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Edge Grouping Combining Boundary and

Region Information
Joachim S. Stahl and Song Wang

Abstract

This paper introduces a new edge grouping method that combines boundary and region information

to detect perceptually salient structures in noisy images.Particularly, we define a grouping cost in a

ratio form, where the numerator is a measure of boundary proximity of the resulting structure and

the denominator is a measure of the area of the resulting structure. This area term in fact introduces

a preference towards detecting larger-size structures andtherefore, makes the resulting edge grouping

more robust to image noise. To find the optimal grouping with the minimum grouping cost, we develop

a special graph model with two different kinds of linking edges and then reduce the grouping problem

to a problem of finding a special kind of cycle in this graph with a minimum cost in the ratio form.

We finally show that such an optimal cycle-finding problem canbe solved in polynomial time by a

graph algorithm. We implement this edge grouping method, test it on both synthetic data and some real

images, and compare its performance against the previous ratio-contour method that does not consider

region information. Furthermore, we discuss several extensions of the proposed method, including the

incorporation of the well-known grouping cues of continuity and intensity homogeneity, introducing a

factor to balance the contributions from the boundary and region information, and the prevention of

detecting self-intersecting structural boundaries.

Index Terms

Perceptual organization, edge grouping, edge linking, boundary detection, graph models.

I. INTRODUCTION

Grouping(or perceptual organization) is an important problem in computer vision and image processing

that seeks to identify some perceptually salient structures in noisy images. It is usually achieved by first
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constructing a set of tokens from the input image and then grouping a subset of these tokens into

some salient structures. The grouping process is usually designed to minimize a pre-definedgrouping

cost (function)that negatively measures the perceptual saliency of the resulting structure based on some

psychological vision rules, such as Gestalt laws [1]. Grouping is an important step in mid-level computer

vision, which can provide with useful input to many high-level computer-vision applications such as

object recognition or content-based image retrieval.

The challenge in grouping comes from both the definition of the grouping cost and the development of

an algorithm for finding the optimal grouping with the minimum grouping cost. In this paper, we develop

a new grouping method within theedge groupingframework, where the grouping tokens are a set of line

segments detected from the input image and the goal is to identify a subset of these line segments and

grouping them into the complete boundaries of some perceptually salient structures. Being able to more

conveniently encode the well known Gestalt laws [1], edge grouping has been studied for decades with

a long line of available edge-grouping methods, e.g. [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12],

[13], [14].

Most of previous edge grouping methods only consider the boundary information in their grouping cost.

For example, in almost all the previous edge-grouping methods, boundaryproximity is always considered

to make the resulting boundary contain as short gaps as possible in connecting the line segments into a

boundary. However, many constructed line segments in fact come from image noise (or image texture) and

therefore, considering only boundary information usuallymakes the grouping very sensitive to the image

noise. Some boundary properties, such ascontinuity, which requires the resulting boundary to be smooth,

and convexity, which requires the resulting boundary to be convex, may partially solve this sensitivity

problem by only detecting smooth and convex structures. However, the incorporation of these properties

may limit the applicability of the grouping methods since many salient structures in real applications are

not always smooth or convex.

To address this problem, in this paper we develop a new edge grouping method that combines boundary

and region information. In its baseline form, it combines two boundary properties of proximity andclosure

and one region property of the enclosed region area. Specifically, the grouping cost for a resulting

boundary is defined to be a ratio between the total gap length along the boundary and the area enclosed

by the boundary. The closure is set as a hard constraint by requiring the detected boundary to be always

closed. This way, we in fact introduce a preference to detecta larger-size structures and therefore, make

this grouping method more robust to the image noise. From this baseline method, we also discuss the

extensions of finding better balance between the boundary and region properties and incorporating other
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boundary and region properties that may be desired in some special applications.

To locate the closed boundary that minimizes this ratio-form grouping cost, we first develop a new

graph model where line segments and in-between gaps are modelled by two different kinds of linking

edges. Particularly, we introduce two edges to represent each line segment or in-between gap so that the

boundary and region information can be encoded into two edge-weight functions, respectively. Based on

this graph model, we reduce the edge grouping problem to a problem of finding a special kind of cycle

with minimum ratio-form cost. We find that this cycle-findingproblem can be solved in polynomial time

by a globally optimal graph algorithm. We implement this edge grouping method and test it on both

synthetic data and some real images, and compare its performance against ratio contour, another similar

edge grouping method that considers boundary continuity instead of region information.

The remainder of this paper is organized as follows. SectionII formulates the problem by introducing

the new grouping cost that combines boundary and region information. Section III presents the details of

the graph model and the graph algorithm that are used for solving the formulated edge-grouping problem.

Section IV presents the experiment results on some synthetic data and real images, with a comparison

against ratio-contour method. Section V discusses severalextensions to the proposed method. Section VI

briefly discusses some major related work. A brief conclusion is given in Section VII.

II. PROBLEM FORMULATION

As illustrated in Fig. 1, it usually involves three steps when applying an edge grouping method to a

real image to detect perceptually salient structural boundaries. The first step is to construct a set of line

segments by running an edge detector, such as the Canny detector [15], on the input image to detect a

set of edges. We then approximate the detected edges with a set of straight line segments, as shown in

Fig. 1(b). These straight line segments are usually referred to asdetected (line) segments. Since these

detected segments are disconnected from each other, in order to construct a closed boundary we need

to fill the gaps between them. So in the second step, we fill the gaps between the detected segments

by connecting all the possible pairs of endpoints of different detected segments. These connections are

referred to asgap-filling (line) segments, as denoted by dashed lines in Fig. 1(c)1. This way, a boundary

is defined as a cycle that traverses a set of detected and gap-filling segmentsalternately. The third step

is to develop an algorithm to find such a boundary that minimizes a selected grouping cost, as shown in

Fig. 1(d).

