (dashed black lines), and sgtrimaxis (red line), (b) trapezoids constructed
by pairing gap-filling segments with detected ones.




2.3 Trapezoid Grouping and Grouping Cost

Analogous to edge grouping, we formulate the problem of sgtmyrgrouping as a problem of identify-
ing a subset of trapezoids and connecting them sequernitiedya closed boundary. The gap between two
sequential trapezoids in the connection is filled igap-filling) quadrilateral Two examples are shown
in Figs. 5(a) and (b), where two gap-filling quadrilater@|s= { P, P; P1o P11} andG, = { PyPs Py Py} are
constructed to connect three trapezolds= { P, Po P11 P12}, To = { P3P, Py Pyo}, and7; = { PsPs P Py}
into a closed polygonal bounda#; P . . . Pi;. The axis segments &, 75, and7;, shown as red solid
lines, are also connected by the axis segments of the gatdlalsy, andg,, shown as red dashed lines, to
generate the polylin®,Q)- . . . Qg, Which is the(boundary) axif the closed boundari, P, . . . P;5. We
call Q; and@s theboundary-axis endpoint®Note that the gap-filling quadrilaterals are simply consted
by connecting a parallel side of one trapezoid and a parsilliel of another trapezoid. They may not be
symmetric and its axis segment is constructed simply by ectimg the endpoints of the axis segments
of the two neighboring symmetric trapezoids. As in edge giog, in the ideal case, we may construct
guadrilaterals between each pair of trapezoids. Sincexisesagment of a trapezoid has two endpoints,
there are four different gap-filling quadrilaterals thahdze constructed between a pair of trapezoids. As
discussed later, in practice we do not need to construcbaliple gap-filling quadrilaterals because many

of them are not likely to be included in the desired optimaltdary.
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Figure 5: Two examples of grouping detected trapezoidsargimsed boundary.

Based on the above formulation, we can measure the symnfetigl@sed boundary using the collinear-
ity (straightness) of its boundary axis, as shown by the @dlipes in Fig. 5. Specifically, we define the
grouping cost function for a closed bounddhas

_ |Bp|+ A - p(axis(B))
area(B) ’

¢(B) (1)
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where|Bp| is the total gap length along the bound#tyNote that not only quadrilaterals but also trape-
zoids may contribute t@3,|, because (a) trapezoids may be constructed by pairing &ilgag-segment
with a detected segment, as shown in Figs. 3(d-e), and (bjadlgdeside of a trapezoid may contribute
to the boundary gap-lengtlB,| when this side contains a boundary-axis endpoint, e.gpanalel sides
P, P15 and Ps P; need to be included in calculatingp| in Fig. 5. In Section 4, we will further discuss
a more accurate way to measUii®,| in practice. The term of3p| reflects the preference of a boundary
with good proximity. The term of(axis(B)) is a measure related to the collinearity®$ axis (e.g., the
red polylines in Fig. 5). This term reflects the preferenca bbundary with good symmetry and we will
elaborate on this term in Section 3. The termaoéa(5) is the region area enclosed by the boundary
A normalization over this term sets a preference to prodaggel rounder structures, which improves the
robustness against image noise by avoiding a bias towantestmundaries. Note that, in practice such
a preference may not prevent the detection of small salieattsires if they show good proximity and
symmetry, as we will see in many experiments reported ini@@& A > 0 is a preset factor that balances
the weights of the proximity and symmetry terms. As discddater, we simply set a consisteht= 10

in all the experiments reported in this paper.
3 Graph Modeling and Algorithm

In this section we construct a new graph model to describaltbge formulated problem. In this graph
model, trapezoids and gap-filling quadrilaterals are regméed by graph edges. By encoding the grouping
cost (1) into the graph edge weights, we then reduce the grgupoblem to a problem of finding an
optimal cycle with minimum ratio cost in this new graph. Wesalig apply a known graph algorithm to
address this cycle-finding problem. Specifically, the graphstruction consists of two sequential steps:
(a) constructing solid and dashed edges to represent tjseand gap-filling quadrilaterals, respectively,
and (b) further constructing auxiliary edges between thiBoas corresponding to potential axis endpoints.

We elaborate on these two steps in the following.
3.1 Graph Construction I: Solid/Dashed Edges

We construct an undirected graph= (V, E) with vertex sef” and edge sef to model the trapezoids
and gap-filling quadrilaterals. To encode the enclosedregreaarea(3), we construct a pair a$olid

edgese; ander for each trapezoid’, and a pair oflashededgese/, ande, for each quadrilateral, as
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shown in Fig. 6. We call the pair of the edges constructedfersame trapezoid or quadrilateral to be the
mirror edges of each other. For convenience, we can treat eachf paiiror edges to be an abstraction of
the axis segment of the corresponding trapezoid or quaeiél For examples;- ande;. model the axis
segment); Q- in Fig. 6(a). Accordingly, we construct a pair of vertices &ach axis-segment endpoint
(or each parallel side of each trapezoid). For exampleexepairugl) anduf) are constructed for axis-

segment endpoir®; in Fig. 6(a).
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Figure 6: An illustration of the solid/dashed edges. (a) &dtrapezoidZ, we construct a pair of solid
edgese’ ande;. Each axis-segment endpoif)t is then modeled by two vertices'” andw!*. (b) For
a gap-filling quadrilatera{7, we proceed similarly as in (a), except that the two congédiedges are
dashed.

In the proposed grouping, two neighboring trapezoids armeoted by a quadrilateral as shown in
Fig. 5. Therefore, in constructing the graph= (V, E), we connect two pairs of solid edges by a pair
of dashed edges, since each trapezoid and quadrilateegdrissented by two mirror edges ande—, We
apply the following two steps to determine the edge conoadti constructing the grapy = (V, E).
First, we consider only the quadrilateral that leads to a-inbersected boundary. Particularly, when
connecting two trapezoids by a quadrilateral, the two stdéise selected quadrilateral that are not shared
with the two trapezoids must not intersect with each othesr éxample, in Fig. 7, we construct the
guadrilateral in the form oP, P; Ps P; with two sidesP, P; and P P-, instead of the quadrilater&l Py P3 P,
with two sidesP, P; and P; PP;, to connect/; and7;.

