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Abstract

This paper introduces a new edge grouping method that casltioundary and region information
to detect perceptually salient structures in noisy imadresticularly, we define a grouping cost in a
ratio form, where the numerator is a measure of boundary ipribx of the resulting structure and
the denominator is a measure of the area of the resultingtatel This area term in fact introduces
a preference towards detecting larger-size structurestlag@fore, makes the resulting edge grouping
more robust to image noise. To find the optimal grouping whilk minimum grouping cost, we develop
a special graph model with two different kinds of linking edgand then reduce the grouping problem
to a problem of finding a special kind of cycle in this graphtw#@ minimum cost in the ratio form.
We finally show that such an optimal cycle-finding problem d@nsolved in polynomial time by a
graph algorithm. We implement this edge grouping methast, iteon both synthetic data and some real
images, and compare its performance against the previdiesc@ntour method that does not consider
region information. Furthermore, we discuss several esiters of the proposed method, including the
incorporation of the well-known grouping cues of contiguénd intensity homogeneity, introducing a
factor to balance the contributions from the boundary arglore information, and the prevention of

detecting self-intersecting structural boundaries.

Index Terms

Perceptual organization, edge grouping, edge linkingndawy detection, graph models.

|. INTRODUCTION
Grouping(or perceptual organizationis an important problem in computer vision and image prsites

that seeks to identify some perceptually salient strustumenoisy images. It is usually achieved by first
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constructing a set of tokens from the input image and themupging a subset of these tokens into
some salient structures. The grouping process is usuafligded to minimize a pre-definagrouping
cost (function)that negatively measures the perceptual saliency of thdtireg structure based on some
psychological vision rules, such as Gestalt laws [1]. Giogjis an important step in mid-level computer
vision, which can provide with useful input to many highdéwcomputer-vision applications such as
object recognition or content-based image retrieval.

The challenge in grouping comes from both the definition efdghouping cost and the development of
an algorithm for finding the optimal grouping with the minimwrouping cost. In this paper, we develop
a new grouping method within thedge groupingramework, where the grouping tokens are a set of line
segments detected from the input image and the goal is tdifensubset of these line segments and
grouping them into the complete boundaries of some peradiptsalient structures. Being able to more
conveniently encode the well known Gestalt laws [1], edgriging has been studied for decades with
a long line of available edge-grouping methods, e.g. [2], [4, [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14].

Most of previous edge grouping methods only consider thealary information in their grouping cost.
For example, in almost all the previous edge-grouping nmaghboundanproximity is always considered
to make the resulting boundary contain as short gaps ashp@ssiconnecting the line segments into a
boundary. However, many constructed line segments in faoedrom image noise (or image texture) and
therefore, considering only boundary information usuatigkes the grouping very sensitive to the image
noise. Some boundary properties, sucltastinuity, which requires the resulting boundary to be smooth,
and convexity which requires the resulting boundary to be convex, mayigllr solve this sensitivity
problem by only detecting smooth and convex structures. é¥ew the incorporation of these properties
may limit the applicability of the grouping methods sincenpaalient structures in real applications are
not always smooth or convex.

To address this problem, in this paper we develop a new edgsing method that combines boundary
and region information. In its baseline form, it combines twoundary properties of proximity aradosure
and one region property of the enclosed region area. Spalbjfiche grouping cost for a resulting
boundary is defined to be a ratio between the total gap lerdgtigahe boundary and the area enclosed
by the boundary. The closure is set as a hard constraint hyrieg| the detected boundary to be always
closed. This way, we in fact introduce a preference to deidatger-size structures and therefore, make
this grouping method more robust to the image noise. From lthiseline method, we also discuss the

extensions of finding better balance between the boundatyegion properties and incorporating other
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boundary and region properties that may be desired in someiappplications.

To locate the closed boundary that minimizes this ratioafa@rouping cost, we first develop a new
graph model where line segments and in-between gaps arellgtdy two different kinds of linking
edges. Particularly, we introduce two edges to represesit lrae segment or in-between gap so that the
boundary and region information can be encoded into two -@ggght functions, respectively. Based on
this graph model, we reduce the edge grouping problem to kblgrroof finding a special kind of cycle
with minimum ratio-form cost. We find that this cycle-findipgoblem can be solved in polynomial time
by a globally optimal graph algorithm. We implement this edgrouping method and test it on both
synthetic data and some real images, and compare its pemfaenagainst ratio contour, another similar
edge grouping method that considers boundary continugitead of region information.

The remainder of this paper is organized as follows. Sedtidormulates the problem by introducing
the new grouping cost that combines boundary and regiomrirgtion. Section Il presents the details of
the graph model and the graph algorithm that are used foirgpthe formulated edge-grouping problem.
Section IV presents the experiment results on some syntdeta and real images, with a comparison
against ratio-contour method. Section V discusses seegtahsions to the proposed method. Section VI

briefly discusses some major related work. A brief conclasggiven in Section VII.

[I. PROBLEM FORMULATION

As illustrated in Fig. 1, it usually involves three steps wthepplying an edge grouping method to a
real image to detect perceptually salient structural bamied. The first step is to construct a set of line
segments by running an edge detector, such as the CannyaidtiEs], on the input image to detect a
set of edges. We then approximate the detected edges withad seaight line segments, as shown in
Fig. 1(b). These straight line segments are usually redetoeasdetected (line) segmentSince these
detected segments are disconnected from each other, in tord®nstruct a closed boundary we need
to fill the gaps between them. So in the second step, we fill s detween the detected segments
by connecting all the possible pairs of endpoints of differdetected segments. These connections are
referred to agjap-filling (line) segmenisas denoted by dashed lines in Fig. 1(dhis way, a boundary
is defined as a cycle that traverses a set of detected andliyagpgegmentsalternately The third step
is to develop an algorithm to find such a boundary that minégmia selected grouping cost, as shown in
Fig. 1(d).

