
1

Programming Review

Part 03

Problem
Solving

1. Identify your Data.

2. Determine how the data changes over time.

3. Consider structures for both behavior and
data.

4. Group together (encapsulate) related
information into Classes of Objects.

5. Develop functionality / methodologies that
relates to the behavior of your Objects.

6. Further identify relationships between the
Classes and optimize the structure.

7. Determine if there exists software patterns
that may assist.

Identify
Data

Determine how
it changes

Is this enough
to solve this

problem?

Are you sure?

Implement
the Solution

Group related
Information in

Classes

Develop Methods
related to the
Information

Identify Class
Relationships

Is this enough
to solve this

problem?

Look for Related
Software Patterns

Start
End

True

True

True

False

False

False

Code Organization
Methods and Object-Oriented Programming

Project

Classes

Methods

Problem
Solving

2. Determine how the data changes over time.

– This demonstrates how the software
behaves.

– What are the noticeable patterns from
input to output?

– Construct Flow-Charts for low-level logic.

– What are some common actions within
these patterns? Can they be grouped and
reused as functions / methods?

– What features modify the data and how?

– Look for the Verbs

Identify
Data

Determine how
it changes

Is this enough
to solve this

problem?

Are you sure?

Implement
the Solution

Group related
Information in

Classes

Develop Methods
related to the
Information

Identify Class
Relationships

Is this enough
to solve this

problem?

Look for Related
Software Patterns

Start
End

True

True

True

False

False

False

1 2

3 4

5 6

2

Syntax for Declaring Dynamic Methods

<<scope>> <<return type>> <<identifier>> (<<parameter(s)>>, …)

{

 <<Body of the Method>>

}

Methods

•Groups functionality into a “callable” structure

•“Verbs”

•Create methods based on singular verbs

•Dynamically created during runtime

•Methods in Java must be declared within a Class

Example

public boolean isValid(int index)

{

 return index >= 0 && index <a.length;

}

Scope and
Return Type

•Scope indicates where the method can be called

–Public => called outside of the class.

–Private => only called inside of the class.

•Return Type allows methods to pass back values
outside of the method

•The “void” return type indicates the method
returns nothing

•Any non-void type must return that type of
value
–Must use the word “return” followed by the value

–Return immediately exits the method

–All paths must return a value

Example

public int getValueFrom(int index)

{

 if(!isValid(index))

 return -1;

 else

 return a[index];

}

private boolean isValid(int i)

{

 return i >= 0 && i <a.length;

}

Identifiers and
Parameters

•Identifiers are the name given to the method

–Same rules as Variables

–Good programming practice to “Camel Case”
these as well

–Good programming practice to give method
“verb-like” names

•Parameters allow outside information to be
passed into the method
–Act as variables for these external values

–A parameter’s scope is only within the body of the
method

–Every parameter needs to be declared (type and
id) and separated using a comma “,”.

Example
public void printMax(int[] a)
{
 if(a == null)//Does “a” exist?
 return;//If not, then leave
 int max = a[0];//Assume first value is max
 for(int i=1;i<a.length;i++)
 max = getMax(max,a[i]);
 System.out.println(“Max Value is ”+max);
}
private int getMax(int val1, int val2)
{
 if(val1 >= val2)
 return val1;
 else
 return val2;
}

Calling
Methods

•Using or “calling” methods depends on where it is
being called

• Inside the class where it was defined

–Use the identifier followed by the parameters

–For dynamic methods it is good practice to use the
reserved word “this”

•Outside the class where it was defined

–An instance of the class (an Object) must be
constructed and if not NullPointerException

–Use the instance followed by a dot “.” followed by the
identifier and parameters

•Methods are “pushed” onto a structure in memory
called a “Call Stack”

Syntax for Internal Call

this.<<method identifier>>(<<parameters>>);

Syntax for External Call

<<object identifier>>.<<method identifier>>(<<parameters>>);

Example for External

public static void main(String [] args)

{

 AClass aClass = new aClass();

 aClass.callPublicMethod();//External call

}

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

getValueFrom(4)

7 8

9 10

11 12

3

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

getValueFrom(4)

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

getValueFrom(4)

isValid(4)

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

getValueFrom(4)

isValid(4)

True

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

getValueFrom(4)

isValid(4)

True

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

getValueFrom(4)

!True == False

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

getValueFrom(4)

!True == False

13 14

15 16

17 18

4

Call Stack in MemoryExample
//Assume this is called from the Main
//Method
public int getValueFrom(int index)
{
 if(!isValid(index))
 return -1;
 else
 return a[index];
}
private boolean isValid(int i)
{
 return i >= 0 && i <a.length;
}

Main Method

Calling
Methods

Syntax for Declaring Static Methods

<<scope>> static <<return type>> <<identifier>> (<<parameter(s)>>, …)

{

 <<Body of the Method>>

}

Static
Methods

• Statically created in memory at Compilation Time.