Second, we distinguish two mirror edges ande~ by associating an implicit direction to the corre-
sponding trapezoid or quadrilateral. Particularly, weestjec™ to imply that its corresponding trapezoid
or quadrilateral has a counterclockwise direction and edgt imply that its corresponding trapezoid
or quadrilateral has a clockwise direction. Then the edgeeotion will be uniquely determined by

requiring the resulting boundary to be of a consistent dioe¢ either clockwise or counterclockwise.
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Figure 7: An illustration of determining the gap-filling qirdateral between two trapezoidg =
{P1P2P7P8} andIZ—Q = {P3P4P5P6}.

Figures 8(a-d) illustrate the four possible cases. Wherlitekwise7; is connected to the clockwisg

by a gap-filling quadrilateral (this implies that the counteckwise7; is connected to the counterclock-
wise 7;), we connect their corresponding edges with same signd)@grsin Figs. 8(a) and (c). When
the clockwiseZ; is connected to the counterclockwigg by a gap-filling quadrilateral (this implies that
the counterclockwisé; is connected to the clockwisg), we connect their corresponding edges with
opposite signs, as shown in Figs. 8(b) and (d). The sign oédge corresponding to the quadrilateral can
also be uniquely determined by following the directionsia# trapezoids. For example, in Fig. 8(a), the
guadrilateral between the clockwigeand the clockwisé; has a clockwise direction. This indicates that

the dashed edge betweeh andej, is e/ and the dashed edge betwegnandey, is e.
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Figure 8: An illustration of the edge connection for modglthe construction of a quadrilateral between
two trapezoids.
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There is a special case where the constructed gap-fillindrdateral contains a self intersection, as
shown by the quadrilateradh, P; Ps P; in Fig. 9. Note that this self intersection is caused by the $wdes
P3Ps; and P, P; from the two neighboring trapezoids and will not be includedhe resulting boundary.
Therefore, different from the quadrilateral self-intessen mentioned before, this kind of self-intersected
guadrilateral is allowed as it does not lead to self-inteteset boundaries. In this case, the quadrilateral is
divided into two triangles?;, and R, with opposite directions, i.e., iR, is counterclockwise, theR, is
clockwise, also as shown in Fig. 9. We set this quadrilatedatection to be the direction of the triangle

with a larger area and set the area of this quadrilateridws (R, ) — area(Ry)|.

Figure 9: An illustration of an allowed self-intersectechgulateral.

For each edge in this graph, we define two weight functiong(e) andws(e). If e is solid, we define
wi (e) = 0 if the corresponding trapezoid was constructed from twectetd segments, e.g., the trapezoid
shown in Fig. 4(c), otherwise we sef;(¢) to be the length of the gap-filling segment included in the
trapezoid construction, e.d P |, the Euclidean distance betweBnand P, in Fig. 4(e). Ife is dashed,

e.g., corresponding to axis segmént)s in Fig. 7, we define
wi(e) = |PPs|p + | PrPs[p + A ple)

where| P, Ps|p + | P:Ps|p is the total gap length (along the boundary) that resultsiftbe quadrilateral
corresponding te. In this paper, we use an improved gap-length meagure |, instead of the Euclidean
distance P, P;| to handle the case where a gap-filling quadrilateral maytigiyt) coincide with detected
segments. We will discuss this improved gap-length measugection 4.p(e) = |sin(£0Q1Q2Q4)| +

| sin(Z£Q1Q3Q4)| measures the collinearity (straightness) of the polylin€.QsQ4, giving a lower cost
to polylines with good collinearity, as shown in Fig. 7. Wencsee that the first edge weigh () is

always nonnegative and for a pair of mirror edge€sande~, we havew;(e*) = w(e”). The second

edge weightu,(e), is simply the signed area of the trapezoid or quadrilateoatesponding te, i.e.,
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wy(e™) = —wq(e”) > 0. We introduce the negative area to handle the nonconvexdzuigs, where the
inclusion of an additional trapezoid or quadrilateral maytribute negatively to the resulting enclosed

areaarea(B), as shown by the trapezoid P, P, P, in Fig. 5(b).
3.2 Graph Construction I1: Auxiliary Edges

In order to include the boundary information around the tvemfdary-axis endpoints, e.g., the gap
length alongP; P- and P, P;5 in Fig. 5, we further construct a set of new dashed edges, danndliary
edges, between the vertices corresponding to the two boyHadés endpoints. Leugl) andu§2) be the
vertex pair corresponding to an boundary-axis endpoiut, €; in Fig. 5(a) (or (b)), and:\" andu”
be the vertex pair corresponding to the other boundary-exdpoint, e.g.()s in Fig. 5(a) (or (b)). We
construct foudashed edges(ugi), ugj)), i,j = 1,2 asauxiliary edges, as shown by blue curves in Fig. 10(a)
(or (b)). For these four auxiliary edges, we set their secedge weights to be zero and the first edge
weights to be the total gap length around these two bounabas/endpoints. For example, in Fig. 5(a) (or
(b)), the first weightu, (e) of the four auxiliary edges that reflects the connection ketv®); and () is
defined by

wy(e) = |PLPiao|p + | PsPr|p,

where| P, P;|p is the gap length between and P;, to be detailed in Section 4. Since the optimal closed
boundary and its boundary-axis endpoints are unknown belfi@r grouping, we can treat all axis-segment
endpoints as potential boundary-axis endpoints and asisauxiliary edges between all of them. In
practice, however, we do not need to construct auxiliaryesdgetween all axis-segment endpoints and we
will discuss this in more detail in Section 5.