1Note that not all possible gap-filling segments are shown in Fig. 1(c), in order to keep it readable.
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Fig. 1. The typical steps in applying an edge-grouping method to a real image to detect salient boundaries. (a) The input

image, (b) the detected segments, (c) constructing gap-filling segments (dashed lines), and (d) the detected closed boundary that

traverses some detected and gap-filling segments alternately.

To combine the boundary and region information, in this paper, we introduce a ratio-form grouping

cost for a closed boundaryB that traverses some detected and gap-filling segments alternately as

φ(B) =
|BG|

∫∫

R(B)
dxdy

, (1)

where the numerator|BG| is the total length of the gap-filling segments along the boundary B and

reflects the proximity of the boundary.R(B) is the region enclosed by the boundaryB and the denominator
∫∫

R(B) dxdy is the region area, which sets a preference to detect larger structures. Such a preference makes

the grouping more robust against image noise. In the following section, we develop a graph model and

algorithm to address the formulated edge grouping problem by finding the boundary that minimizes this

new grouping cost (1).

III. GRAPH MODELLING AND ALGORITHM

In this section, we develop a graph model and algorithm to address the problem formulated in

the previous section. We begin by constructing a graphG = (V,E), with a set of verticesV =

{u1, u2, . . . , un} and a set of edgesE = {e1, e2, . . . , em}. Particularly, we construct a pair of edgese+

ande− for each line segment. We call the constructed pair of edges to besolid edges, if the corresponding

line segment is a detected one, anddashededges, if the corresponding line segment is a gap-filling one.

This way, we actually construct two vertices,u
(1)
i and u

(2)
i , for each line-segment endpoint. Figure 2

shows an example, where for the detected line segmentP1P2 shown in Fig. 2(a), we construct two solid

edges,e+
12 ande−12, shown by solid lines in Fig. 2(b). For the gap-filling segment P2P3, in Fig. 2(a), we

construct two dashed edges,e+
23 ande−23, shown by dashed lines in Fig. 2(b), and for each line-segment
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endpointPi, i = 1, 2, 3, we construct two vertices,u(1)
i and u

(2)
i , i = 1, 2, 3. We will show that this

construction of edges in pairs facilitates the quantization of the region area enclosed by the boundaryB.

P3
P2

P1

P1

P2

P3
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−
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+
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−

e12
+
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2 u3
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Fig. 2. An illustration of the graph construction. Linking edges corresponding to two segments with (a,b) same direction, (c,d)

opposite direction.

One problem in this graph construction is how to determine the edge connection relations, since each

line segment is represented by a pair of edges. For example, in Figs. 2(a) or (c), the detected segment

P1P2 is connected to the gap-filling segmentP2P3 at P2. In the constructed graph we need to decide

whether we are going linke+
12 to e+

23 ande−12 to e−23, or link e+
12 to e−23 ande−12 to e+

23. In this paper, we

solve this problem by associating each of the two edges in thegraph, corresponding to the same line

segment, with a different direction. Particularly,e+ indicates that the direction along the corresponding

line segment is from the left endpoint to the right endpoint (LR), and e− indicates that the direction

along the corresponding line segment is from the right endpoint to the left endpoint (RL). For any line

segment, the left endpoint is the one with the smallerx-coordinate and the right endpoint is the one with

the largerx-coordinate. For example, for the line segmentP1P2 in both Figs. 2(a) and (c),P1 is the left

endpoint andP2 is the right endpoint. This way, we can uniquely determine the edge-connection relation

by requiring consistency in direction between the two neighboring line segments. Figures 2(b) and (d)

show the edge linking obtained from the line segmentsP1P2 and P2P3 shown in Figs. 2(a) and (c),

respectively. If thex-coordinates of the two endpoints are equal, we can decide bythe y-coordinates of

the two endpoints in a similar fashion. Note that, the constructed graph is still anundirectedone and we

only use this direction information to define the edge-weight functions as discussed later.

In this constructed graphG, a closed boundaryB that traverses some detected and gap-filling segments

alternately, is in fact modeled by two cycles that traverse the corresponding solid and dashed edges

alternately. An example is shown in Fig. 3, where the boundary P1P2 . . . P6 is modeled by the two

cycles shown in Figs. 3(b) and (c). We can see that these two cycles are the “mirrors” of each other,

i.e., for a pair of edgese+ ande− constructed for the same line segment, if one of them is contained in
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one cycle , the other must be contained in the other cycle. Forconvenience, we call the graphG to be

a solid-dashed (SD)graph, because no two solid edges are neighboring to each other, and a cycle that

traverses solid and dashed edges alternately to be analternatecycle. This way, the problem of finding

the boundaryB that minimizes the grouping costφ(B) given in Eq. (1) can be reduced to the problem

of finding an optimal alternate cycleC in the constructed SD graphG if we can quantify the grouping

costφ(B) by some edge weights inG.
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P2 P3

P4

P5P6

u1
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u2
(1)

u3
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(1)u6
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−
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56e−
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u3
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e45
+
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+

u2
(2)

u4
(2)u1

(2)

e23
−

(c)(a)

Fig. 3. (a) A boundary with three detected segments and threegap-filling segments. (b) & (c) Two “mirror” cycles in the graph

G corresponding to the boundary shown in (a).