INote that not all possible gap-filling segments are shownign Ec), in order to keep it readable.
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Fig. 1. The typical steps in applying an edge-grouping metttma real image to detect salient boundaries. (a) The input
image, (b) the detected segments, (c) constructing gamgfitlegments (dashed lines), and (d) the detected closedlaguthat

traverses some detected and gap-filling segments altgrnate

To combine the boundary and region information, in this pape introduce a ratio-form grouping

cost for a closed boundaty that traverses some detected and gap-filling segmentsaiiédy as

|Ba|

// dxdy 7
R(B)

where the numeratoi3;| is the total length of the gap-filling segments along the loauy B and

¢(B) = (1)

reflects the proximity of the boundari(5) is the region enclosed by the bound#&and the denominator
ffR(B) dxdy is the region area, which sets a preference to detect langmtgres. Such a preference makes
the grouping more robust against image noise. In the foligwdection, we develop a graph model and
algorithm to address the formulated edge grouping problgrfifaling the boundary that minimizes this

new grouping cost (1).

I11. GRAPHMODELLING AND ALGORITHM

In this section, we develop a graph model and algorithm toresidthe problem formulated in
the previous section. We begin by constructing a graph= (V, E), with a set of verticesV =
{ui,us,...,u,} and a set of edgek = {ej,ea,...,e,}. Particularly, we construct a pair of edges
ande~ for each line segment. We call the constructed pair of edgess$olid edges, if the corresponding
line segment is a detected one, atakhededges, if the corresponding line segment is a gap-filling one
This way, we actually construct two verticez$§,1) and uf.2), for each line-segment endpoint. Figure 2
shows an example, where for the detected line segrReRt shown in Fig. 2(a), we construct two solid
edgese;, andej,, shown by solid lines in Fig. 2(b). For the gap-filling segménP, in Fig. 2(a), we

construct two dashed edges; ande,;, shown by dashed lines in Fig. 2(b), and for each line-segmen
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endpointP;, i = 1,2,3, we construct two verticemz(-l) and uz(-z), 1 = 1,2,3. We will show that this

construction of edges in pairs facilitates the quantizatibthe region area enclosed by the boundary
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Fig. 2. An illustration of the graph construction. Linkindges corresponding to two segments with (a,b) same diredtiod)

opposite direction.

One problem in this graph construction is how to determireegtige connection relations, since each
line segment is represented by a pair of edges. For exampleigs. 2(a) or (c), the detected segment
P, P, is connected to the gap-filling segmeRiP; at . In the constructed graph we need to decide
whether we are going link}, to ej; andep, to e, or link e, to e andey, to eg;. In this paper, we
solve this problem by associating each of the two edges irgtaph, corresponding to the same line
segment, with a different direction. Particularly; indicates that the direction along the corresponding
line segment is from the left endpoint to the right endpoltR), and ¢~ indicates that the direction
along the corresponding line segment is from the right eimdggo the left endpoint (RL). For any line
segment, the left endpoint is the one with the smatleoordinate and the right endpoint is the one with
the largerz-coordinate. For example, for the line segméhf?, in both Figs. 2(a) and (c)P; is the left
endpoint and? is the right endpoint. This way, we can uniquely determiredbge-connection relation
by requiring consistency in direction between the two nbaing line segments. Figures 2(b) and (d)
show the edge linking obtained from the line segmeRt®, and P,P; shown in Figs. 2(a) and (c),
respectively. If ther-coordinates of the two endpoints are equal, we can decididdy-coordinates of
the two endpoints in a similar fashion. Note that, the caredéd graph is still amndirectedone and we
only use this direction information to define the edge-weiginctions as discussed later.

In this constructed grap8¥, a closed boundarg that traverses some detected and gap-filling segments
alternately, is in fact modeled by two cycles that travetse torresponding solid and dashed edges
alternately. An example is shown in Fig. 3, where the boundarP; ... P; is modeled by the two
cycles shown in Figs. 3(b) and (c). We can see that these twlesyare the “mirrors” of each other,

i.e., for a pair of edges™ ande™ constructed for the same line segment, if one of them is auedain
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one cycle , the other must be contained in the other cycle cBovenience, we call the graph to be

a solid-dashed (SDyraph, because no two solid edges are neighboring to eaeh, athd a cycle that
traverses solid and dashed edges alternately to beltarnatecycle. This way, the problem of finding
the boundary3 that minimizes the grouping cost3) given in Eq. (1) can be reduced to the problem
of finding an optimal alternate cyclé in the constructed SD grapfi if we can quantify the grouping

costo(B) by some edge weights i@
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Fig. 3. (a) A boundary with three detected segments and thapdilling segments. (b) & (c) Two “mirror” cycles in the gra
G corresponding to the boundary shown in (a).

We define two edge-weight functions, tfiest (edge) weightv; (e) and thesecond (edge) weighis (e),
for each edges € E. Given any line segmen®, P,, we set the first weight for the corresponding two

edges to
0 if PP, is a detected segment

wi(efy) = wiler) = . . .
|PLP,| if PP is a gap-filling segment,

where| P, P, | is the length of the line segmemY P,. For both solid and dashed edges, their second weights
are defined as the signed area associated to the correspdindisegment. As shown in Fig. 4(a), let the
bottom-left pixel in the input image be the origin, the horital direction be the direction of the-axis,
and the vertical direction be direction of tlyeaxis. The area associated to a line segnigit, is defined
as the area of the region bounded by this line segment andbjesction in thez-axis. The sign of this area
is defined to be positive for the edge corresponding to a ligenent that bears a LR direction and negative
otherwise. For the example shown in Fig. 4(a), we hayvée],) = —ws(e],) = area(Py P,PYPY) > 0,
where P and Py’ are the projections aP; and P, onto thez-axis. This definition allows us to calculate
the total area within a boundary by simply summing up the esijareas associated to each of its line
segments. An example is shown in Fig. 4(b), where the aredefpblygonP;...Ps is equal to the
summation of positive areas associatedid™, P, P3;, P3Py, and negative areas associatedRgPs,
PP and P Py .
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Fig. 4. Anillustration of defining the second weight for arged(a) Area associated to a line segment. (b) The region area

enclosed by a closed boundary is equal to the sum of the sigmeas associated to the line segments along this boundary.