In the graphZ = (V, E'), each boundari is represented by two “mirror” cyclgs™ andC—, e.g., if an
edge is included i@, its mirror edge must be included @, and vice versa. In addition, each of them
contains an auxiliary edge, as shown in Fig. 10. These twies\taverse a sequence of solid and dashed
edges alternately and therefore, we call thalternatecycles. It is easy to verify that (a) the total first
edge weights along botfi” andC~ are always equal to the numerator of the e¢odt) in Eq. (1), and (b)
the total second edge weights alafigandC~ have the same absolute value equaditea(3), but with

opposite signs. This way, we have

_ ZeEC7L wy (6) . _Zee(}* w1 (6)
¢(B) - z:eGC+ w2<€) B EBGC* w2(€)7
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Figure 10: An illustration of the cycles corresponding te tftoundaries shown in Figs. 5(a) and (b), re-
spectively. (a) For the boundary in Fig. 5(a), the corresfiom cycleC+ traversesu!” i = 1,2,...,6
sequentially andC— traverseSuf?),i = 1,2,...,6 sequentially. (b) For the boundary shown in
Fig. 5(b), the corresponding cydlt traverses:\”, u$?, u{" u(", u{"” u{" sequentially and~ traverses
WV uf) WP u? P WP sequentially. Vertices!” andu!® correspond to the axis-segment endpoint
Qiyi=1,2,...,6inFig. 5. Auxiliary edges are shown by blue dashed curves.

and locating the optimal boundaB/that minimizes the cost (1) is reduced to finding an alterngtée C

in graphG = (V, E) such that this cycl€ minimizes the cycle ratio

CWA(C) D wale)
OG0 T Seemle) (2)

The correctness of this reduction comes from the followmgfacts. First, any alternate cyafenas two

mirror versionsC™ andC~ with opposite signs on the total second weights. Withowg tdfgenerality, we
assumél,(C*T) = —W,(C~) > 0. Clearly, the cycle that minimize the cost (2) must be ofa version

and has a negativié,(C). The mirror of this optimal cycl€ is then of aC* version that maximize jgg

and therefore, minimize§*&} subject tol¥(C) > 0. The ratioy:&3 subject tol¥,(C) > 0 is exactly

the same ag(BB), wherearea(B) is always positive. Therefore, we hawél3) = —ﬁ and the alternate

cycleC with the minimum cycle ratig(C) corresponds to the boundaBywith the minimum cos(5).

Second, we prove by contradiction that the resulting optaiternate cycle does not contain more
than one auxiliary edge. Otherwise, the resulting boundamyould contain multiple separate closed
boundaries with unaligned axes. Assume the resulting @yaentainsk auxiliary edges withk > 1.
This meang’ containsk alternate path®;, P, ..., P, after these: auxiliary edges are removed. From
thesek paths, we can construgtnew alternate cycle§;, C,, ..., C; by including the auxiliary edges

between the two endpoints of each path. Given the cycle datiimed in Eq. (2), it is not difficult to see
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thatp(C) = %jggg - %ii%g; This shows that at least one cycle, €3y, out ofC;,i = 1,2, ..., k, has

a smaller cycle ratio tha@, i.e., p(C,,) = 22(lm)

W1(Cm)

< ¢(C). This contradicts the assumption tltats a
cycle with minimum cycle ratio.

Finally, we use an available graph algorithm to find an al&grcycleC that minimizes the cycle ratio
(2) [37, 1]. This minimum-ratio alternate cycle algorithmds the desired optimal cycle in polynomial

time.
4 An Improved Gap-Length Measure | P, P;|p

The main goal of introducing® P; | » is to handle the case where a gap-filling quadrilateral mayoode
with detected segments. As shown in both Figs. 11(a) anda(ggp-filling quadrilateralP, P; Ps P; is
constructed to connect two trapezoifisand7;. The contribution of this quadrilateral to the tefis),|,
if it is included in the boundarys, is not| P, P;| + | Ps P;|, as a portion of?, P; is in fact coincident with
detected segments, e.@, P, in Fig. 11(a) and?, P, in Fig. 11(b). To get an accurate estimatgBf|,

we locate such coincident portions and deduct them fromdleutation of the gap length.

Py Ps P,

b 7, \ b P3/
3 P, 9.
Ve / T, [
Py \
\ .
// \ Py Pio
! . Ps
\ .
\ ,//
T, L

@ (b)

(d)

Figure 11: An illustration of measuring the gap length bylesing the projections from coincident de-
tected segments: (a) & (b) two examples where the Bid® of the quadrilateralP, P; P P; is coincident
with a detected segment, and (c) & (d) calculatjiyP;|, for the two examples shown in (a) and (b)
respectively.

Specifically, in calculating the gap length between two gisay, and P; in Figs. 11(c) and (d),
we construct a rectangular box, shown in blue in Figs. 11(g) @), around the segmet P;. All
the detected segments, e.§,Po in Fig. 11(d), or the portions of the detected segments, &g in
Fig. 11(c), that are located inside of this rectangular biexpaojected onto the segmeaPiP;. We then only
count the portions along, P; that do not overlap with any such detected-segment projestio calculate

the gap-length betweeh, and P;. For example, the gap length betweBnP; will be | P, Ps|p = | Py Py
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for the case shown in Fig. 11(c) anhkh Ps|p = | P P|,| + | PsPg| for the case shown in Fig. 11(d). Using a
small rectangular box for searching coincident detectgdsats improves the robustness by not requiring
exact coincidence between the considered gap and thee@ssgments, as shown in Fig. 11(d). The only
free parameter in this processing is the width of the reattargpox. In all our experiments, we set this

width to be2 pixels.
5 Experiments

We implemented the proposed method and tested its perf@em@msynthetic data and on a set of real
images. For the synthetic data, we synthesize detected segmeatslyiand all the detected segments
are located within a square region of size x 96. All the real images are scaled to be no larger than
250 x 250 while maintaining their aspect ratio. For all our experingawe set\ = 10 in the cost function
(2). We will discuss the selection of this parameter late®@ttion 5.4.

