9 = 3

Basic ComPutation
Part 4

File Edit View Help

9 = 3

Classi ypes

* Class types group together data with
functionality (methods)

* Classes create instances of Objects
» Separated by Reference and Contents

— Reference is the memory address that “points”

to the object’s contents in memory
— A reference is the value stored in the identifier
— Contents contain the data and functionality

objectID

objectID.data01

objectID.data02

object|D.method01()

object|D.method02()

Memory

28 \14

4

3.0

28

32

File Edit View Help

9 = 3

Classi ypes

* Objects must be constructed before used
— Default value for class types is NULL

— NULL means “nothing” as the object does not
exist

— Cannot use a NULL object
— Reserved word “new” is used to construct
instances of most class types, but not usually for
Strings
* Methods provide functionality for an object
— It’s what the object can do
— Reusing code
* Methods are called by using the object’s
identifier, followed by a dot “”, followed by
the method name an arguments

Syntax for Calling a Method

<<identifier>>.<<method name>>(<<arguments>>);

File Edit View Help

9 = 3

SIS

* Class type
— Data = Array of Characters
— Methods = Built-in Functionality
* Denoted by double quotes (“”)
— Single Characters are single quotes (“)

Syntax

String <<identifier>>;//Declare a String

« Used to group together single characters | //Assigning a String Value

into words and phrases

— Useful for Outputting and Formatting Data

— Useful for Inputting Data as words or
sentences

<<identifier>> = “<<String Value>>”;

File Edit View Help

9 = 3

SIS

* Array of Characters
— Contiguous Collection of Characters

— Individual Characters can be accessed by an

“index”
— Indices always start from 0 to Length - 1

Value

lal

Example String

String str = “abcdefg”;

String as an Array

lbl Icl ldl Iel lfl Igl

9 = 3
File Edit View Help

SIS

Operations
* The plus (+) operator concatenates a value Examples
with a String String str = “abcdefg”;
— Not the same as the mathematical “+” System.out.println(str.charAt(09));
* Useful methods String str2 = str.substring(2,5);
— length() System.out.println(str2);
— charAt(index)

— substring(startindex) Console
— substring(startindex, endindex)
— toUpperCase()

— toLowerCase()

— split(regular expression)

File Edit View Help

9 = 3

FIGURE 2.5 Some Methods in the Class String

Method Return Example for Description
Type String s = "Java";

charAt char c = s.charAt(2); Returns the character at index in the

(index) /] e=tv! string. Index numbers begin at 0.

compareTo int i = s.compareTo ("C++"); | Compares this string with a_string to

(a_string) // i is positive see which comes first in lexicographic
(alphabetic, with upper before lower
case) ordering. Returns a negative
integer if this string is first, zero if the
two strings are equal, and a positive
integer if a_string is first.

concat String | s2 = s.concat("rocks"); | Returnsa new string with this string

(a_string) // s2 = "Javarocks" concatenated with a_string. You can
use the + operator instead.

equals boolean | b = s.equals("Java"); Returns true if this string and

(a_string) // b = true a_string are equal. Otherwise returns
false.

equals boolean | b = s.equals("Java"); Returns true if this string and

IgnoreCase // b = true a_string are equal, considering upper

(a_string) and lower case versions of a letter to
be the same. Otherwise returns false.

indexOf int i = s.indexOf ("va"); Returns the index of the first

(a_string) //1=2 occurrence of the substring a_string

within this string or -1 if a_string is
not found. Index numbers begin at 0.

File Edit View Help

9 = 3

lastIndexOf int i = s.lastIndexOf ("a"); | Returnsthe index of the last

(a_string) //1=3 occurrence of the substring a_string
within this string or -1 if a_string is not
found. Index numbers begin at 0.

length () int §/= s- ljngth ()7 Returns the length of this string.

i =

toLower String | s2 = s.tolLowerCase(); Returns a new string having the same

Case () // s = "java" characters as this string, but with any
uppercase letters converted to
lowercase. This string is unchanged.

toUpper String | s2 = s.toUpperCase(); Returns a new string having the same

Case () // s2 = "JAVA" characters as this string, but with any
lowercase letters converted to
uppercase. This string is unchanged.

replace String | s2 = Returns a new string having the same

(oldchar, s.replace('a','o"); characters as this string, but with each

newchar) // s2 = "Jovo"; occurrence of oldchar replaced by
newchar.

substring String | s2 = s.substring(2); Returns a new string having the same

(start) /] s2 = "va"; characters as the substring that begins
at index start through to the end of
the string. Index numbers begin at 0.

substring String | s2 = s.substring(1,3); Returns a new string having the same

(start,end) /] s2 = "av"; characters as the substring that begins
at index start through to but not
including the character at index end.
Index numbers begin at 0.

trim() String |s =" Java " Returns a new string having the same

s2 = s.trim(); characters as this string, but with
// s2 = "Java”

leading and trailing whitespace
removed.