We define two edge-weight functions, thefirst (edge) weightw1(e) and thesecond (edge) weightw2(e),

for each edgee ∈ E. Given any line segmentP1P2, we set the first weight for the corresponding two

edges to

w1(e
+
12) = w1(e

−
12) =











0 if P1P2 is a detected segment

|P1P2| if P1P2 is a gap-filling segment,

where|P1P2| is the length of the line segmentP1P2. For both solid and dashed edges, their second weights

are defined as the signed area associated to the corresponding line segment. As shown in Fig. 4(a), let the

bottom-left pixel in the input image be the origin, the horizontal direction be the direction of thex-axis,

and the vertical direction be direction of they-axis. The area associated to a line segmentP1P2 is defined

as the area of the region bounded by this line segment and its projection in thex-axis. The sign of this area

is defined to be positive for the edge corresponding to a line segment that bears a LR direction and negative

otherwise. For the example shown in Fig. 4(a), we havew2(e
+
12) = −w2(e

−
12) = area(P1P2P

x
2 P x

1 ) > 0,

whereP x
1 andP x

2 are the projections ofP1 andP2 onto thex-axis. This definition allows us to calculate

the total area within a boundary by simply summing up the signed areas associated to each of its line

segments. An example is shown in Fig. 4(b), where the area of the polygonP1...P6 is equal to the

summation of positive areas associated toP1P2, P2P3, P3P4, and negative areas associated toP4P5,

P5P6 andP6P1.
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Fig. 4. An illustration of defining the second weight for an edge. (a) Area associated to a line segment. (b) The region area

enclosed by a closed boundary is equal to the sum of the signedareas associated to the line segments along this boundary.

As discussed above, a closed boundaryB corresponds to two alternate “mirror” cyclesC+ andC− in

G, as shown in Figs. 3(b) and (c). Since the edges inC+ andC− are constructed in pairs, we have

W1(C
+) =

∑

e∈C+

w1(e) = W1(C
−) =

∑

e∈C−

w1(e) > 0

and W2(C
+) =

∑

e∈C+

w2(e) = −W2(C
−) = −

∑

e∈C−

w2(e).

Without loss of generality, let the cycleC+ be the one with the positive total second weight, i.e.,W2(C
+) =

−W2(C
−) > 0. It is easy to verify thatW1(C

+) is equal to the numerator ofφ(B) andW2(C
+) is equal

to the total area of the enclosed region, i.e., the denominator of φ(B). Since for every cycleC+ there

exists a “mirror” cycleC− in G, it is easy to see that the cycleC that minimizes

ϕ(C) =
W2(C)

W1(C)
, (2)

is a C− version (i.e.,W2(C) < 0) that corresponds to the boundaryB that minimizesφ(B), i.e. φ(B) =

− 1
ϕ(C) . This way, we only need to find an alternateC ∈ G that minimizes the cycle ratioϕ(C). This

problem can be solved in polynomial time by the minimum-ratio-alternate-cycle algorithm presented in

[13].

IV. EXPERIMENTS

We implement the above graph model and algorithm inC++ and evaluate the proposed edge-grouping

method on a set of synthetic data and real images2. The synthetic data was directly generated as a set

of detected line segments. For the real images, we constructthe detected segments by edge detection

2The software developed in this work can be downloaded from http://www.cse.sc.edu/∼songwang/document/RRC.tgz.
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and line approximation. Particularly, we use the Canny edgedetector from the Matlab image processing

toolbox, and the line approximation package developed by Kovesi [16]. For the Matlab Canny edge

detector, we leave the parameters at their default values, and for the line-approximation package, we set

the minimum edge length to be processed to30 pixels, and the maximum deviation between an edge

and its fitted line segment to2 pixels.

A. Experiments on Synthetic Data

To evaluate the proposed edge-grouping method quantitatively, we construct a set of synthetic data

with known desirable salient structural boundaries, orground truth. We measure the accuracy of an

edge-grouping result by comparing with the ground truth, using Jaccard’s similarity coefficient,|RD∩RG|
|RD∪RG| ,

where RD and RG are the region bounded by the optimal boundary detected by the proposed edge-

grouping method and the one bounded by the ground-truth boundary, respectively, and|R| is the area of

R. Based on this accuracy measure, we also compare the performance of the proposed method against

the ratio-contour method [13], which considers only boundary properties of proximity and continuity in

its grouping cost

φr(B) =
|BG| + λ ·

∫

B
κ2(t)dt

∫

B
dt

,

whereκ(t) is the curvature andt is the parameter of the arc-length parameterized boundaryB . This

grouping cost is also of a ratio form, with a denominator of the boundary perimeter, which helps improve

the grouping robustness against image noise by avoiding producing overly short boundaries. Note that in

this ratio-contour method, the gap-filling tokens are not constructed as straight line segments, but instead

approximated as Bezier curves, which connect the detected segments with continuous tangent directions

and therefore, allow the measuring of curvature along the resulting boundary. In our experiments we set

the parameterλ at its default value of10 [13].

Fig. 5. 10 polygonal closed boundaries used for the construction of synthetic data.