In constructing the trapezoids, we pair (a) every two desegments, and (b) every gap-filling seg-
ment with every detected segment, when they have overlagmogetctions on their angle-bisector line, as
shown in Fig. 3. For the gap-filling segments, we consider moenthank” shortest gap-filling segments
incident from each detected-segment endpoints, wherg a preset constant number and we et 5
in our experiments. This way, we consider oflyn) gap-filling segments out of all possikign?) ones,
with n being the number of detected segments. This indicates thahay construcO(n?) trapezoids.

If we construct quadrilaterals to fill the gaps between eaaih @f trapezoids, we may then haggn?)
quadrilaterals, which lead 0(n*) dashed edges in the constructed graph. To reduce the nufdzested
edges, we develop three practical strategies to avoid wontistg the quadrilaterals that are unlikely to be
included in the desired optimal boundary.

The first strategy is to consider the construction of only quadrilateral between each pair of trape-
zoids. As discussed above, we can construct four differapifdling quadrilaterals to connect two trape-
zoids because the axis segment of a trapezoid has two enslpBor example, to connect the two trape-
zoids shown in Fig. 12(a), the axis-segment of the conscugtiadrilateral can b@,Qs, Q1Q4, Q2Qs,
or (4. Usually, only one of these four quadrilaterals is likelylte included in the desired optimal
boundary. Based on the proximity preference, we only cangtie quadrilateral that has the shortest axis

segment out of the four choices. For the example shown inl2Z), we only consider one quadrilateral

2The software and images used in this section are availahtecat: //www.cse.sc.edu/ ~ songwang/document /SRC.tgz.
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Figure 12: An illustration of the three strategies implemeeito reduce the number of quadrilaterals.

with the axis segmen®, (s to connect the trapezoid§ and7. Furthermore, if the considered quadri-

lateral introduces a total gap length that is larger tharvargthreshold value, we simply do not construct
it. In our experiments we set this threshold valugip = 30 pixels. Each quadrilateral introduces two

gaps described by its two sides across the two neighborapgroids, e.g., the gap length introduced by
the quadrilateraP, P; Ps P; in Figs. 11(a) (or (b)) i$P.Ps|p + |Ps Pr|p-

Our second strategy is to avoid constructing a quadrilatereonnect two trapezoids that share a same
portion of a detected segment. For example, the two trageZgiand 7, shown in Fig. 12(b) share a
same portion of the detected segménP,. Therefore, no quadrilateral will be constructed betwesmt
since the resulting closed boundary should not traverseofaop of) a line segment more than once.
However, for two trapezoid$; and7; shown in Fig. 12(b), although both of them are constructethfr
the detected segmeft P,, we still consider constructing a quadrilateral to conrtbeim since they use
different portions ofP, P.

Our third strategy is to avoid constructing quadrilatethlst lead to an axis with low collinearity, be-
cause we are only interested in detecting symmetric boigsleBpecifically, for the two trapezoids shown
in Fig. 12(c), we require thakin(£Q1Q2Q4)| and| sin(£Q1Q3Q4)| are both less than a certain threshold
for constructing a quadrilateral between them. These twogeare exactly the ones used in the grouping
cost (1) for measuring the local boundary symmetry. In ogeginents we set this thresholdiy = 0.5.

Applying these three strategies can substantially redneentimber of dashed edges in the constructed
graph.

Similarly, the number of the auxiliary edges would ©én?) if we consider connecting every possi-
ble pair of the axis-segment endpoints. To reduce the numibauxiliary edges, we only consider the

axis-segment endpoints that are likely to be boundary-amgpoints for constructing auxiliary edges.
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Specifically, we only consider the axis-segment endponatsrad which the gap length is less than a given
threshold. For example, in Fig. 5(a), we may consiQeras a potential boundary-axis endpoint for con-
structing auxiliary edges because the gap length betwemd P, is small. But we may not consider
@5 because the gap length betwdérand P is larger than the given threshold. In our experiments we set
this threshold taD; = 20. In addition, if both endpoints of a trapezoid axis segmatis§y this condition
to be potential boundary-axis endpoints, we only considerne with the smaller gap length. Note that
the gap length is measured by the method introduced in $e4tio

Note that all these strategies are developed for speeditigeuadgorithm in practice. Without these three
strategies, the number of constructed edges in the grapii & golynomial function ofn. Therefore, the
complexity of the proposed grouping algorithm is still pedymial in terms ofn. The robustness of the

method to these thresholds is examined in section 5.4.
5.1 Experimentson Synthetic Data

To evaluate the proposed method quantitatively, we coctstrset of synthetic data with a known ground
truth of the desired symmetric boundary. Each synthetia dample is constructed in the form of a set of
detected segments, which come from two sources: a pair ¢fielya boundaries (one desired symmetric
boundary and one non-symmetric boundary) and random nbigare 13 shows the boundary pairs that
are used for constructing synthetic data. The desired syrob®undaries are shown in bold. We can see
that the pair of boundaries in Fig.13 may or may not overlaghezher since both cases may happen in
practice. Particularly, Fig.13(e) simulate the case wlassgmmetric structure generates a non-symmetric
shadow. In some cases, such as the ones shown in Fig.1¥djesired symmetric boundary encloses
a smaller area than the other non-symmetric boundary doesinWntionally design such cases to see
whether the consideration of the boundary symmetry can tetpct the desired symmetric boundary,
even if the grouping cost prefers a boundary with a largelosad region area.

