Recursion
With Fractals
Solve a problem by solving smaller versions of the same problem
– Divide and Conquer Algorithms
– Backtracking

Recursive Method – a method that calls itself
– “Loop-like”
– Call stack

Recursive Methods Required
– Halting Condition
– Recursive Call

Example
```java
public static void countDown(int i)
{
    if(i < 0 )//Halting Condition
        return;
    System.out.println(i);
    countDown(i-1);//Recursive Call
}
```
Concept

• Cut area into 9 equal squares
 – 3 Horizontal
 – 3 Vertical
• Fill in the Center Square
• Repeat this process for the 8 surrounding squares until a limit has been reached
 – Recursive Depth
 – Pixel Limit
Solution of the Small Problem

- Cut area into 9 equal squares given the length \((s) \) of a side and a starting top left coordinates \((x,y)\)
 - 3 Horizontal
 - 3 Vertical

- Fill in the Center Square using that length
 - Assuming drawing requires Top Left Coordinates
 - Size is \(s/3 \times s/3 \)
 - Draw from Top left using the Size

Example

\[\text{Top Left Coordinates (x,y)} \]
\[\text{Side Length (s)} \]
\[\text{Size of Center Square (s/3)} \]
Solution of the Small Problem

• Cut area in to 9 equal squares given the length \(s \) of a side and a starting top left coordinates \((x,y)\)
 – 3 Horizontal
 – 3 Vertical

• Fill in the Center Square using that length
 – Assuming drawing requires Top Left Coordinates
 – Size is \(s/3 \times s/3 \)
 – Draw from Top left using the Size

Example
Solution of the Small Problem

• Cut area in to 9 equal squares given the length \(s \) of a side and a starting top left coordinates \((x,y)\)
 – 3 Horizontal
 – 3 Vertical

• Fill in the Center Square using that length
 – Assuming drawing requires Top Left Coordinates
 – Size is \(s/3 \times s/3 \)
 – Draw from Top left using the Size

Example

\[
\begin{array}{ccc}
(x,y) & (x+s/3, y+s/3) & (s) \\
(x+s/3) & (s/3) & \\
\end{array}
\]
Solution of the Small Problem

- Cut area into 9 equal squares given the length (s) of a side and a starting top left coordinates (x,y)
 - 3 Horizontal
 - 3 Vertical
- Fill in the Center Square using that length
 - Assuming drawing requires Top Left Coordinates
 - Size is s/3 x s/3
 - Draw from Top left using the Size

Example:

- (x,y)
- (x+s/3, y+s/3)
- (s/3)
- (s)
- Draw (x,y,w,h)
Solution of the Small Problem

- Cut area into 9 equal squares given the length (s) of a side and a starting top left coordinates (x, y)
 - 3 Horizontal
 - 3 Vertical
- Fill in the Center Square using that length
 - Assuming drawing requires Top Left Coordinates
 - Size is s/3 x s/3
 - Draw from Top left using the Size
Using Recursion to Solve Bigger Problem

- Repeat this process for the 8 surrounding squares until a limit has been reached
 - If a pixel limit or recursive depth has been reached then return (Halting Condition)
 - Assume recursive method is ordered (x-coordinate, y-coordinate, length of the side)
 - Top Left \((x,y,s/3)\)
 - Top Middle \((x+s/3, y, s/3)\)
 - Top Right \((x+s*2/3, y, s/3)\)
 - Middle Left \((x, y+s/3, s/3)\)
 - Middle Right \((x+s*2/3, y+s/3, s/3)\)
 - Bottom Left \((x, y+s*2/3, s/3)\)
 - Bottom Middle \((x+s/3, y+s*2/3, s/3)\)
 - Bottom Right \((x+s*2/3, y+s*2/3, s/3)\)
Using Recursion to Solve Bigger Problem

• Repeat this process for the 8 surrounding squares until a limit has been reached
 – If a pixel limit or recursive depth has been reached then return (Halting Condition)
 – Assume recursive method is ordered (x-coordinate, y-coordinate, length of the side)
 – Top Left \((x,y,s/3)\)
 – Top Middle \((x+s/3, y, s/3)\)
 – Top Right \((x+s*2/3, y, s/3)\)
 – Middle Left \((x, y+s/3, s/3)\)
 – Middle Right \((x+s*2/3, y+s/3, s/3)\)
 – Bottom Left \((x, y+s*2/3, s/3)\)
 – Bottom Middle \((x+s/3, y+s*2/3, s/3)\)
 – Bottom Right \((x+s*2/3, , y+s*2/3, s/3)\)