As discussed above, a closed boundérgorresponds to two alternate “mirror” cycl€s andC~ in

G, as shown in Figs. 3(b) and (c). Since the edge§finandC~ are constructed in pairs, we have

Wl(C+) = Z wl(e) = Wl(C‘) = Z w1(6) >0

ecCt ecC—
and Wy(C") = Z wae) = —Wa(C™) = — Z wa(e).
ecCt ecC—

Without loss of generality, let the cycle™ be the one with the positive total second weight, ,(CT) =
—W>(C™) > 0. It is easy to verify thatV;(C™) is equal to the numerator ef(3) andW»(C") is equal
to the total area of the enclosed region, i.e., the denomirgft#(5B). Since for every cycl&€™ there
exists a “mirror” cycleC™ in G, it is easy to see that the cyadlethat minimizes

€)= A

is aC~ version (i.e.,W»(C) < 0) that corresponds to the bounddythat minimizess(B), i.e. ¢(B) =

(2)

—%. This way, we only need to find an alternafec G that minimizes the cycle ratig(C). This
problem can be solved in polynomial time by the minimumeratiternate-cycle algorithm presented in
[13].

IV. EXPERIMENTS

We implement the above graph model and algorithni'i+ and evaluate the proposed edge-grouping
method on a set of synthetic data and real imag&be synthetic data was directly generated as a set

of detected line segments. For the real images, we condtiectietected segments by edge detection

The software developed in this work can be downloaded fram:/hvww.cse.sc.edw/songwang/document/RRC.tgz.
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and line approximation. Particularly, we use the Canny edigfector from the Matlab image processing
toolbox, and the line approximation package developed byekob[16]. For the Matlab Canny edge
detector, we leave the parameters at their default valuesfa the line-approximation package, we set
the minimum edge length to be processedtopixels, and the maximum deviation between an edge

and its fitted line segment @ pixels.

A. Experiments on Synthetic Data

To evaluate the proposed edge-grouping method quangtgtiwe construct a set of synthetic data
with known desirable salient structural boundaries,gosund truth We measure the accuracy of an
edge-grouping result by comparing with the ground truttingidaccard’s similarity coefficien*g:%gg{,
where Rp and Rg are the region bounded by the optimal boundary detected éyptbposed edge-
grouping method and the one bounded by the ground-truthdsmynrespectively, antR| is the area of
R. Based on this accuracy measure, we also compare the parfoarof the proposed method against
the ratio-contour method [13], which considers only bougdaoperties of proximity and continuity in

its grouping cost
|BG|+/\-/ K2 (t)dt
_ B

¢r(B) /B . ;

where x(t) is the curvature and is the parameter of the arc-length parameterized bounBaryThis

grouping cost is also of a ratio form, with a denominator & boundary perimeter, which helps improve
the grouping robustness against image noise by avoidinduging overly short boundaries. Note that in
this ratio-contour method, the gap-filling tokens are naistoucted as straight line segments, but instead
approximated as Bezier curves, which connect the deteegaents with continuous tangent directions
and therefore, allow the measuring of curvature along tiselteg boundary. In our experiments we set

the parameteh at its default value ofl0 [13].

QO L2 O | @l |0

Fig. 5. 10 polygonal closed boundaries used for the construction ofhatic data.

For constructing a synthetic data sample, we pick one of ltheolygonal boundaries shown in

Fig. 5 as the ground truth, placed inside a square regionzef128 x 128. Then we remove a certain
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percentage of segments along this ground truth boundargratom locations to construct some gaps
and the remaining segments then are included as detecteddyments. The gap percentage along the
ground truth boundary is chosen from the $e¥, 5%, 10%, 20%, 30%, 40%, 50%}. We then construct

a set of additional detected line segments to simulate tlagémoise. Specifically, these noise segments
are placed at random locations (inside &8 x 128 square region), in random directions, and with a
length selected randomly betwe8rand 7 pixels (all properties uniformly distributed). The numbsr
added noise segments is chosen from the{8et0, 20, 40,80}. An example is shown in Fig. 6, where
the ground truth is chosen to be th&: boundary in Fig. 5. Fig. 6(c) shows a constructed synthedia d
sample by removing0% of the ground-truth boundary’s perimeter and then addibgoise segments.
To removep percent of the ground-truth boundary, we uniformly pastitithe boundary int@0 line
segments, and then removipgpercent of these line segments randomly. Figures 6(d) ansh@w the
grouping results of running the ratio-contour method aregloposed method, respectively. These results

represent a grouping accuracy @b1 and0.99 respectively.
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Fig. 6. An illustration of the synthetic data constructiamdathe grouping results. (a) Detected segments constriiciedthe
ground truth boundary. (b) Additional noise segments. (€pAstructed synthetic data sample by combining the segnséiotvn

in (a) and (b). (d) Optimal boundary detected from (c) by gjmg the ratio-contour method developed in [13]. (e) Optima
boundary detected from (c) by applying the proposed edgeping method.

As mentioned above, we haué different choices of the ground-truth boundarigglifferent choices
of the gap percentage along the ground truth boundary,atifierent choices of the number of additional
noise segments. For each possible combination of theseehoive also run the random sampling for
noise segments0 times to achieve 0 different sets of noise segments. Therefore, in total westant
10 x 10 x 7 x 5 = 3500 synthetic data samples. We run the edge grouping methodsidn & them
and evaluate the grouping accuracy by comparing the detegi#mal boundary with the ground truth.
Figure 7 shows the performance curves of the proposed edggiog method and the method developed

in [13]. The performance in Fig. 7(a) is shown in terms of ttegp gpercentage along the ground truth
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boundary and each point in this figure indicates the averageracy overl0 x 10 x 5 = 500 data
samples with the same gap percentage along the groundktouthdary. The performance in Fig. 7(b) is
shown in terms of the number of the additional noise segmantéseach point in this figure indicates
the average accuracy ovéd x 10 x 7 = 700 data samples with the same number of additional noise
segments. These curves clearly show that the inclusion efdhjion-area information in the proposed
method tends to produce better accuracy than the raticoomethod. The main reason is that the ratio-
contour method explicitly incorporates the continuity peaty to improve its robustness against noise,
but many boundaries in the real world are not necessarilyodmeverywhere. For example, as shown in
Fig. 6(d), the continuity preference may prevent the ratiotour method to correctly detect the desirable

ground-truth boundary completely.