We sample the boundaries shown in Fig. 13 to construct disflEtected segments with gaps. Specif-
ically, we uniformly subdivide each boundary into a set ofelisegments of equal length% of the
perimeter) and then randomly remove a certain number oktliee segments. The remaining ones are
then included as detected segments in constructing a simttega sample. We further add randomly
generated detected segments to simulate the image noigerashplicity, we call thenrmoise segments

For these noise segments, their directions conform to aumiflistribution over all possible directions,
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Figure 13: Five boundary pairs used for constructing sytittdata. Desired symmetric boundaries are
shown in bold.

their locations conform to a uniform distribution within gusare region of siz86 x 96, and their lengths

are uniformly distributed within the range @f, 15] pixels. Figure 14(a) shows an example of addifig

noise segments to the boundary pair shown in Fig. 13(a).r&igyd(b) shows one synthetic data sample,
which consists of the detected segments sampled from thedlaoy pair shown in Fig. 13(a) and the noise
segments shown in Fig. 14(a). Particularly, we remd¥# of the subdivided line segments along the
boundary pair shown in Fig. 13(a) to construct the synthdgita sample in Fig. 14(b). Based on such a
synthetic data sample, we can directly apply the proposedigng method to detect an optimal boundary,

as shown in Fig. 14(c).
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Figure 14: An illustration of a synthetic data sample. (a)Aibdary pair and random noise segments. (b)
Synthesized detected segments by combining the ones fremailndary pairs and the noise segments.
(c) Optimal boundary detected by the proposed grouping atgtiith symmetry axis shown in red. (d)
Optimal boundary detected by RC. (e) Optimal boundary deteloy EZ.

For each of the five boundary pairs shown in Fig. 13, we sanff@mtin seven different ways so that
the resulting gaps along the boundaries accounvfor 5%, 10%, 20%, 30% , 40% and 50% of the
boundary length, respectively. The number of noise segsrametalso chosen to e 10, 20, 30, 40 and
50 in different settings. By doing all possible combinationtioé sampled boundary pairs and the noise
segments, we have a total numberok 6 x 7 = 210 different settings. Under each setting, we further

randomly generate the expected number of noise segmenttharekpected gap percentage along the

19



underlying boundary pait0 times, which finally results i210 x 10 = 2100 synthetic data samples. In
the experiments, we apply the proposed grouping method teesle2100 data samples. For comparison,
we also apply two previous edge-grouping methods: the-@digour method (RC) [37] and the Elder
and Zucker method (EZ) [9] to the sarR&)0 synthetic data. The implementation of both RC and EZ are
the same as in [37]. Note that both RC and EZ consider only éeyrclosure, proximity, and continuity
(smoothness), but not boundary symmetry and enclosedregéa, in grouping. Sample grouping results
by RC and EZ are shown in Fig 14(d) and (e) respectively.

As in [37], on each data sample, we define the grouping pedoo@ using a region coincidence mea-

|RNR'|

sure|RUR,|,

whereR and R’ are the regions enclosed by the desired ground-truth boyiada the detected
boundary respectively, arj@| indicates the area of regidf. The larger this measure, the better the coin-
cidence between the ground truth boundary and the deteotettiary. For example, the grouping results
shown in Figs. 14(c), (d) and (e) have a performancé.@$, 0.68 and0.19 respectively. Figures 15(a)
and 15(b) show the average performance of the proposed the®@, and EZ on alk100 data samples,

in terms of the gap-percentage along the boundary pairshendumber of noise segments, respectively.
Note that, for each setting of the gap percentage along thedaosy pair in Fig. 15(a), the average is
taken over300 data samples since we havdoundary pairs¢ levels of the number of noise segments,
and 10 rounds of noise-segment and boundary-gap generationla@iynfor each setting of the number
of noise segments in Fig. 15(b), the average is taken 3u@idata samples since we havéboundary
pairs,7 levels of the gap percentage in sampling the boundary padl]@rounds of noise-segment and
boundary-gap generation. From Fig. 15, we can see that wigeddsired boundaries are symmetric, the

proposed grouping method performs better than RC and EZreNdsindary symmetry is not considered.
5.2 Experimentson Real Images

We also test the proposed grouping method on real imagesanpare it to RC and EZ. The test real
images are selected from the Corel image database and Gotgle search. On real images, we construct
the detected segments by edge detection and line fittingedge detection we use the Canny detector
provided with Matlab’s Image Processing Toolbox (R200&=gving its parameters at their default values.
For line fitting we used the Matlab function developed by Ka\y&7] by setting the minimum length for
an edge to be consideredi0 pixels and the maximum deviation between an edge and itgfilitie to2

pixels. Sample edge detection and line-fitting resultforeal images are shown in the second and third
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Figure 15: The average performance of the proposed methGdaRd EZ on al100 synthetic data
samples, in terms of (a) the gap percentage along the syimthmindary pairs, and (b) the number of
noise segments.

columns of Figs. 16 and 17 respectively. Based on thesetddtsegments, all the other settings for the
proposed grouping method are the same as the ones used botleesynthetic-data experiments.

The fourth, fifth and sixth columns of Figs. 16 and 17 show thinoal boundaries obtained by the pro-
posed grouping method, RC and EZ respectively. From Figa-d8,i,j) and 17(a,c,d,f,h-}), we can see
that, by considering the symmetry cue, the proposed metandietect boundaries with good symmetry.
These experiments on real images also show that, when thle stnocture is not symmetric, the proposed
method may only detect a symmetric component of the stracas shown in Figs. 16(c,e) and 17(a,b,e,f).
In such cases, the edge-grouping methods without consglsymmetry may detect the structural bound-
ary more completely, as shown in Fig. 17(b). On several irmaggch as the ones shown in Figs. 16(a,e)
and 17(e,g), RC or EZ produce similar symmetric boundasdb@ proposed method does. This indicates
that the symmetric boundaries found in these several imbagése proposed method also minimize the

RC or EZ grouping costs, which consider closure, proximitg aontinuity, but not symmetry.
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Figure 16: Grouping results oD real images. Column 1: input real images; Column 2: Cannyeedg
detection results; Column 3: detected segments after timegfi Column 4: the optimal boundary obtained
by the proposed grouping method. Detected boundary axesharen by red dashed curves; Column 5:
the optimal boundary obtained by RC; and Column 6: the optiraandary obtained by EZ.
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Figure 17: Grouping results o) more real images. The columns depict the same informatidn as

Fig. 16.
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5.3 Detecting Multiple Boundaries

In the previous sections, the proposed grouping methodvisldeed and tested to detect the single op-
timal boundary that minimizes the grouping cost. In pragtimost real images contain multiple structures
of interest and there is a strong motivation to extend the@sed grouping method to detect multiple
symmetric boundaries from the same image. In addition, dumeise, texture and other undesirable struc-
tures in real images, the optimal boundary that minimizesgitouping cost may not be the desired one.
A more reasonable way is to detect a small number of optimah8aries with small grouping cost and
expect that the desired ones are among them.

