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SOFTWARE SOFTWARE

SOFTWARE

Program (prōˌɡram) noun 
A set of instructions for a computer to follow.
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Project Project

Classes

Project

Classes

Methods
Classes

Methods

• Source Code in files with “.JAVA” extension
• The filename must MATCH the name of the 

class
• Everything is an “Object”

RunningCompilation
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Problem 
Solving

1. Identify your Data.

2. Determine how the data changes over time.

3. Consider structures for both behavior and 
data.

4. Group together (encapsulate) related 
information into Classes of Objects.

5. Develop functionality / methodologies that 
relates to the behavior of your Objects.

6. Further identify relationships between the 
Classes and optimize the structure.

7. Determine if there exists software patterns 
that may assist. 

Identify 
Data

Determine how 
it changes

Is this enough 
to solve this 

problem?

Are you sure?

Implement 
the Solution

Group related 
Information in 

Classes

Develop Methods 
related to the 
Information

Identify Class 
Relationships

Is this enough 
to solve this 

problem?

Look for Related 
Software Patterns

Start
End

True

True

True

False

False

False

HELLO WORLD! HELLO WORLD!
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HELLO ARRAYS!

Syntax
//Declaring and Constructing an Array

<<type>>[] <<identifier>> = new <<type>>[<<size>>];

//Indexing into an array to access a value

<<identifier>>[<<index>>];

//Indexing into an array to assign / modify a value

<<identifier>>[<<index>>] = <<value>>;

Arrays

•A collection (data structure) of items of the same type

• Fixed, contiguous block in memory

• Cannot resize in memory
–Size of the array needs to be known before it is created

• Java arrays are considered “Objects”
–Separated reference and contents

–Have built in properties like “.length”

•When arrays are constructed all items are assumed to 
be assigned default values, in Java

• Indices (singular “index”) is how we can access and 
modify values in an array

•Valid indices start from 0 until Length – 1
–If an array had 10 elements, then the valid indices are from 0 

to 9

•Array’s “best friend” is a for-loop
–The loop can index into the array using its counter

Examples

int[] i = new int[5];

i[2] = 22;

System.out.println(i[2]);

Sorting
Algorithms

•Problem:
–Given any array of integers, develop an algorithm 
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 10 8 7 6 12 5 11 9
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A Few Swaps Later

•Problem:
–Given any array of integers, develop an algorithm 
that sorts the values from smallest to largest.

•Selection Sort
1. Start from index 0
2. Assume the starting index has the smallest 

value and record that index
3. Sequentially check every other value
4. If a value is found that is smaller at another 

index, then record that current index
5. Once all values have been checked if the 

recorded index does not match the current 
index then swap those values

6. Increase the starting index by 1
7. Repeat 2 through 6 until the staring index >= 

length

Example

Index 0 1 2 3 4 5 6 7

Value 5 6 7 8 9 10 11 12

Sorting
Algorithms

Selection Sort 

Implementation
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