For constructing a synthetic data sample, we pick one of the10 polygonal boundaries shown in

Fig. 5 as the ground truth, placed inside a square region of size 128 × 128. Then we remove a certain
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percentage of segments along this ground truth boundary at random locations to construct some gaps

and the remaining segments then are included as detected line segments. The gap percentage along the

ground truth boundary is chosen from the set{0%, 5%, 10%, 20%, 30%, 40%, 50%}. We then construct

a set of additional detected line segments to simulate the image noise. Specifically, these noise segments

are placed at random locations (inside the128 × 128 square region), in random directions, and with a

length selected randomly between3 and 7 pixels (all properties uniformly distributed). The numberof

added noise segments is chosen from the set{0, 10, 20, 40, 80}. An example is shown in Fig. 6, where

the ground truth is chosen to be the4th boundary in Fig. 5. Fig. 6(c) shows a constructed synthetic data

sample by removing30% of the ground-truth boundary’s perimeter and then adding40 noise segments.

To removep percent of the ground-truth boundary, we uniformly partition the boundary into20 line

segments, and then removingp percent of these line segments randomly. Figures 6(d) and (e) show the

grouping results of running the ratio-contour method and the proposed method, respectively. These results

represent a grouping accuracy of0.51 and0.99 respectively.

(a) (c)(b) (d) (e)

Fig. 6. An illustration of the synthetic data construction and the grouping results. (a) Detected segments constructedfrom the

ground truth boundary. (b) Additional noise segments. (c) Aconstructed synthetic data sample by combining the segments shown

in (a) and (b). (d) Optimal boundary detected from (c) by applying the ratio-contour method developed in [13]. (e) Optimal

boundary detected from (c) by applying the proposed edge grouping method.

As mentioned above, we have10 different choices of the ground-truth boundaries,7 different choices

of the gap percentage along the ground truth boundary, and5 different choices of the number of additional

noise segments. For each possible combination of these choices, we also run the random sampling for

noise segments10 times to achieve10 different sets of noise segments. Therefore, in total we construct

10 × 10 × 7 × 5 = 3500 synthetic data samples. We run the edge grouping methods on each of them

and evaluate the grouping accuracy by comparing the detected optimal boundary with the ground truth.

Figure 7 shows the performance curves of the proposed edge-grouping method and the method developed

in [13]. The performance in Fig. 7(a) is shown in terms of the gap percentage along the ground truth
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boundary and each point in this figure indicates the average accuracy over10 × 10 × 5 = 500 data

samples with the same gap percentage along the ground-truthboundary. The performance in Fig. 7(b) is

shown in terms of the number of the additional noise segmentsand each point in this figure indicates

the average accuracy over10 × 10 × 7 = 700 data samples with the same number of additional noise

segments. These curves clearly show that the inclusion of the region-area information in the proposed

method tends to produce better accuracy than the ratio-contour method. The main reason is that the ratio-

contour method explicitly incorporates the continuity property to improve its robustness against noise,

but many boundaries in the real world are not necessarily smooth everywhere. For example, as shown in

Fig. 6(d), the continuity preference may prevent the ratio-contour method to correctly detect the desirable

ground-truth boundary completely.
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Fig. 7. Performance of the proposed method and the ratio-contour method on the3500 synthetic data samples.

B. Experiments on Real Images

We also test the proposed edge-grouping method on a set of real images selected from the Berkeley

segmentation dataset [17]. All real images have a size of either 481 × 321 or 321 × 481. In order to

reduce the number of the constructed gap-filling segments, which can run in the order ofn2 wheren is

the number of detected segments, we do not construct gap-filling segments that are highly unlikely to

belong to the optimal salient boundary. Specifically, in ourexperiments, we do not construct a gap-filling

segment between the two segment endpoints if the distance between these two endpoints is larger than

50 pixels.
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The results on20 sample images are shown in Figs. 8 and 9. We can see that, by considering the

region information, the proposed method detects more desirable boundaries in most images, as shown in

Figs. 8(a, c-h, j) and 9(b-j). There are also some cases whereboth methods produce similar results, as

shown in Figs. 8(b), and cases where results are different yet both acceptable, as shown in Fig. 8(i). Note

that, the incorporation of the region-area term in the proposed method does not mean that the proposed

method always produces a boundary that encloses larger areathan the one produced by the ratio-contour

method. For example, Figure 9(h) shows a case where the proposed method detects a smaller structure

than the ratio-contour method. In this case, the proximity may play a more dominating role than the

region-area term, but may not overplay the continuity used in the ratio-contour method. Table I gives the

number of detected segments and the CPU time taken by the proposed method for processing these20

real images.

Image Fig.8(a) Fig.8(b) Fig.8(c) Fig.8(d) Fig.8(e) Fig.8(f) Fig.8(g) Fig.8(h) Fig.8(i) Fig.8(j)

# Detected segments 562 382 784 525 596 482 451 406 502 656

CPU time (s) 50.20 3.94 161.39 26.00 45.01 25.92 25.86 13.94 28.07 69.00

Image Fig.9(a) Fig.9(b) Fig.9(c) Fig.9(d) Fig.9(e) Fig.9(f) Fig.9(g) Fig.9(h) Fig.9(i) Fig.9(j)

# Detected segments 1208 679 594 654 390 413 557 235 390 457

CPU time (s) 858.48 98.47 44.18 65.92 9.62 30.97 120.19 3.63 40.24 68.10

TABLE I

THE NUMBER OF DETECTED LINE SEGMENTS AND THECPUTIME (IN SECONDS) TAKEN BY THE PROPOSED METHOD IN

THE EXPERIMENTS SHOWN INFIGS. 8 AND 9.