We extend the grouping method to detect multiple optimahloiauies by repeating the proposed group-
ing method on the same image: after detecting the first optomandary, we remove all the trapezoids
along the detected boundary and then repeat the same ggoongtinod on the remaining trapezoids to
detect the second optimal boundary. This process can beefurtpeated to detect multiple symmetric
boundaries. The implementation of this strategy is simeéeh trapezoid corresponds to two edges, and
we only need to delete the edges present in the detectedauiyeie (and its mirror cycle) and re-run the
minimume-ratio alternate cycle algorithm on the remainimgp to detect the next optimal boundary.

One problem of this multiple-boundary detection is thatsame boundary may be detected in different
rounds when repeating the proposed grouping algorithm.xamgle is shown in Fig. 18: the first round
of grouping may produce a boundary consisting of the trajlsZzfy and7,. After removingZ; and7;, the
second round of grouping may produce a boundary consistitigedrapezoidg; andZ,. We can see that
the boundaries produced in these two rounds are in fact the baundary. However, this mainly happens
for a boundary with multiple different symmetry axes, aswhan Figs. 18(b) and (c). In practice, this is
not a serious problem since we can easily check the deteatétbla boundaries and for the boundaries
that are detected more than once, we only keep one of themiscatd the redundant ones.

We conducted experiments on real images by detecting theHiese optimal boundaries, as shown in
columns four, five, and six of Fig. 19. We can see that, thenmgdtboundaries detected in the second
or third rounds may be more desirable than the one detectéukifirst round. In Fig. 20, we further
show several examples where the proposed grouping methgpdletect different symmetric boundaries
in different rounds. It also shows an example where the pegarouping method may detect the same

symmetric boundary in different rounds, as shown in columrdsand5 of Fig. 20(a).
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Figure 18: An illustration of detecting the same boundargwhepeating the proposed grouping method.
(a) A set of detected segments. (b) A symmetric boundaryisting of two trapezoidg; and7s. (c) The
same symmetric boundary consisting of two different trayeszZ; andZ,.

NS

(b)

Note that we do not remove all the detected/gap-filling segmalong the detected boundary and then
repeat the same grouping method on the remaining line seigruethetect multiple boundaries. The reason
is that, removing one segment may correspond to removing tmapezoids, given that the same segment
may be used to construct different trapezoids, and this magduce two problems: (a) for an image with
two neighboring structures that share a portion of the theundaries, the detection of one may prevent
the detection of the other, since the segments correspgtalihe shared boundary may be removed after
the detection of the first boundary, and (b) if the boundadietected in the previous rounds are not the
desired ones but include some segments along the desiredées, the removal of such segments may

prevent the detection of the desired symmetric boundamiéisd later rounds.
5.4 The Selection of A and Other Thresholds

The proposed grouping cost function (1) has a free parametehich needs to be selected by the user.
This parameter balances the boundary proximity and thedsmyrsymmetry in grouping. A larger may
lead to more symmetric boundaries with poorer proximity ansimallerA may lead to less symmetric
boundaries with better proximity. In most of our experingnte found that, the same or similar grouping
results are obtained whentakes a value in a certain range. Figure 21 shows an examghe gfoposed
grouping with different values of. For this image, when takes a value in the randé 50], the detected
boundaries are very similar and well aligned with the baprekent in this image. In general, the selection
of \ is related to the image size, since the proximity téffp| is related to image size and the symmetric
term p(axis(B)) is not. As mentioned earlier, we scale the images to be neddhgn250 x 250 while

maintaining their aspect ratio in all our experiments on n@@ages. We empirically select = 10 for all
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Figure 19: Experiment results of detecting multiple optifmaundaries froml 0 real images. Column 1:
input real images; Column 2: Canny edge detection resuttkirén 3: detected segments after line fitting;
Column 4, 5 and 6: the first three optimal boundaries by repg#te proposed grouping method; Column
7: the optimal boundary obtained by RC; and Column 8: thenogtboundary obtained by EZ.
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Figure 20: An illustration of detecting different boundegior the same boundary in different rounds when
repeating the proposed grouping method. From left to ri@miumn 1: input real images; Column 2:
Canny edge detection results; Column 3: detected segmietdiae fitting; Columns 4-8: the first five
optimal boundaries by repeating the proposed grouping oaeth

our experiments.

Figure 21: An illustration of the optimal boundaries de¢etby the proposed method using different
values ofA. (@)\ =1or5, (b) A =10 0or25, (c) A = 50 or 75, (d) A = 100, and (e)\ = 1000. The input
image and the detected segments are the same as the onedrskiyvri6(a).

At the beginning of Section 5, we also introduce severakimoéds to reduce the constructed graph size.
Particularly, we choos®,; = 30, D, = 0.5 and D3 = 20 in our experiments. Using these thresholds, we
can avoid constructing the gap-filling quadrilaterals andrmary-axis endpoints that are unlikely to be
included in the optimal boundary with the minimum groupimgc Figure 22 shows the grouping results
by varying the value of these thresholds. By choosing lavgkres forD,, D, and D3, we construct more
gap-filling quadrilaterals and consider more potential imary-axis endpoints. However, the grouping
results largely keep unchanged when we choose them to e laign the ones used in our experiments.

In fact, by turning off all three thresholds, i.e., settibg = +o00, Dy = 1.0 and D3 = +o00, we get the
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same grouping result as shown in the first column of Fig. 22vél@r, when turning off all of them, the
constructed graph has 384, 762 edges and the proposed grouping talkes 69 seconds, compared with
87,292 edges angd.95 seconds when setting;, = 30, D, = 0.5 and D3 = 20.