1 T T T
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Fig. 7. Performance of the proposed method and the ratiteaommethod on the500 synthetic data samples.

B. Experiments on Real Images

We also test the proposed edge-grouping method on a setlahrages selected from the Berkeley
segmentation dataset [17]. All real images have a size beril81 x 321 or 321 x 481. In order to
reduce the number of the constructed gap-filling segmerighacan run in the order of? wheren is
the number of detected segments, we do not construct gmgfegments that are highly unlikely to
belong to the optimal salient boundary. Specifically, in eyperiments, we do not construct a gap-filling
segment between the two segment endpoints if the distarteede these two endpoints is larger than

50 pixels.
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The results or20 sample images are shown in Figs. 8 and 9. We can see that, Isydedng the
region information, the proposed method detects more agsiboundaries in most images, as shown in
Figs. 8(a, c-h, j) and 9(b-j). There are also some cases whaie methods produce similar results, as
shown in Figs. 8(b), and cases where results are differertigth acceptable, as shown in Fig. 8(i). Note
that, the incorporation of the region-area term in the psmabmethod does not mean that the proposed
method always produces a boundary that encloses largetl@aahe one produced by the ratio-contour
method. For example, Figure 9(h) shows a case where the gedpmethod detects a smaller structure
than the ratio-contour method. In this case, the proximigymplay a more dominating role than the
region-area term, but may not overplay the continuity usethée ratio-contour method. Table | gives the

number of detected segments and the CPU time taken by th@ggdpmethod for processing thexe

real images.
Image Fig.8(a) | Fig.8(b) | Fig.8(c) | Fig.8(d) | Fig.8(e) | Fig.8(f) | Fig.8(g) | Fig.8(h) | Fig.8(i) | Fig.8())
# Detected segments 562 382 784 525 596 482 451 406 502 656
CPU time (s) 50.20 3.94 161.39 | 26.00 45.01 25.92 25.86 13.94 28.07 69.00
Image Fig.9(a) | Fig.9(b) | Fig.9(c) | Fig.9(d) | Fig.9(e) | Fig.9(f) | Fig.9(g) | Fig.9(h) | Fig.9(i) | Fig.9()
# Detected segments 1208 679 594 654 390 413 557 235 390 457
CPU time (s) 858.48 | 98.47 44.18 65.92 9.62 30.97 120.19 | 3.63 40.24 68.10

TABLE |
THE NUMBER OF DETECTED LINE SEGMENTS AND THECPUTIME (IN SECONDS TAKEN BY THE PROPOSED METHOD IN

THE EXPERIMENTS SHOWN INFIGS. 8 AND 9.

C. Multiple Boundary Detection

So far we present the proposed method in the context of ortgcteg the boundary that minimizes
the grouping cost (1). In fact, it is easy to extend the prepasethod to detect multiple boundaries in an
image by iterating the method. The basic principle has bsed widely in many previous edge-grouping
methods, including the ratio-contour method. Given an imagg. the one shown in Fig. 10, we first
process it with the proposed method to detect the optimahtbary as introduced above. Then we remove
from the graphG all the edges associated to line segments that belong toetketdd optimal boundary,
i.e. for each line segmert; P; in the boundary we remove both edgﬁ; ande;; from G. We then run

the minimum-ratio-alternate-cycle algorithm again @h to detect the second optimal boundary. This
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Fig. 8. Edge grouping results d) real images. From left to right, Column 1: the input imagejudan 2: the Canny detection
result; Column 3: the detected segments resulting from dipproximation; Column 4: the optimal boundary detected hay t

ratio-contour method; Column 5: the optimal boundary deigdy the proposed method. DRAFT



Fig. 9. Edge grouping results on anothér real images. Each column depicts the same information a$gin8F
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process can be repeatédimes to detect théth optimal boundary. It is easy to show that the grouping
cost for the detected boundaries increases monotonigalifig iteration process. An example is shown
in Fig. 10, where the multiple salient structures can beaetkby iterating the proposed edge grouping

method.

Fig. 10. An example of detecting multiple boundaries froneal image by repeating the proposed edge-grouping method. O
the first row, from left to right, shows the input image, then@y edge detection result, the line approximation resudtected
segments), and thest optimal boundary. On the second row, from left to rightweidhe 2nd through5th optimal boundaries
obtained by iterating the proposed method.

V. EXTENSIONS

In this section we introduce four extensions to the proposedhod. The first two can be useful
to exploit possible prior knowledge about the desirableéesalstructures, by adding the properties of
continuity and intensity homogeneity to the grouping cdsie third extension seeks to adjust the balance
between proximity and region-area terms in the grouping,nace we find that, in certain cases, the
region-area term might have undesirable dominance in gngudhe fourth extension is to ensure that

detected salient boundaries are always simple withoutaaing any self intersections.

A. Adding Continuity

In the previous section, we show that, in general, the uséefagion-area property in the proposed
method leads to more favorable grouping than the use of maititi alone in the ratio-contour method.

However, there are certain cases where the desirable satiecture in an image ia priori known to
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be smooth. In this section, we show that we can extend theopempmethod to include continuity as
part of its grouping cost. This way, this extended edge graumethod in fact combine both proximity,
continuity and region-area properties.

In this extension, we first modify the grouping cost to

where k2(t) is the squared curvature along the arc-length parametetimeindary3, and as in the
ratio-contour method [13]) is a regularization factor that balance the proximity andtiwiity. In our
experiments, we consistently setto be 10. The additional curvature term in this extension makes the
resulting edge grouping more biased to detect smootherdzuigs.