C. Multiple Boundary Detection

So far we present the proposed method in the context of only detecting the boundary that minimizes

the grouping cost (1). In fact, it is easy to extend the proposed method to detect multiple boundaries in an

image by iterating the method. The basic principle has been used widely in many previous edge-grouping

methods, including the ratio-contour method. Given an image, e.g. the one shown in Fig. 10, we first

process it with the proposed method to detect the optimal boundary as introduced above. Then we remove

from the graphG all the edges associated to line segments that belong to the detected optimal boundary,

i.e. for each line segmentPiPj in the boundary we remove both edgese+
ij ande−ij from G. We then run

the minimum-ratio-alternate-cycle algorithm again onG, to detect the second optimal boundary. This

DRAFT



12
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(h)
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Fig. 8. Edge grouping results on10 real images. From left to right, Column 1: the input image; Column 2: the Canny detection

result; Column 3: the detected segments resulting from lineapproximation; Column 4: the optimal boundary detected by the

ratio-contour method; Column 5: the optimal boundary detected by the proposed method. DRAFT
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(a)
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(c)

(d)

(e)
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(h)
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(j)

Fig. 9. Edge grouping results on another10 real images. Each column depicts the same information as in Fig. 8.
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process can be repeatedk times to detect thekth optimal boundary. It is easy to show that the grouping

cost for the detected boundaries increases monotonically in the iteration process. An example is shown

in Fig. 10, where the multiple salient structures can be detected by iterating the proposed edge grouping

method.

Fig. 10. An example of detecting multiple boundaries from a real image by repeating the proposed edge-grouping method. On

the first row, from left to right, shows the input image, the Canny edge detection result, the line approximation result (detected

segments), and the1st optimal boundary. On the second row, from left to right shows the2nd through5th optimal boundaries

obtained by iterating the proposed method.

V. EXTENSIONS

In this section we introduce four extensions to the proposedmethod. The first two can be useful

to exploit possible prior knowledge about the desirable salient structures, by adding the properties of

continuity and intensity homogeneity to the grouping cost.The third extension seeks to adjust the balance

between proximity and region-area terms in the grouping cost, since we find that, in certain cases, the

region-area term might have undesirable dominance in grouping. The fourth extension is to ensure that

detected salient boundaries are always simple without containing any self intersections.

A. Adding Continuity

In the previous section, we show that, in general, the use of the region-area property in the proposed

method leads to more favorable grouping than the use of continuity alone in the ratio-contour method.

However, there are certain cases where the desirable salient structure in an image isa priori known to
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be smooth. In this section, we show that we can extend the proposed method to include continuity as

part of its grouping cost. This way, this extended edge grouping method in fact combine both proximity,

continuity and region-area properties.

In this extension, we first modify the grouping cost to

φc(B) =
|BG| + λ ·

∫

B
κ2(t)dt

∫∫

R(B)
dxdy

,

where κ2(t) is the squared curvature along the arc-length parameterized boundaryB, and as in the

ratio-contour method [13],λ is a regularization factor that balance the proximity and continuity. In our

experiments, we consistently setλ to be10. The additional curvature term in this extension makes the

resulting edge grouping more biased to detect smoother boundaries.

However, it is difficult to directly measure the boundary curvature in our formulation since the boundary

B is a polygon consisting of a set of straight line segments. Weaddress this problem by interpolating the

polygon by smooth cubic splines. Particularly, given a gap-filling segmentP2P3 that connects detected

segmentsP1P2 andP3P4, we measure its curvatureκ overZ(M1P2P3M2), the Bezier curve with control

pointsM1, P2, P3 andM2, as shown in Fig. 11. HereM1 andM2 are the midpoints ofP1P2 andP3P4

respectively. We can then calculate the curvature along this Bezier curve and use it to evaluate the

continuity of a boundary. In the graph modeling, we only needto modify the definition of the first edge

weight to incorporate this curvature term. Specifically, for the dashed edgese+
23 and e−23 corresponding

to the gap-filling segmentP2P3 shown in Fig. 11, we define their first edge weight as

w1(e
+
23) = w1(e

−
23) = |P2P3| + λ ·

∫

Z(M1P2P3M2)
κ2(t)dt.

With this modification, the graphG remains essentially the same and we can still apply the same graph

algorithm to detect the optimal boundary that minimizes this modified grouping cost.

P2

P1
P4

1M
M 2

3P

(M 1P2P3M2)Z

Fig. 11. An illustration of using Bezier curve to approximate the gap-filling and detected segments.
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Note that this type of Bezier-curve interpolation may not reflect the boundary continuity accurately

when the angles6 P1P2P3 and 6 P2P3P4 become too small. However, when any one of these two angles

becomes too small, this gap-filling segmentP2P3 is not likely to be included in a smooth boundary.

Therefore, in practice, we additionally impose the following constraint: we do not construct a gap-

filling segmentP2P3 between detected segmentsP1P2 andP3P4, if either of the angles6 P1P2P3 and

6 P2P3P4 is smaller than a given threshold. In our experiments we set this threshold to beπ/2. Figure 12

demonstrates several examples of applying this extended edge-grouping method. For comparison, we also

include the grouping results from the proposed method without the extension of adding the continuity.

These results show that this extension may produce more favorable grouping results when the desirable

structural boundary is relatively smooth.

(a)

(b)

(c)

(d)

(e)

Fig. 12. Sample grouping results of the proposed method withand without the extension of adding the boundary continuity.

Each row shows, from left to right, the input image, the Cannyedge detection result, the line-approximation result, theoptimal

boundary detected by the proposed method without adding thecontinuity, and the optimal boundary detected by the proposed

method extended with continuity.
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B. Incorporating Intensity Homogeneity

In many real images, the desirable salient structure shows largely homogeneous intensity, while the

intensity across the structural boundary changes abruptly. In this section, we extend the proposed method

to incorporate such an intensity-homogeneity property to help detect the desirable boundaries.