(b)

©

Figure 22: An illustration of the optimal boundaries degetcby the proposed method using different val-
ues ofD;, D, and D;. (a) Fixing D, = 0.5, D5 = 20 and varyingD; = 25, 30, 40, 50, 100, 150, 200, 250
or +oo (left), D; = 15 or 20 (middle) andD; = 5 or 10 (right). (b) FixingD; = 30, D, = 0.5 and varying
D5 = 10,20, 30, 40, 50, 100, 150 or +oo (left), D3 = 1,3 or 5 (middle) andDs; = 0 (right). (c) Fixing
D, = 30, D3 = 20 and varyingD; = 0.4,0.5,0.6,0.7,0.8,0.9 or 1.0 (left), D, = 0.2 or 0.3 (middle) and
D, = 0.1 (right). The input image and the detected segments are the aa the ones shown in Fig. 16(i).

5.5 Two Special Cases

In Section 3.2, we proved that the minimum-ratio alternatelec contains no more than one auxil-
iary edge. However, it is possible that the minimum-ratieradate cycle does not contain any auxiliary
edges. A minimume-ratio alternate cycle without an auxyliadge may correspond to two special kinds
of grouping results that are produced occasionally in jcactThe first kind of grouping result consists
of two disjoint closed boundaries that are symmetric to eatbler over an axis in between, as shown in
Figs. 23(a-c). Specifically, from the detected segments/sho Fig. 23(a), we construct a set of trape-
zoids, three of which are shown in Fig. 23(b). One possibtaiging result is to connect these three
trapezoids to form two disjoint closed boundaries as shoyhlack curves in Fig. 23(c), where the red

polygon with solid/dashed lines is the resulting symmeiig #¢shown a little misaligned to visualize it
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better). Along this symmetry axis, red solid lines représbe axis segments of the trapezoids and red
dashed lines represent the axis segments of the gap-filliadrdaterals. We can see that the alternate
cycle corresponding to this grouping result contains naleuy edges, i.e., no boundary-axis endpoints
can be identified. However, such a grouping result is moreyliko have a relatively smalletrea(B)
(the total area enclosed by the two resulting disjoint aidseundaries) and a relatively larges | (be-
cause of the longer total boundary perimeters). Therefreh a grouping usually has a larger grouping
cost and does not happen frequently in the proposed groupinigig. 24, we show an example of such
a special grouping result on a real image. This is producdtierznd round of repeating the proposed
grouping method on this image. In practice, however, we clirese more such grouping results by not
constructing any auxiliary edges in the graph= (V, £'). The application of the same graph algorithm
will be forced to detect such symmetric boundary pairs. brcpice, this may extend the proposed method

to detect the objects in pairs, such as eyes, eyeglassamwsnand so on.
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Figure 23: An illustration of two special cases in the praabgrouping. Top row: the first special case of
detecting a symmetric pair of boundaries. Bottom row: thmoed special case of detecting two disjoint
boundaries that form a ring.

The second kind of special grouping result consists of twdit closed boundaries that form a ring, as
shown in the second row of Fig. 23. Based on the detected s#gisigown in Fig. 23(d), we can construct
trapezoids as shown in Fig. 23(e). One possible groupingjtressto connect these four trapezoids to
form two disjoint closed boundaries as shown by black cumdsg. 23(f), where the red polygon with

solid/dashed lines is the resulting symmetry axis. In tlaise; the enclosed region ar@eea(B) is the
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Figure 24: An example of the special grouping result on aireafje. Column 1: original image; Column
2: Canny edge detection result; Column 3: detected segra#tatdine fitting; Columns 4-5: the first and
second optimal boundaries obtained by repeating the peapgouping method.

one bounded by these two disjoint closed boundaries. Thsiapkind of grouping result also occurs
very rarely in practice since the enclosed region area aivelly small and the collinearity of the resulting
symmetry axis is usually poor, which results in a large gmgost. In all our experiments, so far we did

not encounter any such special grouping results.
6 Extensionsto Incorporate Other Boundary and Region Information

The proposed grouping method can be extended to incorpotiaée boundary or region information.
For example, boundary continuity, or smoothness, is widelgd in previous edge grouping methods
[9, 39, 37], and it can be incorporated in the proposed grayipy adding another term into the numerator
of the grouping cost (1) as

_ |Bp|+ X plaxis(B)) + Ay - [, w*(t)dt

¢(B) area(B) ’

3)

wherex(t) is the curvature along the boundaflyand )\, is a weighting factor for this continuity term.
Since all the considered boundaries are polygons in thiempapibic spline interpolations are used to
estimate the boundary curvature [34].

By making a small change on the first edge weight functionptbposed graph modeling and algorithm
can still be used to find the optimal boundary that minimizes grouping cost [34]. However, we found
that, while the boundary continuity is important in prewsaedge grouping methods, it is not critical in the
proposed grouping for symmetric boundaries. The reasanwnar fold: (a) with a normalization over the
enclosed region area in the grouping cost, the proposedatidths a preference to produce boundaries
that enclose a large round area. This preference implioiiiects some level of continuity, and (b) as

many symmetric boundaries are not smooth everywhere, dicgxpclusion of a curvature term in the
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grouping cost (3) may affect the detection of such symméiniendaries. Figure 25 shows an example
where the inclusion of the curvature-based continuity tprevents the detection of a symmetric boundary

with high-curvature points.

@ (b) (c) (d)

Figure 25: An example of the grouping by using the modifiediging cost (3): (a) the optimal boundary
obtained by the proposed method based on the original gngugst (1), (b-d) the optimal boundaries
obtained by the proposed method based on the modified g@apst (3) withA\, = 0.5, 1 and5, respec-
tively. The input image and the detected segments are the garie ones shown in Fig. 17(h).