–Does not depend on an instance of an object

–Sometimes called “Class Methods”

• The reserved word “this” cannot be used

• Static methods can call static methods

–Main method can directly call other static methods

• Dynamic methods CAN call Static methods Directly

• Static methods CANNOT call Dynamic methods Directly

Example

public static void printError(String msg)

{

 System.out.println(“Error! ”+msg);

}

Problem
Solving

3. If this is enough to implement the
requirements, then go no further and code
the software. Otherwise, consider using more
advanced software engineering techniques.

Identify
Data

Determine how
it changes

Is this enough
to solve this

problem?

Are you sure?

Implement
the Solution

Group related
Information in

Classes

Develop Methods
related to the
Information

Identify Class
Relationships

Is this enough
to solve this

problem?

Look for Related
Software Patterns

Start
End

True

True

True

False

False

False

Problem
Solving

4. Group together (encapsulate) related
information into Classes of Objects.

– How is information related and is it possible to group
information in its own unique data-type?

– In Object Orient Languages, Classes a structures
where data and functionality can be grouped
together to create instances we call Objects.

– Object Oriented Programming (OOP)
– Encapsulation

5. Develop functionality / methodologies that
relates to the behavior of your Objects.

– Objects can be viewed as nouns that perform actions
or verbs.

– Functions or methods are typically grouped inside of
classes to perform actions related to the object’s
data.

Identify
Data

Determine how
it changes

Is this enough
to solve this

problem?

Are you sure?

Implement
the Solution

Group related
Information in

Classes

Develop Methods
related to the
Information

Identify Class
Relationships

Is this enough
to solve this

problem?

Look for Related
Software Patterns

Start
End

True

True

True

False

False

False

Classes and
Objects

7 Steps for Creating and Using a Class
1. Declare the Class
2. Declare the Data
– Instance Variables (make their scope “private”)
– Class Constants (make their scope “public” and “static”)

3. Constructors
– Default
– Parameterized

4. Accessors for Every Instance Variable
5. Mutators for Every Instance Variable
– Check for valid values

6. Other useful methods
– toString()
– equals(value)

7. Use it!

Identify
Data

Determine how
it changes

Is this enough
to solve this

problem?

Are you sure?

Implement
the Solution

Group related
Information in

Classes

Develop Methods
related to the
Information

Identify Class
Relationships

Is this enough
to solve this

problem?

Look for Related
Software Patterns

Start
End

True

True

True

False

False

False

Syntax

<<scope>> class <<class identifier>>

{

 <<Body of the Class>>

}

Classes and
Objects

•Declare the Class

•The identifier becomes a Type

•Class identifier’s have the same rules as
Variables and Methods

–Good programming practice to “Camel Case” these as
well, but always Uppercase the first Letter

–Good programming practice to give method “noun-
like” names

•In Java the class’ name must match the file
name

•The scope of a class is usually public

Example

public class Person

{

}

19 20

21 22

23 24

5

Syntax

//Instance Variable

private <<type>> <<identifier>>;

//Class Constant

public static final <<type>> <<identifier>>;

…

Classes and
Objects

•Declare the Data

•The properties or attributes of a Class of Objects.

•The “Data” part of the class

• Instance Variables describes a specific instance of
that class (an object)

–Scope should be “private”

–Encapsulation

•Class Constants describe immutable values shared
by all instances of a class.

–Scope should be “public” and it should be “static”
(and “final” to make it constant)

Example

public class Person

{

 private String name;

 private int favNumber;

 public static final int DEFAULT_NUM = 0;

}

Syntax for Default Constructor
public <<Class Id>>()
{
 //Body of default constructor
}

Syntax for Parameterized Constructor
public <<Class Id>>(<<parameter>>, …)
{
 //Body of param constructor
}

Classes and
Objects

• Constructor are used to dynamically “Construct” an
instance of a class, called an “Object”, in memory during
runtime.