However, it is difficult to directly measure the boundaryvature in our formulation since the boundary
B is a polygon consisting of a set of straight line segmentsaddress this problem by interpolating the
polygon by smooth cubic splines. Particularly, given a {jlipg segmentP, P; that connects detected
segments?; P, and Ps Py, we measure its curvatureover Z(M; P, PsMs), the Bezier curve with control
points My, P», P; and M,, as shown in Fig. 11. Her&/; and M, are the midpoints of’; P, and P; P,
respectively. We can then calculate the curvature along B#zier curve and use it to evaluate the
continuity of a boundary. In the graph modeling, we only ne&edodify the definition of the first edge
weight to incorporate this curvature term. Specifically, floe dashed edges); ande,; corresponding

to the gap-filling segmenk, P; shown in Fig. 11, we define their first edge weight as

wi(eg3) = wyegy) = |[PaPs| + A - K2 (t)dt.
Z(M, P, Ps Ms)
With this modification, the graply remains essentially the same and we can still apply the saamphg

algorithm to detect the optimal boundary that minimizes tmiodified grouping cost.

Fig. 11. An illustration of using Bezier curve to approximahe gap-filling and detected segments.
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Note that this type of Bezier-curve interpolation may ndiaet the boundary continuity accurately
when the angleg P, P, P; and /P, P; P, become too small. However, when any one of these two angles
becomes too small, this gap-filling segmdrtP; is not likely to be included in a smooth boundary.
Therefore, in practice, we additionally impose the follogiconstraint: we do not construct a gap-
filling segmentP, P; between detected segmeri®sP, and PPy, if either of the angles P, P,P; and
/ P, P3Py is smaller than a given threshold. In our experiments wehsgtthreshold to ber /2. Figure 12
demonstrates several examples of applying this extendgelg@abuping method. For comparison, we also
include the grouping results from the proposed method withbe extension of adding the continuity.
These results show that this extension may produce moredblogrouping results when the desirable

structural boundary is relatively smooth.
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Fig. 12. Sample grouping results of the proposed method aith without the extension of adding the boundary continuity

Each row shows, from left to right, the input image, the Cardge detection result, the line-approximation result,apgmal
boundary detected by the proposed method without addingdhgnuity, and the optimal boundary detected by the predos

method extended with continuity.
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B. Incorporating Intensity Homogeneity

In many real images, the desirable salient structure shavgely homogeneous intensity, while the
intensity across the structural boundary changes abruptipis section, we extend the proposed method
to incorporate such an intensity-homogeneity propertyédip ldetect the desirable boundaries.

To incorporate the intensity homogeneity, we modify theugriag cost (1) to

!BG!

// (z,y dmdy ©

1 if [[(z,y) —T|<e
0 if [I(z,y) —T|>e.

wheres! (z,y) is a function defined by

ol (z,y) =
HereI(x,y) is the image intensity of the pixel &t,y). T is a specified pixel intensity for the desirable
structure enclosed by the detected boundargan be either user specified or automatically selected by
some histogram analysis.> 0 is the expected pixel-intensity variation within the ragienclosed by
the detected boundary. In essence, this hew grouping cdgtconnts the pixels with an intensity in
[T — €, T + €] in calculating the enclosed region area, and thereforerifagdn detecting a boundary
that encloses a region with intensity as closelt@as possible. The smaller the value ©fthe more
homogeneous we expect the region enclosed by the detectedidny.

With this new grouping cost, the gragh remains the same. The only difference is to slightly modify
the definition of the second edge weight to count only the pixels with an intensity i’ —e, 7'+ €] in
calculating the enclosed region area. Therefore, we clrapply the proposed graph algorithm to detect
the optimal boundary that minimizes this new grouping cbgjure 13 shows some experiment results
on some real images by applying this extended edge-groupiettpod. We can see that the proposed
extension of incorporating intensity homogeneity can iowerthe grouping results when we have some
a priori knowledge on the intensity of desirable structure. For eplemin Fig. 13(e), we set a smaller
value forT and detect the bird while the original edge grouping methd@taout this extension detects
the chunk of the tree, which shows larger intensity.

Another interesting extension is to replagé(z,y) by (1 — ¢! (x,y)) in the grouping cost (3). This
makes the edge grouping to detect a boundary that enclosggoe iwith intensity not close t@. Some
experiment results are shown in Fig. 14. We can see thattteésagion may also help improve the grouping
results when it isa prior known that the desirable salient structure do not show icentdéensity. Note

that, the proposed edge grouping can only produce a sing&edlboundary in one iteration. Therefore,
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Fig. 13. Edge grouping results with the extension of incaafing intensity homogeneity. Each row shows, from leftigit,
the input image, the Canny edge-detection result, thedpproximation result, the optimal boundary detected bypifoposed
method without any extension, and the optimal boundaryotieteby the proposed method with the extension of addingsitie
homogeneitye is set to50 for all images.T" is set to165, 50, 70, 230, and50 for images (a-e), respectively.

with two disjoint salient structures with same intensitycls as the two eyes shown in Fig. 14(d), we
have no way to detect both of them in one iteration. Insteagneed to apply the multiple boundary

detection strategy introduced in Section IV-C to detectrtre=quentially.

C. Proximity Exponentiation

The grouping cost (1) is simply a ratio between the total gaqgth along the boundary and enclosed-
region area. While we have shown that this grouping costllysieads to good grouping results in many
images, there are cases where the region-area term domih&tgrouping cost prompting the proposed

method to detect an overly large region that does not aligh wigh any salient structural boundaries.
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Fig. 14. Each row depicts the same information as in Fig. 1&p«kthat the rightmost column shows the optimal boundary
detected by the proposed method with the extension of rieglac! (z,y) by (1 — o (z,y)). € is set to50 for all images.T
is set t050, 200, 150, 150, and220 for images (a-e), respectively.

This is mainly due to the fact that region area is quadratith wéspect to the boundary perimeter and
therefore the total gap length along the boundary. This lprobhas been noticed in previous pixel-
grouping methods that seek to combine boundary and regfomiation [18].