Example
Using Recursion to Solve Bigger Problem

- Repeat this process for the 8 surrounding squares until a limit has been reached
 - If a pixel limit or recursive depth has been reached then return (Halting Condition)
 - Assume recursive method is ordered (x-coordinate, y-coordinate, length of the side)
 - Top Left \((x,y,s/3)\)
 - Top Middle \((x+s/3, y, s/3)\)
 - Top Right \((x+s*2/3, y, s/3)\)
 - Middle Left \((x, y+s/3, s/3)\)
 - Middle Right \((x+s*2/3, y+s/3, s/3)\)
 - Bottom Left \((x, y+s*2/3, s/3)\)
 - Bottom Middle \((x+s/3, y+s*2/3, s/3)\)
 - Bottom Right \((x+s*2/3, , y+s*2/3, s/3)\)
Using Recursion to Solve Bigger Problem

- Repeat this process for the 8 surrounding squares until a limit has been reached
 - If a pixel limit or recursive depth has been reached then return (Halting Condition)
 - Assume recursive method is ordered (x-coordinate, y-coordinate, length of the side)
 - Top Left \((x, y, s/3)\)
 - Top Middle \((x+s/3, y, s/3)\)
 - Top Right \((x+s*2/3, y, s/3)\)
 - Middle Left \((x, y+s/3, s/3)\)
 - Middle Right \((x+s*2/3, y+s/3, s/3)\)
 - Bottom Left \((x, y+s*2/3, s/3)\)
 - Bottom Middle \((x+s/3, y+s*2/3, s/3)\)
 - Bottom Right \((x+s*2/3, y+s*2/3, s/3)\)

Example

![Sierpinski's Carpet Diagram](image-url)
Using Recursion to Solve Bigger Problem

- Repeat this process for the 8 surrounding squares until a limit has been reached
 - If a pixel limit or recursive depth has been reached then return (Halting Condition)
 - Assume recursive method is ordered (x-coordinate, y-coordinate, length of the side)
 - Top Left \((x, y, s/3)\)
 - Top Middle \((x+s/3, y, s/3)\)
 - Top Right \((x+s*2/3, y, s/3)\)
 - Middle Left \((x, y+s/3, s/3)\)
 - Middle Right \((x+s*2/3, y+s/3, s/3)\)
 - Bottom Left \((x, y+s*2/3, s/3)\)
 - Bottom Middle \((x+s/3, y+s*2/3, s/3)\)
 - Bottom Right \((x+s*2/3, y+s*2/3, s/3)\)
Using Recursion to Solve Bigger Problem

• Repeat this process for the 8 surrounding squares until a limit has been reached
 – If a pixel limit or recursive depth has been reached then return (Halting Condition)
 – Assume recursive method is ordered (x-coordinate, y-coordinate, length of the side)
 – Top Left \((x, y, s/3)\)
 – Top Middle \((x+s/3, y, s/3)\)
 – Top Right \((x+s*2/3, y, s/3)\)
 – Middle Left \((x, y+s/3, s/3)\)
 – Middle Right \((x+s*2/3, y+s/3, s/3)\)
 – Bottom Left \((x, y+s*2/3, s/3)\)
 – Bottom Middle \((x+s/3, y+s*2/3, s/3)\)
 – Bottom Right \((x+s*2/3, y+s*2/3, s/3)\)
Using Recursion to Solve Bigger Problem

- Repeat this process for the 8 surrounding squares until a limit has been reached
 - If a pixel limit or recursive depth has been reached then return (Halting Condition)
 - Assume recursive method is ordered (x-coordinate, y-coordinate, length of the side)
 - Top Left (x,y,s/3)
 - Top Middle (x+s/3, y, s/3)
 - Top Right (x+s*2/3, y, s/3)
 - Middle Left (x, y+s/3, s/3)
 - Middle Right (x+s*2/3, y+s/3, s/3)
 - Bottom Left (x, y+s*2/3, s/3)
 - Bottom Middle (x+s/3, y+s*2/3, s/3)
 - Bottom Right (x+s*2/3, y+s*2/3, s/3)
Using Recursion to Solve Bigger Problem

• Repeat this process for the 8 surrounding squares until a limit has been reached
 – If a pixel limit or recursive depth has been reached then return (Halting Condition)
 – Assume recursive method is ordered (x-coordinate, y-coordinate, length of the side)
 – Top Left (x, y, s/3)
 – Top Middle (x+s/3, y, s/3)
 – Top Right(x+s*2/3, y, s/3)
 – Middle Left(x, y+s/3, s/3)
 – Middle Right(x+s*2/3, y+s/3, s/3)
 – Bottom Left(x, y+s*2/3, s/3)
 – Bottom Middle(x+s/3, y+s*2/3, s/3)
 – Bottom Right(x+s*2/3, y+s*2/3, s/3)