• Replicates all code found in a Class into memory

–The reserved word “new” precedes a constructor

–Dynamically allocates all properties and methods

• Special kinds of Methods

–Does not have a return type

–Identifier must match the Class’ identifier

•Default Constructor sets all properties to valid, default
values

• Parameterized Constructor sets all properties to given, valid
parameter values

–Must error check (Mutators)

public Person()
{
 this.name = “none yet”;
 this.favNumber = DEFAULT_NUM;
}
public Person(String aName, int aNum)
{
 //Call mutators
}

Syntax

public <<return type>> get<<identifier>>()

{

 return this.<<identifier>>;

}

Classes and
Objects

•Accessors gives access to properties outside of the
instance

–The Private Scope prevents directly accessing
properties like instance variables

•Create an accessor for every instance variable

•Very formulaic

–Method’s return type matches the variable’s return
type

–Method’s identifier starts with “get” followed by the
variables identifier

–Return the property

–*The reserved word “this” is optional but good
programming practice*

Example
public String getName()
{
 return this.name;
}
public int getFavoriteNumber()
{
 return this.favNumber;
}

Syntax
public void set<<identifier>>(<<parameter>>)
{
 if(<<parameter is a valid value>>)
 this.<<instance variable>> = <<parameter>>;
 else
 this.<<instance variable>> = <<default value>>;
}

Classes and
Objects

• Mutators gives ability to modify (mutate) the value of an Object’s
property

–Checks for errors

• Create a mutator for every instance variable

• Very formulaic

–Return type is always “void”

–The method’s identifier is “set” followed by the variable’s
identifier

–Has a parameter that matches the type of the variable

–Sets the value of the instance variable only if the parameter is
valid

• Object type parameters should verify if they exist

–Memory address is not null

Example
public void setName(String aName)
{
 if(aName == null)
 aName = “none yet”;
 else
 this.name = aName;
}
public void setFavoriteNumber(int aNum)
{
 this.favNumber = aNum;
}

Syntax
public String toString()
{
 return <<properties concatenated together>>;
}
public boolean equals(<<other instance (oi)>>)
{
 return <<oi>> != null &&
 this.<<instance variable>> == <<oi>>.<<accessor>> &&
 this.<<instance variable>>.equals(<<oi>>.<<accessor>>) && …
}

• Specific actions (“verbs”) that the Class of objects can do

• Two Common Useful Methods

–toString()

–equals(<<value>>)

• The toString() method

–Return a String value with all properties concatenated together

–Useful for debugging

• The equals method

–Verifies if the properties of one object is equal to another
object’s properties

–Use this instead of “== ” for Object types

–“==” should only be used when checking the memory address
of an object type

•When checking if the object is “null”

Example
public String toString()
{
 return “Name: ”+this.name+
 “ Favorite Number: ”+this.faveNumber;
}
public boolean equals(Person aPerson)
{
 return aPerson != null &&
 this.name.equals(aPerson.getName()) &&
 this.favNumber == aPerson.getFavoriteNumber();
}

Classes and
Objects

Syntax
//Declaring

<<class type>> <<identifier>>;

//Constructing a new instance

<<identifier>> = new <<class type’s constructor>>;

•To use a Class to create an instance, called an Object,
first declare it

–The type (name of the class) followed by an identifier

–Just like any other variable

–Default value is “null”

–Declaring it does not create the object, it just creates
room for a reference

•Reference (memory address) points to the contents

•To construct the instance use the reserved word “new”
followed by a call to the Class’ constructor

–This should be assigned to the declared variable

•This is the only way to create a new instance

–The assignment operator DOES NOT clone instances

Example

Person p1;

p1 = new Person();

Person p2 = new Person(“JJ”,1729);

Classes and
Objects

25 26

27 28

29 30

6

•Objects in memory are separated into 2
elements

–Reference (memory address)

–Contents (properties and methods)

•The identifiers for Objects ONLY contain a
memory address

–“Null” is a special memory address meaning
the object has not been constructed

Example

Person p1;

p1 = new Person();

Person p2 = new Person(“JJ”,1729);

Person p3 = new Person();

boolean b = (p1 == p3);//False

boolean b2 = (p1.equals(p3));//True

p1 = p2;

p1.setName(“ASDF”);

String name = p2.getName();// “ASDF”

Memory
and Objects

•The assignment operator (“=“) does not create new
instances of an object.

–Only the word “new” does

–Multiple identifiers can reference the same object
(Shallow Copy)

–Cloning Objects require a new object created via a
constructor or a clone method (Deep Copy)

•The “==“ checks the memory address for objects, but
not their contents

–Should only be used when referring to the object’s
memory address, such as checking for null

–Equals method should be used to check contents

•Unreachable objects are removed in Java

Example

Person p1;

p1 = new Person();

Person p2 = new Person(“JJ”,1729);

Person p3 = new Person();

boolean b = (p1 == p3);//False

boolean b2 = (p1.equals(p3));//True

p1 = p2;

p1.setName(“ASDF”);

String name = p2.getName();// “ASDF”

Memory
and Objects

Programming Review

Part 03

31 32

33

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