To incorporate the intensity homogeneity, we modify the grouping cost (1) to

φh(B) =
|BG|

∫∫

R(B)
σT

ǫ (x, y)dxdy
, (3)

whereσT
ǫ (x, y) is a function defined by

σT
ǫ (x, y) =











1 if |I(x, y) − T | < ǫ

0 if |I(x, y) − T | > ǫ.

HereI(x, y) is the image intensity of the pixel at(x, y). T is a specified pixel intensity for the desirable

structure enclosed by the detected boundary.T can be either user specified or automatically selected by

some histogram analysis.ǫ ≥ 0 is the expected pixel-intensity variation within the region enclosed by

the detected boundary. In essence, this new grouping cost only counts the pixels with an intensity in

[T − ǫ, T + ǫ] in calculating the enclosed region area, and therefore favoring in detecting a boundary

that encloses a region with intensity as close toT as possible. The smaller the value ofǫ, the more

homogeneous we expect the region enclosed by the detected boundary.

With this new grouping cost, the graphG remains the same. The only difference is to slightly modify

the definition of the second edge weightw2 to count only the pixels with an intensity in[T − ǫ, T + ǫ] in

calculating the enclosed region area. Therefore, we can still apply the proposed graph algorithm to detect

the optimal boundary that minimizes this new grouping cost.Figure 13 shows some experiment results

on some real images by applying this extended edge-groupingmethod. We can see that the proposed

extension of incorporating intensity homogeneity can improve the grouping results when we have some

a priori knowledge on the intensity of desirable structure. For example, in Fig. 13(e), we set a smaller

value forT and detect the bird while the original edge grouping method without this extension detects

the chunk of the tree, which shows larger intensity.

Another interesting extension is to replaceσT
ǫ (x, y) by (1 − σT

ǫ (x, y)) in the grouping cost (3). This

makes the edge grouping to detect a boundary that encloses a region with intensity not close toT . Some

experiment results are shown in Fig. 14. We can see that this extension may also help improve the grouping

results when it isa prior known that the desirable salient structure do not show certain intensity. Note

that, the proposed edge grouping can only produce a single closed boundary in one iteration. Therefore,
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(a)

(b)

(c)

(d)

(e)

Fig. 13. Edge grouping results with the extension of incorporating intensity homogeneity. Each row shows, from left to right,

the input image, the Canny edge-detection result, the line-approximation result, the optimal boundary detected by theproposed

method without any extension, and the optimal boundary detected by the proposed method with the extension of adding intensity

homogeneity.ǫ is set to50 for all images.T is set to165, 50, 70, 230, and50 for images (a-e), respectively.

with two disjoint salient structures with same intensity, such as the two eyes shown in Fig. 14(d), we

have no way to detect both of them in one iteration. Instead, we need to apply the multiple boundary

detection strategy introduced in Section IV-C to detect them sequentially.

C. Proximity Exponentiation

The grouping cost (1) is simply a ratio between the total gap length along the boundary and enclosed-

region area. While we have shown that this grouping cost usually leads to good grouping results in many

images, there are cases where the region-area term dominates the grouping cost prompting the proposed

method to detect an overly large region that does not align well with any salient structural boundaries.
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(a)

(b)

(c)

(d)

(e)

Fig. 14. Each row depicts the same information as in Fig. 13 except that the rightmost column shows the optimal boundary

detected by the proposed method with the extension of replacing σT

ǫ (x, y) by (1 − σT

ǫ (x, y)). ǫ is set to50 for all images.T

is set to50, 200, 150, 150, and220 for images (a-e), respectively.

This is mainly due to the fact that region area is quadratic with respect to the boundary perimeter and

therefore the total gap length along the boundary. This problem has been noticed in previous pixel-

grouping methods that seek to combine boundary and region information [18].

To address this problem, we introduce a new measurement of proximity by exponentiating the gap

length to some power. This would reduce the order of magnitude difference between the proximity and

region-area terms. While we could simply choose an exponentα and directly modify the grouping cost

to

φ(B) =
|BG|

α

∫∫

R(B)
dxdy

,

it becomes difficult to encode such a grouping cost to the constructed graph model. Instead we propose
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to modify the grouping cost to

φ(B) =

∑

Γ∈BG
|Γ|α

∫∫

R(B)
dxdy

,

whereΓ is the gap-filling segments alongB. To encode this grouping cost to the graphG, we only need

to modify the first edge weight of the dashed edges, e.g.e+
12 and e−12 corresponding to the gap-filling

segmentP1P2, to

w1(e
+
12) = w1(e

−
12) = |P1P2|

α,

where1 ≤ α ≤ 2. This does not change the graph structure ofG and therefore, we can still apply the

same graph algorithm to detect the optimal boundary that minimizes this new grouping cost.

Figure 15 shows an experiment where the differentα’s are used in the proposed edge grouping method

with the extension of proximity exponentiation. We can clearly see that the increase of the proximity

exponentiation factorα can reduce the dominance of the region area in the resulting edge grouping.

A clear observation is that with the increase ofα, we detect boundaries with smaller enclosed region

areas. Figure 16 shows more experiment results in applying this extended method on some real images.

The grouping results are compared to the proposed edge grouping method without this extension (or

equivalently, withα = 1). We can see that settingα = 1.5 usually reduce the size of the detected

structures, which may be desirable in some applications. This improvement is most noticeable on the

image shown in Fig. 16(a), where the grouping result withoutthe extension does not detect any line

segments along the boundary of the bird, while the extensionof proximity exponentiation allows the

proposed method to detect the bird’s boundary accurately. As with previous extensions, it is also possible

to apply the strategy introduced in Section IV-C to iteratively detect multiple boundaries.

