9 [3

ExcepPtions
Part 41

File Edit View Help

9 [3

S S

Exceptions signals an exceptional
occurrence during run-time

Handles run-time errors by allowing the
program to crash gracefully and keep
executing

Exceptions are Objects

— These Objects have an “exception message”
“Throwing” an exception is when an
exception object is created

“Handling” an exception is when special
code detects and deals with the
exceptional occurrence

File Edit View Help

9 [3

S S

* 3 Major Parts to Exceptions
1. Creating Exceptions
2. Throwing (Using) Exceptions
3. Handling Exceptions

L T e e R e E I |

SRR

File Edit View Help

9 [3

Creating

S S

In Java there are several predefined
exceptions

— Exception (most general)

— NullPointerException

— IndexOutOfBoundsException

— |OException

Creating a specific kind of Exception involves
inheriting from one of the predefined
Exceptions

Only write the Constructors

— Make sure to use “super” to construct the
superclass Exception

— Set the exception message
— Do not override “getMessage”

Syntax for Creating an Exception

public class <<id>> extends <<an Exception>>

{

<<constructors>>;

Example

public DivideByZeroException extends Exception

{
public DivideByZeroException()

{
}
public DivideByZeroException(String msg)
{

}

super(“Attempted to Divide by Zero”);

super(msg);

9 [3

Throwing

S S

* When a method could cause an Exception,
then then programmers need to be notified
to handle it

* The reserved word “throws” is used in the
method signature to indicate the method
could cause an exception

* Each exception is listed by their identifier
and are separated using a comma

Svyntax for a Method that throws an Exception

<<scope>> <<return type>> <<method id>> (<<parameters>>)
throws <<List of Exceptions>>

{
<<method body>>

Example
public double evaluate(char op, double nl, double n2)

throws DivideByZeroException, UnknownOpException

{

File Edit View Help

9 [3

Throwing

S S

* In a method that throws exceptions there Syntax for Throwing the Exception

should be cases where that kind of
excepﬁon happens

* The reserved word “throw” is used
an exception occurs
— Method signature uses “throws”
— Method body uses “throw”

* Follow “throw” by then constructing an

instance of that kind of exception

when throw new <<Exception Constructor>>

Example

//Inside of method evaluate

throw new DivideByZeroException();

File Edit View Help

9 [3

Handling

S S

Methods that throws exceptions must be
handled in a “try-catch” block

The method that could cause the exception
must be within the body of the try-block

— Otherwise the method would cause a syntax error
The exception that is handled must be
declared in the arguments of the catch-block
— Exception type followed by an identifier

The exception is then handled in the body of
the catch-block

— Usually a good idea to print the exception
message using either “getMessage” or
“printStackTrace”

Handling an Exception

try
{

<<Method that throws the Exception>>
}
catch(<<Exception type>> <<id>>)
{

<<Handle the Exception>>
}

Example

try
{

result = evaluate(nextOp, result, nextNumber);

catch(DivideByZeroException e)

{
}

e.printStackTrace();

9 [3

Handling

S S

If a method causes an exception in the try-
block then the program immediately jumps to
the corresponding catch-block

After the exception has been handled the
program continues after the try-catch block

A try-catch block can only have 1 try-block and
may have 1 or more catch-blocks

Multiple Catch-blocks must be ordered from

most specific exception to least specific

exception

— Otherwise causes an unreachable code syntax
error

— Most general exception is “Exception”
With multiple catch-blocks the most

appropriate catch-block runs corresponding to
the exception that was thrown

Syntax for Handling a Multiple Exception

<<Method that throws the Exceptions>>
}

catch(<<Most Specific Exception type>> <<id>>)

{

<<Handle the Most Specific Exception>>

catch(<<Most General Exception type>> <<id>>)

{

<<Handle the Most General Exception>>

File Edit View Help

9 [3

Handling

S S

If a method causes an exception in the try-
block then the program immediately jumps to
the corresponding catch-block

After the exception has been handled the
program continues after the try-catch block

A try-catch block can only have 1 try-block and
may have 1 or more catch-blocks

Multiple Catch-blocks must be ordered from

most specific exception to least specific

exception

— Otherwise causes an unreachable code syntax
error

— Most general exception is “Exception”

With multiple catch-blocks the most

appropriate catch-block runs corresponding to
the exception that was thrown

Example

try
{

;esult = evaluate(nextOp, result, nextNumber);
}
catch(DivideByZeroException e)
{ e.printStackTrace();
zatch(UnknownOpException e)
¢ e.printStackTrace();
zatch(Exception e)
{ e.printStackTrace();
}

File Edit View Help

9 [3

Handling

S S

* A “finally” block can be optionally added

after a sequence of catch-blocks

* The code in the finally-block will execute

whether or not an exception is thrown

Finally Block Syntax

try

{
<<Method that throws the Exception>>

catch(<<Exception type>> <<id>>)

{

}
finally

{

<<Handle the Exception>>

<<code that will execute with or without exceptions>>

Example

result = evaluate(nextOp, result, nextNumber);

}
//Catches

finally
{

}

System.out.println("result = " + result);

Exame |l e

File Edit View Help

9 [3

SaelE

Calculator

Problem: We must create a simple * Must handle a variety of exceptions while
calculator program keeping the program running

Keeps track of a resulting value
Performs the operations

— Addition

— Subtraction

— Multiplication

— Division

User provides input via the console
Input follows <<operator>> <<value>>
— Example “+ 3”

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13

