
1

Programming Review

Part 01

Computing Basics

1 2

3 4

5 6

2

INPUT
(Data)

COMPUTINGINPUT
(Data)

Output
(Information)

INPUT
(Data)

HARDWARE SOFTWARE

7 8

9 10

11 12

3

HARDWARE HARDWARE

CPU Memory

HARDWARE HARDWARE

1110101000101010001111101010101010110101010101010101010101010101010100010010001

HARDWARE HARDWARE

13 14

15 16

17 18

4

HARDWARE

RAM

HARDWARE

Secondary

HARDWARE HARDWARE
Memory

Address Value

…

256 01000001

260 01000010

264 01000010

268 01000001

…

Running
Software

CPUMainSecondary

Running
Software

CPUMainSecondary

Load

19 20

21 22

23 24

5

Running
Software

CPUMainSecondary

Run
Code

Load

Running
Software

CPUMainSecondary
Run

Code

Load

Store
Info

SOFTWARE SOFTWARE

SOFTWARE

Program (prōˌɡram) noun
A set of instructions for a computer to follow.

Programming
Languages

25 26

27 28

29 30

6

1110101000101010001111101010101010110101010101010101010101010101010100010010001

Programming
Languages

Programming
Languages

LOW LEVEL

Programming
Languages

LOW LEVEL

Programming
Languages

LOW LEVEL
Machine

Code
Assembly

Programming
Languages

High Level

Programming
Languages

High Level

31 32

33 34

35 36

7

Programming
Languages

High Level

Programming
Languages

High Level

Nouns and Verbs

Programming
Languages

High Level

Syntax

Programming
Languages

111010100010101000!thing the Do

Programming
Languages

Compiler

37 38

39 40

41 42

8

Project Project

Classes

Project

Classes

Methods
Classes

Methods

• Source Code in files with “.JAVA” extension
• The filename must MATCH the name of the

class
• Everything is an “Object”

RunningCompilation

Java

Source

Code

(.JAVA)

RunningCompilation

Java

Compiler

Java

Source

Code

(.JAVA)

43 44

45 46

47 48

9

RunningCompilation

Java

Compiler

Java

Source

Code

(.JAVA)

Intermediate

Byte Code

(.CLASS)

RunningCompilation

Java

Compiler

Java

Source

Code

(.JAVA)

Intermediate

Byte Code

(.CLASS)

Java Virtual

Machine

(JVM)

RunningCompilation

Java

Compiler
Java

Source

Code

(.JAVA)

Intermediate

Byte Code

(.CLASS)

Java Virtual

Machine

(JVM)

Problem
Solving

1. Identify your Data.

2. Determine how the data changes over time.

3. Consider structures for both behavior and
data.

4. Group together (encapsulate) related
information into Classes of Objects.

5. Develop functionality / methodologies that
relates to the behavior of your Objects.

6. Further identify relationships between the
Classes and optimize the structure.

7. Determine if there exists software patterns
that may assist.

Identify
Data

Determine how
it changes

Is this enough
to solve this

problem?

Are you sure?

Implement
the Solution

Group related
Information in

Classes

Develop Methods
related to the
Information

Identify Class
Relationships

Is this enough
to solve this

problem?

Look for Related
Software Patterns

Start
End

True

True

True

False

False

False

HELLO WORLD! HELLO WORLD!

49 50

51 52

53 54

10

HELLO ARRAYS!

Syntax
//Declaring and Constructing an Array

<<type>>[] <<identifier>> = new <<type>>[<<size>>];

//Indexing into an array to access a value

<<identifier>>[<<index>>];

//Indexing into an array to assign / modify a value

<<identifier>>[<<index>>] = <<value>>;

Arrays

•A collection (data structure) of items of the same type

• Fixed, contiguous block in memory

• Cannot resize in memory
–Size of the array needs to be known before it is created

• Java arrays are considered “Objects”
–Separated reference and contents

–Have built in properties like “.length”

•When arrays are constructed all items are assumed to
be assigned default values, in Java

• Indices (singular “index”) is how we can access and
modify values in an array

•Valid indices start from 0 until Length – 1
–If an array had 10 elements, then the valid indices are from 0

to 9

•Array’s “best friend” is a for-loop
–The loop can index into the array using its counter

Examples

int[] i = new int[5];

i[2] = 22;

System.out.println(i[2]);

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Sorting
Algorithms

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

55 56

57 58

59 60

11

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Sorting
Algorithms

61 62

63 64

65 66

12

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

Sorting
Algorithms

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Sorting
Algorithms

67 68

69 70

71 72

13

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 5 8 7 6 12 10 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 12 10 11 9

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Smallest

Start

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 12 10 11 9

Sorting
Algorithms

A Few Swaps Later

•Problem:
–Given any array of integers, develop an algorithm
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another

index, then record that current index
5. Once all values have been checked if the

recorded index does not match the current
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >=

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Sorting
Algorithms

Selection Sort

Implementation

73 74

75 76

77 78

14

Programming Review

Part 01

79

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