D. Detecting Simple Boundaries

Just like many previous edge-grouping methods, the proposed edge-grouping method has no guarantee

to detect onlysimpleboundaries without self intersections. The major reason lies in that the involved

gap-filling segments may intersect with other gap-filling ordetect segments. The boundaries with self

intersections are not desirable since they do not representthe boundaries of any real structures. However,

it should be noted first that, in using the proposed method, the nonsimple boundaries do not happen very

frequently, since the presence of a self-intersection would produce a boundary that encloses multiple

subregions with opposite-sign region areas. In this case, the total enclosed area is relatively small and

therefore, such a boundary is not likely to be detected in using the proposed method. For example, the

nonsimple boundary shown in Fig. 17 encloses two subregionswith similar area but different area signs.
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Fig. 15. Sample grouping results using the proposed grouping method with the extension of proximity exponentiation. The first

row, from left to right, shows the input image, the Canny edgedetection result, the line-approximation result, and the optimal

boundary detected by the proposed method with proximity exponentiation factorα = 1 (equivalent to the proposed method

without proximity exponentiation). The second row, from left to right, shows the optimal boundaries detected by the proposed

method with proximity exponentiation factorα = 1.1, 1.2, 1.5, 1.7, respectively.

(a)

(b)

(c)

(d)

(e)

Fig. 16. More experiment results of applying the proposed method with proximity exponentiation on real images. Each row

shows, from left to right, the input image, the Canny edge detection result, the line-approximation result, the optimalboundary

detected whenα = 1, and optimal boundary whenα = 1.5.
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The total area enclosed by this boundary is in fact close to zero. Anyway, we still need to solve this

self-intersection problem when it happens. In this section, we present a strategy to force the proposed

edge-grouping method to produce onlysimpleboundaries.

The basic idea of this strategy is that, when a detected boundary contains a self intersection, we try

to avoid this self intersection by not allowing the involvedintersecting line segments to be included

simultaneously in the detected boundary. For example, if the detected boundaryP1 . . . P16 traverses two

intersecting line segmentsP4P5 and P11P12 as shown in Fig. 17(a), we consider two cases. Case1:

Remove segmentP4P5 from the input set of segments and repeat the proposed methodto obtain a

boundaryB1 as shown in Fig. 17(b); Case2: Remove segmentP11P12 from the input set of segments

and repeat the proposed method to obtain a boundaryB2 as shown in Fig. 17(c). If bothB1 and B2

are simple, the one with smaller grouping costφ(·) is then the desirable salient simple boundary. If any

one of them is nonsimple, we may continue considering two more cases by further removing one more

involved segment.

13P

2P1P

3P

12P

11P

6P
7P

8P

9P
10P

14P

15P

16P

(b)

B1

13P

2P1P

3P

4P

12P

11P

5P

6P
7P

8P

9P
10P

14P

15P

16P

(c)

B2

13P

2P1P

3P

4P

12P

11P

5P

6P
7P

8P

9P
10P

14P

15P

16P

B

(a)

Fig. 17. An illustration of the strategy for detecting only simple boundaries.

We can see that the direct implementation of this strategy infact generates a binary tree where the root

node represents an edge grouping on all line segments, each nonroot node represents an edge grouping

by removing some line segments, and each leaf node represents an edge grouping where the resulting

boundary is simple. It is also easy to see that the grouping cost keeps increasing from a parent node to its

children. In practice, we can use abranch-and-boundtechnique [19] to improve the algorithm efficiency:
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we always process the node with the smallest grouping cost from all the available ones and for any node

with a grouping cost larger than a known leaf node (a known detected simple boundary), we are not

going to proceed to its children. It is well known that this brand-and-bound strategy may still result in an

exponential complexity in the worst case. However, as mentioned above, the consideration of region-area

information makes the proposed edge-grouping method biased to produce simple boundaries. Therefore,

even when a nonsimple boundary is detected, we expect that the branch-and-bound tree would have

small depth and the optimal simple boundary can be found in a very small number of iterations. In our

about4500 experiments on detecting the first optimal boundaries (on different real images, with/without

various extensions), we only come across one case of detecting a nonsimple boundary, which is shown

in Fig. 18. In this case, the optimal simple boundary shown inFig. 18(d) is achieved after the blue

segment shown in Fig. 18(c) is removed and the depth of the constructed branch-and-bound tree is two.

However, when repeating the proposed method to detect multiple boundaries using the strategy introduced

in Section IV-C, we may encounter more cases of self-intersected boundaries.

VI. RELATED WORK

A. Edge Grouping

There has been a long line of research on edge grouping with many grouping costs and grouping

algorithms developed in past decades. However, most of the available edge-grouping methods only

consider the boundary information, such as the Gestalt lawsof closure, proximity and continuity. For

example, many edge-linking algorithms have been developedto connect the disjoint edges resulting from

an edge detector into longer edges or complete boundaries [20], [21], [22], [23], [24]. A typical criteria

used in edge linking is to connect the edges that are close to each other, which in fact indicates the

preference of boundary proximity. However, it is well knownthat by only considering proximity, most

edge-linking algorithms are very sensitive to image noise and it may be difficult for them to directly

extract perceptually salient structures.

In [11], Shashua and Ullman use a local parallel network to model the line segments and define a

grouping cost by combining the boundary proximity and continuity. An iterative update algorithm is

developed to search for an optimal boundary that may not be closed. Alter and Basri [2] further conduct

an extensive analysis of this parallel-network method and point out the problems when applying this

method iteratively to detect the second most salient boundary and the problems due to discretization.