To address this problem, we introduce a new measurementosinpity by exponentiating the gap
length to some power. This would reduce the order of mageittifference between the proximity and
region-area terms. While we could simply choose an expoaeamd directly modify the grouping cost

to
|Ba|”

¢(B) = 77—,
//R(B) dxdy

it becomes difficult to encode such a grouping cost to thetoocted graph model. Instead we propose
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to modify the grouping cost to
o ZFEBG |F|a

¢(B) = ———,
// dxdy
R(B)
whereTl is the gap-filling segments alorg} To encode this grouping cost to the graghwe only need
to modify the first edge weight of the dashed edges, €/g.ande;, corresponding to the gap-filling
segmentP; P, to

wi(efy) = wi(epy) =[PP,

wherel < « < 2. This does not change the graph structurezoand therefore, we can still apply the
same graph algorithm to detect the optimal boundary thaimimes this new grouping cost.

Figure 15 shows an experiment where the differestare used in the proposed edge grouping method
with the extension of proximity exponentiation. We can digaee that the increase of the proximity
exponentiation factorv can reduce the dominance of the region area in the resultiigg grouping.

A clear observation is that with the increase @fwe detect boundaries with smaller enclosed region
areas. Figure 16 shows more experiment results in applyiisgeixtended method on some real images.
The grouping results are compared to the proposed edge iggoupethod without this extension (or

equivalently, witha. = 1). We can see that setting = 1.5 usually reduce the size of the detected
structures, which may be desirable in some applicationss Thprovement is most noticeable on the
image shown in Fig. 16(a), where the grouping result withingt extension does not detect any line
segments along the boundary of the bird, while the extensfoproximity exponentiation allows the

proposed method to detect the bird’s boundary accuratedywigh previous extensions, it is also possible

to apply the strategy introduced in Section IV-C to iteralyvdetect multiple boundaries.

D. Detecting Simple Boundaries

Just like many previous edge-grouping methods, the prapedge-grouping method has no guarantee
to detect onlysimple boundaries without self intersections. The major reases iih that the involved
gap-filling segments may intersect with other gap-fillingdmtect segments. The boundaries with self
intersections are not desirable since they do not repreésertioundaries of any real structures. However,
it should be noted first that, in using the proposed methas ntinsimple boundaries do not happen very
frequently, since the presence of a self-intersection dqubduce a boundary that encloses multiple
subregions with opposite-sign region areas. In this cdsetdtal enclosed area is relatively small and
therefore, such a boundary is not likely to be detected ingughe proposed method. For example, the

nonsimple boundary shown in Fig. 17 encloses two subregigtissimilar area but different area signs.
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Fig. 15. Sample grouping results using the proposed groupiethod with the extension of proximity exponentiationeTst
row, from left to right, shows the input image, the Canny edgtection result, the line-approximation result, and tp&noal
boundary detected by the proposed method with proximityorgptiation factora = 1 (equivalent to the proposed method
without proximity exponentiation). The second row, fronft e right, shows the optimal boundaries detected by thepgsed

method with proximity exponentiation facter = 1.1, 1.2, 1.5, 1.7, respectively.

Fig. 16. More experiment results of applying the proposedhoa with proximity exponentiation on real images. Each row
shows, from left to right, the input image, the Canny edgect@&n result, the line-approximation result, the optirbalindary

detected whemv = 1, and optimal boundary whenn = 1.5.
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The total area enclosed by this boundary is in fact close to.z&nyway, we still need to solve this
self-intersection problem when it happens. In this sectiva present a strategy to force the proposed
edge-grouping method to produce omliynpleboundaries.

The basic idea of this strategy is that, when a detected kmyrmbntains a self intersection, we try
to avoid this self intersection by not allowing the involvadersecting line segments to be included
simultaneously in the detected boundary. For example gifdétected boundar; . .. P traverses two
intersecting line segmentB,P; and P;; P2 as shown in Fig. 17(a), we consider two cases. Clase
Remove segmenP, P; from the input set of segments and repeat the proposed methathtain a
boundaryB; as shown in Fig. 17(b); Case Remove segmenk;; Pj, from the input set of segments
and repeat the proposed method to obtain a bounfargs shown in Fig. 17(c). If boti8; and B,
are simple, the one with smaller grouping cest) is then the desirable salient simple boundary. If any
one of them is nonsimple, we may continue considering twoenoases by further removing one more

involved segment.

' \ 8 P4
P, ) P Py :
@\\\ j/? _—P m\\\ /// DN P,

P14 P13 6

Fig. 17. An illustration of the strategy for detecting oniynple boundaries.

We can see that the direct implementation of this stratedgdhgenerates a binary tree where the root
node represents an edge grouping on all line segments, esrbat node represents an edge grouping
by removing some line segments, and each leaf node repseaentdge grouping where the resulting
boundary is simple. It is also easy to see that the groupisglaeps increasing from a parent node to its

children. In practice, we can usebaanch-and-boundechnique [19] to improve the algorithm efficiency:
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we always process the node with the smallest grouping cost &ll the available ones and for any node
with a grouping cost larger than a known leaf node (a knowraet simple boundary), we are not
going to proceed to its children. It is well known that thisbd-and-bound strategy may still result in an
exponential complexity in the worst case. However, as mestil above, the consideration of region-area
information makes the proposed edge-grouping method thisseroduce simple boundaries. Therefore,
even when a nonsimple boundary is detected, we expect thabrénch-and-bound tree would have
small depth and the optimal simple boundary can be found ierg small number of iterations. In our
about4500 experiments on detecting the first optimal boundaries (dierént real images, with/without
various extensions), we only come across one case of dejegthonsimple boundary, which is shown
in Fig. 18. In this case, the optimal simple boundary showrkrig. 18(d) is achieved after the blue
segment shown in Fig. 18(c) is removed and the depth of thetraried branch-and-bound tree is two.
However, when repeating the proposed method to detectpfeuibundaries using the strategy introduced

in Section IV-C, we may encounter more cases of self-inteeseboundaries.