Other region information can also be incorporated by madgyhe denominator of the grouping cost
(1). For example, we can extend the proposed method to deteatindary that encloses a region with
good intensity homogeneity by modifying the grouping cost t

|Bp|+ A - p(axis(B))
ffR(B — |VI(z,y)|)dzdy’

where R(B) is the region enclosed by the boundd#y Normalized to the rang®, 1|, |VI(z,y)| is the

¢(B) =

(4)

magnitude of the intensity gradient at pixel,y). To find the optimal boundary that minimizes this
modified grouping cost, we only need to modify the definitidriree second edge weight in the graph
construction from the signed enclosed afﬁ_{am dxdy (or ffR(g) dxdy) to the signed value ofme(l
\VI(z,y)|)dzdy (or ffR(g)(l — |VI(z,y)|)dzdy), where R(T) (or R(G)) is the region enclosed by the
trapezoidZ (or the quadrilatera) corresponding to the considered edge. The same graph mgaeid
algorithm can then be used to find the optimal boundary. Ei@é(e) shows an example of the grouping
using the modified grouping cost (4). As a comparison, Fi@é) show the grouping result on the same
image using the grouping cost (1). We can see that, with titension, the proposed method detects a

boundary whose enclosed region has better intensity honeitye
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Figure 26: An example of grouping by incorporating intepdibmogeneity: (a) input real image, (b)
Canny edge detection result, (c) detected segments aféefitiing, (d) the (normalized) magnitude of the
image intensity gradient, where darker pixels indicatgéagradient magnitudes, (e) the optimal boundary
obtained by the proposed grouping method based on the ndifeeiping cost (4), and (f) the optimal
boundary obtained by the proposed method based on theargiouping cost (1).

7 Complexity Analysisand Running Time

As discussed in Section 5, givendetected segments, we may need to constilef’) trapezoids in
the worst case. If we construct quadrilaterals to fill thegjaptween each pair of trapezoids, we may then
haveO(n*) quadrilaterals, which lead 10 (n*) dashed edges arié{n*) auxiliary edges in the constructed
graph. The minimum-ratio alternate cycle algorithm hasvetcomplexity ofO(|E|1), where|E| is the
number of edges in the graph [37], in the worst case. The vaast complexity of the proposed grouping
algorithm is thenO(n"). This is a very high complexity and an algorithm with such anptexity is not
usually useful in practice.

However, two reasons make the proposed grouping methdgstdtically useful: (a):, the number
of detected segments, is usually much smaller than the nuailpexels in an image, and (b) we devel-
oped several special strategies to substantially rediecaumber of edges in the constructed graph (see
Section 5). While it may be difficult to analytically deriveighter estimate of the algorithm complexity,
we implement the proposed grouping method using C++ andkdklemnning time in processing a set of
real images. Table 1 shows the running time onZbénages shown in Figs. 16 and 17 and the size of
the graph constructed for them. Our experiments were runioax.computers equipped with3adGHz

Xeon processor and 4GB RAM.
8 Conclusions

In this paper, we developed a new grouping method for detgaiosed boundaries that show good

bilateral symmetry. Particularly, the proposed method datect both boundaries and their symmetry

32



Auxiliary Total | Prop. Method RC

Size Lines | Trapezoids| Quads. Edges Edges CPU(sec)| CPU(sec)

Fig. 16(a) || 124x150| 335 10400| 251154| 343620| 605174 416.55 29.77
Fig. 16(b) || 218x145| 580 21620| 523218 843700| 1388538 1134.85 33.08
Fig. 16(c) || 179x150| 353 11124 | 256668 292612 560404 325.22 28.53
Fig. 16(d) || 176x150| 309 9282 | 229228| 286524 525034 448.60 13.29
Fig. 16(e) || 150x161| 456 17256 | 588778| 721200| 1327234 2033.32 37.53
Fig. 16(f) || 220x150| 460 14270 | 245566| 435244 695080 545.48 27.01
Fig. 16(g) || 150x225| 559 25838 | 699136| 1307344| 2032318 2468.40 68.11
Fig. 16(h) | 150x150| 290 7672 | 132560| 135720| 275952 73.85 16.85
Fig. 16(i) || 200x133| 161 3638 | 48010 35644 87292 3.95 14.04
Fig. 16(j) || 231x150| 512 25912 | 899050| 1547040| 2472002 2192.04 57.44
Fig.17(a)| 210x150| 314 10210| 200366| 205440| 416016 100.97 16.82
Fig. 17(b) || 230x150| 422 11574 | 223262| 346944| 581780 81.64 24.00
Fig. 17(c) || 200x136| 538 16964 | 321902| 509040| 847906 698.81 29.64
Fig. 17(d) || 212x150| 397 14102 | 362208| 459840| 836150 863.27 25.62
Fig. 17(e) || 150x225| 547 19718 340776 505012 865506 787.04 54.69
Fig. 17(f) || 123x181| 334 10274 | 166230 200344| 376848 246.79 30.81
Fig. 17(g) || 225x150 | 404 14324 | 416190 424120| 854634 1740.18 53.79
Fig. 17(h) || 166x150| 143 3228 | 58618 62304| 124150 6.47 12.45
Fig. 17(i) || 231x150| 412 12710| 307544| 448404| 768658 525.75 20.04
Fig. 17(j) | 184x125| 390 13066 | 472338| 619384| 1104788 1433.91 18.56

Table 1: Running time and the constructed graph size fo2thmages shown in Figs. 16 and 17.

axes. This is achieved by (a) defining a new grouping costthrabines the different boundary and region
information, (b) constructing a new type of trapezoidalugimg tokens by pairing line segments detected
from the input image, and (c) constructing a new graph mddsl ¢an transform the proposed grouping
problem into a graph problem of detecting a cycle that mimasia given ratio-form cost. We show that
this graph problem can be addressed by an available graphithlgp with polynomial-time complexity.

We implemented the proposed grouping method and testecifsrmance on a set of synthetic data
and real images. We also conducted experiments to comsgperitormance to the performance of two
previous edge-grouping methods. These experiments shthaedhe proposed method performs more

favorably when the desired structure has a boundary witlil dgpdateral symmetry.
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