Recent work on edge grouping includes Elder and Zucker [5], Williams and Thornberg [14], and the

ratio-contour method [13] where boundary closure, continuity and proximity are combined in the grouping
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(f)(e)

(b)(a)

(d)(c)

Fig. 18. An example of applying the branch-and-bound strategy to detect simple boundaries. (a) The input image. (b) The

detected segments. (c) The edge-grouping result by applying the proposed method with the continuity extension (Section V-A),

with λ = 1. The blue and green segments intersect each other. (d) The simple boundary detected by the branch-and-bound

strategy. (e) & (f) The zoomed version of the subregions of (c) and (d) around the blue/green segments in (c), respectively.

cost. Among these three methods, the ratio-contour method has been shown to have a better performance

by being more robust to image noise. Note that, our experiments in Section IV has shown that the method

developed in this paper usually performs better than the ratio-contour method.

In [12], we develop a convex edge-grouping method that combines both boundary and region informa-

tion. The grouping cost is also defined in a ratio form with a combined measure of proximity and region

intensity homogeneity in the numerator and the region area as the denominator. However, the graph

modelling and algorithm used in [12] can only detect convex boundaries. Without convex constraint,

we believe it is an NP-hard problem to minimize the grouping cost in [12]. In [25], we pair up line

segments into a new grouping token in order to detect symmetric boundaries by combining boundary

and region information. However, the assumption of symmetry does not hold for all structures in the real
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world. Note that our previous work on ratio contour, convex grouping and symmetric grouping also use

a ratio-form grouping cost and finally reduces the problem tothe graph problem of finding the minimum

ratio alternate cycle, which is similar to the one derived inthis paper, as shown at the end of Section III.

However, both the grouping cost and graph-modelling process developed in this paper are different from

the ones developed in these previous work since the groupingtasks are different.

B. Combining Boundary and Region Information

Pixel grouping is another important class of grouping methods that has been widely investigated

in past years. In a pixel-grouping method, each image pixel is treated as a token and the goal of

grouping is usually to find a boundary that partitions the image into foreground and background regions

or two subregions without labelling the foreground and background. Comparing edge grouping with

pixel grouping, there are both advantages and disadvantages. For example, edge grouping simplifies the

quantization of many important boundary properties, such as continuity, convexity, and symmetry, which

may be difficult to consider in pixel grouping. In addition, the number of line segments detected in an

image is usually much smaller than the number of pixels in an image. This may make the edge grouping

to take less CPU time when conducting globally optimal grouping. However, edge grouping may fail

when the line segments can not be well detected from the inputimage.

While combining boundary and region information has not been extensively explored in previous edge

grouping methods, except for our recent work on convex and symmetric edge grouping [12], [25], it has

been investigated in several pixel-grouping methods. In [18], Cox, Rao and Zhong present a ratio-region

method to detect a closed boundary that partitions an image into foreground and background regions. The

grouping cost is of a ratio form, with the numerator measuring the boundary property and the denominator

measuring the foreground region area. It uses an optimization algorithm of repeating the minimum-cut

max-flow algorithm to find the graph partitioning that minimizes the grouping cost. In [26], Jermyn and

Ishikawa further extend the ratio-region method so that different boundary and region properties can

be considered in the grouping cost. In this method, the problem is modelled in a directed graph and

finally reduced to a graph problem of finding the minimum ratiocycle in the constructed directed graph.

This graph problem shares some similarity with the one formulated in this paper, but differs in (a) its

graph isdirectedand the graph in this paper is anundirected solid-dashedgraph, and (b) it searches

over all simple cycles while we only consideralternatecycles. In addition, some extensions, such as the

proximity exponentiation introduced in Section V-C, cannot be applied in pixel grouping.

In [27], Shi and Malik develop a normalized-cut method that seeks to partition an image into two
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balanced regions, without the labelling of the foreground and background. Given the NP-completeness

of this problem, spectral graph theory is applied to achievean approximate solution. In [28], Sumengen

and Manjunath present a graph-partitioning active contourapproach to iteratively search for a locally

optimal boundary that minimizes the grouping cost used in normalized cut. In [29], Chan and Vese

define a grouping cost that requires the resulting boundary to be both smooth and enclose a region with

homogenous intensity. In [30], Wang and Oliensis define a comprehensive grouping cost that measures

the complexity of both foreground and background regions. These complicated grouping costs, however,

usually lead to NP-hard or even non-polynomial-time problems and only local optimal solutions can be

found by some gradient-descending approaches, such as active contours.

VII. CONCLUSIONS

In this paper, we presented a new edge grouping method that can detect perceptually salient structures

from an image by combining the boundary and region information. In its baseline form, the boundary

proximity and region area are combined into a ratio-form grouping cost function. We then develop a

graph model to reduce this edge grouping problem to a graph problem that can be solved in polynomial

time in a globally optimal fashion. We tested this edge-grouping method on a large set of synthetic

data and some real images, both with comparisons to the ratio-contour method, which does not consider

region information. We showed that the inclusion of region-area information makes the proposed method

more robust against image noise and improves the performance in general. We also presented several

extensions to the proposed method that might be useful in some applications. These extensions include

the addition of boundary continuity and region intensity homogeneity into the grouping cost, the better

balance between the boundary and region terms in the grouping cost, and the enforcement of detecting only

simple boundaries. Some sample experiment results are shown to validate the use and the effectiveness

of these extensions.
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