VI. RELATED WORK
A. Edge Grouping

There has been a long line of research on edge grouping withy rgeouping costs and grouping
algorithms developed in past decades. However, most of ¥adable edge-grouping methods only
consider the boundary information, such as the Gestalt lawdosure, proximity and continuity. For
example, many edge-linking algorithms have been develtpednnect the disjoint edges resulting from
an edge detector into longer edges or complete boundat®@s[2], [22], [23], [24]. A typical criteria
used in edge linking is to connect the edges that are closadb ether, which in fact indicates the
preference of boundary proximity. However, it is well knowrat by only considering proximity, most
edge-linking algorithms are very sensitive to image noisd & may be difficult for them to directly
extract perceptually salient structures.

In [11], Shashua and Uliman use a local parallel network talehdhe line segments and define a
grouping cost by combining the boundary proximity and aomty. An iterative update algorithm is
developed to search for an optimal boundary that may notdedl Alter and Basri [2] further conduct
an extensive analysis of this parallel-network method aauhtpout the problems when applying this
method iteratively to detect the second most salient boyndad the problems due to discretization.
Recent work on edge grouping includes Elder and Zucker [S]liais and Thornberg [14], and the

ratio-contour method [13] where boundary closure, coritynand proximity are combined in the grouping
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Fig. 18. An example of applying the branch-and-bound sgsate detect simple boundaries. (a) The input image. (b) The
detected segments. (c) The edge-grouping result by ampthie proposed method with the continuity extension (Sacdad\),
with A = 1. The blue and green segments intersect each other. (d) Tiesboundary detected by the branch-and-bound

strategy. (e) & (f) The zoomed version of the subregions dfafed (d) around the blue/green segments in (c), respegtivel

cost. Among these three methods, the ratio-contour methsdbaen shown to have a better performance
by being more robust to image noise. Note that, our expetisiarSection IV has shown that the method
developed in this paper usually performs better than thHe-atntour method.

In [12], we develop a convex edge-grouping method that cassboth boundary and region informa-
tion. The grouping cost is also defined in a ratio form with anbined measure of proximity and region
intensity homogeneity in the numerator and the region asegha denominator. However, the graph
modelling and algorithm used in [12] can only detect convexridaries. Without convex constraint,
we believe it is an NP-hard problem to minimize the groupigtdn [12]. In [25], we pair up line
segments into a new grouping token in order to detect synitnetrundaries by combining boundary

and region information. However, the assumption of symynétres not hold for all structures in the real
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world. Note that our previous work on ratio contour, converuping and symmetric grouping also use
a ratio-form grouping cost and finally reduces the problerthtograph problem of finding the minimum

ratio alternate cycle, which is similar to the one derivedhiis paper, as shown at the end of Section lIl.
However, both the grouping cost and graph-modelling preckesveloped in this paper are different from

the ones developed in these previous work since the groupsig are different.

B. Combining Boundary and Region Information

Pixel grouping is another important class of grouping mdthehat has been widely investigated
in past years. In a pixel-grouping method, each image pigelréated as a token and the goal of
grouping is usually to find a boundary that partitions thedminto foreground and background regions
or two subregions without labelling the foreground and lgmoknd. Comparing edge grouping with
pixel grouping, there are both advantages and disadvasit&ge example, edge grouping simplifies the
guantization of many important boundary properties, suchantinuity, convexity, and symmetry, which
may be difficult to consider in pixel grouping. In additiomet number of line segments detected in an
image is usually much smaller than the number of pixels innaagie. This may make the edge grouping
to take less CPU time when conducting globally optimal gingpHowever, edge grouping may fail
when the line segments can not be well detected from the inpage.

While combining boundary and region information has notrbextensively explored in previous edge
grouping methods, except for our recent work on convex amansgtric edge grouping [12], [25], it has
been investigated in several pixel-grouping methods. 8j,[Cox, Rao and Zhong present a ratio-region
method to detect a closed boundary that partitions an imatgefareground and background regions. The
grouping cost is of a ratio form, with the numerator meagythre boundary property and the denominator
measuring the foreground region area. It uses an optimizalgorithm of repeating the minimum-cut
max-flow algorithm to find the graph partitioning that minzag the grouping cost. In [26], Jermyn and
Ishikawa further extend the ratio-region method so thatediht boundary and region properties can
be considered in the grouping cost. In this method, the prabls modelled in a directed graph and
finally reduced to a graph problem of finding the minimum ratyele in the constructed directed graph.
This graph problem shares some similarity with the one fdated in this paper, but differs in (a) its
graph isdirectedand the graph in this paper is amdirected solid-dashedraph, and (b) it searches
over all simple cycles while we only considelternatecycles. In addition, some extensions, such as the
proximity exponentiation introduced in Section V-C, cahbe applied in pixel grouping.

In [27], Shi and Malik develop a normalized-cut method theeks to partition an image into two
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balanced regions, without the labelling of the foreground dackground. Given the NP-completeness
of this problem, spectral graph theory is applied to achi@weapproximate solution. In [28], Sumengen
and Manjunath present a graph-partitioning active contqproach to iteratively search for a locally
optimal boundary that minimizes the grouping cost used inmadized cut. In [29], Chan and Vese
define a grouping cost that requires the resulting boundabetboth smooth and enclose a region with
homogenous intensity. In [30], Wang and Oliensis define apzehensive grouping cost that measures
the complexity of both foreground and background regiortgeesE complicated grouping costs, however,
usually lead to NP-hard or even non-polynomial-time protdeand only local optimal solutions can be

found by some gradient-descending approaches, such &s aotitours.

VIlI. CONCLUSIONS

In this paper, we presented a new edge grouping method thadetact perceptually salient structures
from an image by combining the boundary and region inforamatin its baseline form, the boundary
proximity and region area are combined into a ratio-formugiag cost function. We then develop a
graph model to reduce this edge grouping problem to a grapblgm that can be solved in polynomial
time in a globally optimal fashion. We tested this edge-ging method on a large set of synthetic
data and some real images, both with comparisons to theaatiour method, which does not consider
region information. We showed that the inclusion of regayea information makes the proposed method
more robust against image noise and improves the performmangeneral. We also presented several
extensions to the proposed method that might be useful iresmpplications. These extensions include
the addition of boundary continuity and region intensityrto@eneity into the grouping cost, the better
balance between the boundary and region terms in the grgupist, and the enforcement of detecting only
simple boundaries. Some sample experiment results arerstowalidate the use and the effectiveness

of these extensions.

ACKNOWLEDGMENTS

This work was funded, in part, by grant NSF-EIA-0312861.

REFERENCES

[1] G. Kanizsa,Organization in Vision New York: Praeger, 1979.
[2] T. Alter and R. Basri, “Extracting salient contours froimages: An analysis of the saliency network,” limternational
Journal of Computer Visignl998, pp. 51-69.

DRAFT



(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]

[22]
(23]

27

A. Amir and M. Lindenbaum, “A generic grouping algorithand its quantitative analysislEEE Transactions on Pattern
Analysis and Machine Intelligenceol. 20, no. 2, pp. 168-185, 1998.

J. H. Elder, A. Krupnik, and L. A. Johnston, “Contour gping with prior models,"EEE Transactions on Pattern Analysis
and Machine Intelligencevol. 25, no. 6, pp. 661-674, 2003.

J. H. Elder and S. W. Zucker, “Computing contour closuiga, European Conference on Computer Visidi®96, pp.
399-412.

G. Guy and G. Medioni, “Inferring global perceptual counts from local features,International Journal of Computer
Vision vol. 20, no. 1, pp. 113-133, 1996.

D. Huttenlocher and P. Wayner, “Finding convex edge gings in an image,International Journal of Computer Vision
vol. 8, no. 1, pp. 7-29, 1992.

D. Jacobs, “Robust and efficient detection of convex psjUlEEE Transactions on Pattern Analysis and Machine
Intelligence vol. 18, no. 1, pp. 23-27, 1996.

S. Mahamud, L. R. Williams, K. K. Thornber, and K. Xu, “Segntation of multiple salient closed contours from real
images,”IEEE Transactions on Pattern Analysis and Machine Intelicg vol. 25, no. 4, pp. 433-444, 2003.

S. Sarkar and K. Boyer, “Quantitative measures of clkabgsed on feature organization: Eigenvalues and eigemségct
in IEEE Conference on Computer Vision and Pattern Recogniti@®6, pp. 478-483.

A. Shashua and S. Ullman, “Structural saliency: Theedidn of globally salient structures using a locally cocted
network,” in IEEE International Conference on Computer Visid®88, pp. 321-327.

J. S. Stahl and S. Wang, “Convex grouping combining lolauy and region information,” ilEEE International Conference
on Computer Visionvol. 2, 2005, pp. 946—953.

S. Wang, T. Kubota, J. Siskind, and J. Wang, “Saliensetbboundary extraction with ratio contoutl2EE Transactions
on Pattern Analysis and Machine Intelligena®l. 27, no. 4, pp. 546-561, 2005.

L. Williams and K. K. Thornber, “A comparison measuresr fdetecting natural shapes in cluttered background,”
International Journal of Computer Visiowol. 34, no. 2/3, pp. 81-96, 2000.

J. Canny, “A computational approach to edge detectitEEE Transactions on Pattern Analysis and Machine Intehicg
vol. 8, no. 6, pp. 679-698, 1986.

P. D. Kovesi, “Matlab functions for computer vision aimhage analysis,” School of Computer Science & Software
Engineering, The University of Western Australia, htigwiv.csse.uwa.edu.aupk/research/matlabfns/.

D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A databasé fmuman segmented natural images and its application to
evaluating segmentation algorithms and measuring eambgiatistics,” iNlEEE International Conference on Computer
Vision vol. 2, July 2001, pp. 416-423.

I. Cox, S. B. Rao, and Y. Zhong, “Ratio regions: A techrégfor image segmentation,” imternational Conference on
Pattern Recognition1996, pp. 557-564.

R. Horst and H. TuyGlobal Optimization: Deterministic Approache3rd ed. Berlin: Springer-Verlag, 1996.

A. Farag and E. Delp, “Edge linking by sequential sedréattern Recognitionvol. 28, no. 5, pp. 611-633, 1995.

E. Saber, A. Tekalp, and G. Bozdagi, “Fusion of color a&adge information for improved segmentation and edge lgpKin
Image and Vision Computingol. 15, no. 10, pp. 769-780, 1997.

R. Gonzalez and R. WoodBjgital Image Processing Upper Saddle River: Prentice Hall, 2002.

O. Ghita and P. Whelan, “Computational approach foreetigking,” Journal of Electronic Imagingvol. 11, no. 4, pp.
479-485, 2002.

DRAFT



[24]

[25]

[26]

[27]

(28]

[29]

[30]

28

A. Sappa, “Unsupervised contour closure algorithm fange image edge-based segmentatidBEE Transactions on
Image Processingvol. 215, no. 2, pp. 377-384, 2006.

J. S. Stahl and S. Wang, “Globally optimal grouping fgmsnetric boundaries,” IREEE Conference on Computer Vision
and Pattern Recognitignvol. 1, 2006, pp. 1030-1037.

I. H. Jermyn and H. Ishikawa, “Globally optimal regioasd boundaries as minimum ratio cycledfEE Transactions on
Pattern Analysis and Machine Intelligenceol. 23, no. 10, pp. 1075-1088, 2001.

J. Shi and J. Malik, “Normalized cuts and image segntenid IEEE Transactions on Pattern Analysis and Machine
Intelligence vol. 22, no. 8, pp. 888—905, 2000.

B. Sumengen and B. S. Manjunath, “Graph partitioninjvaaontours (GPAC) for image segmentatiolisEE Transactions
on Pattern Analysis and Machine Intelligena®l. 28, no. 4, pp. 509-521, 2006.

T. F. Chan and L. A. Vese, “Active contours without eddEEE Transactions on Image Processingl. 10, no. 2, pp.
266-277, 2001.

H. Wang and J. Oliensis, “Salient contour detectiomgs global contour discontinuity measurement,IlEEE Workshop

on Perceptual Organization in Computer Visj@006, p. 190.

DRAFT