9 = 3
File Edit View Help

SIS

* Object type Memory

m Byte Aeess

* Array of characters

Examples
String str = “abcd”;

9 = 3
File Edit View Help

SIS

* Object type Memory

m Byte Aeess

* Array of characters

Examples
— String str = “abcd”;

File Edit View Help

9 = 3

SIS

* Object type

* Array of characters

String str|=

Examples
“abcd”;

str

Memory

Null

m Byte Aeess

28

File Edit View Help

9 = 3

SIS

* Object type

* Array of characters

String

Examples

str

“abcd”r

str

str[0]

str(1]

str(2]

str(3]

Memory

Null

‘\u0000’
‘\u0000’
‘\u0000’

“\u0000’

m Byte Aeess

28

64

66

68

70

File Edit View Help

9 = 3

SIS

* Object type

* Array of characters

String

Examples

str

“abcd”r

str

str[0]

str(1]

str(2]

str(3]

Memory

Null

m Byte Aeess

28

64

66

68

70

File Edit View Help

9 = 3

SIS

* Object type

* Array of characters

String

Examples

str

“abcd”r

str

str[0]

str(1]

str(2]

str(3]

Memory

64

m Byte Aeess

28

64

66

68

70

9 = 3

SIS

* Object type Memory

m Byte Aeess

s o \‘:

* Array of characters

Examples siilt] ? 64

Examples

String |str = “abcd”I; str[1] o 66
str(2] ‘c 68

str(3] ‘d’ 70

9 = 3

File Edit View Help

Escape

Characters

* Used to better format Strings Examples
String str = “Hello\n\”World\””;

System.out.println(str);

e Considered Single Characters
— Despite there are two individual characters

o Starts with a “\”
* \” - Double Quote
* \’ - Single Quote
* \\ - Backslash
\\ - Backslas Hello
* \n—New Line. Go to beginning of Next line [EENEE»

Console

* \r — Carriage Return. Go to beginning of the
Current line

» \t — Tab. Add space until next tab stop

9 = 3

Scanmelr:

Class Type

Used to “Scan” or “Read”

— Standard System Input “System.in” (Console)
— Strings

— Files

— Network Traffic

Must import type Scanner from “java.uti
package

— import java.util.Scanner;

Before using it must be both Declared and
Constructed

— The “ARGS” part is the item the Scanner will
process. It can be the System input, Strings, Files,
etc.

III

Syntax

//Declaring and Constructing a Scanner
Scanner <<identifier>> = new Scanner(<<ARGS>>);

Example
//Declaring and constructing a Scanner for

//Console (System.in)
Scanner keyboard = new Scanner(System.in);

File Edit View Help

9 = 3

Scanmelr:

Once a Scanner has been declared and
constructed it can be used by calling its
various methods

Scanner uses delimiters
— Separates information by Special Characters

— Assumed to be any kind of space unless
otherwise declared

— Types of spaces include
* Single Spaces
* Multiple Spaces
* End Line / Carriage Returns
* Tabs

Examples

Scanner keyboard = new Scanner(System.in);
String name = keyboard.nextLine();

int i = keyboard.nextInt();
keyboard.nextLine();//Useful “fix-up”
double j = keyboard.nextDouble();
keyboard.nextLine();//Useful “fix-up”
System.out.println(name+ “ “ + i + “ “ + j);

Console
33
64

3.14
JJ 64 3.14

File Edit View Help

9 = 3

Method
Name

next()

nextLine()

nextint()

nextDouble()

nextBoolean()

Scanner
Methods

Description

Returns a String value up to but not including the first delimiter character

Returns a String value up to but not including the line terminator ‘\n’

Returns the first instance of an integer value. All other characters and delimiters are
ignored.

Returns the first instance of a double value. All other characters and delimiters are
ignored.

Returns the first instance of a Boolean value. All other characters and delimiters are
ignored.

//Assume user enters “1234 3.14 true asdf”
String str = keyboard.next();
[/stris “1234”

//Assume user enters “1234 3.14 true asdf”
String str = keyboard.nextLine();
//stris “1234 3.14 true asdf”

//Assume user enters “1234 3.14 true asdf”
int i = keyboard.nextInt();
//intiis 1234

//Assume user enters “1234 3.14 true asdf”
dobule j = keyboard.nextDouble();
//double jis 3.14

//Assume user enters “1234 3.14 true asdf”
boolean b = keyboard.nextBoolean();
//Boolean b is true

9 = 3
File Edit View Help

Wiralppelr

EESSES
* Classes that “Wrap” or provide Examples
functionality to primitive types String str = “256”;
* Can be used to convert a String into a int i = Integer.parselInt(str);
primitive type 1 %= 2;
« Commonly Used System.out.println(i);
— Integer.parselnt(<<String>>);

— Double.parseDouble(<<String>>); Console

— Boolean.parseBoolean(<<String>>);

Exame |l e

Closer Look

9 = 3

Example in more detail

input =

ot 2] ls e 7 el
A D A 2 3 2 o 2

Current Line of Code

String input = keyboard.nextLine() ;

9 = 3

Example in more detail
ot]2 e s s 7]
A D A 2 3 2 . 2
ot]2 e s s 7]
A D A 2 3 2 . 2

input =

copyInput =

Current Line of Code

String copyInput = input;

9 = 3

Example in more detail
input = “—-“-““n“
A D A 2 3 2 . 2
copyinpee RN RN ENENENENERENEN
A D A 2 3 2 . 2

workingIndex = 3 J

Current Line of Code

int workingIndex = copyInput.indexOf (" ");

9 = 3

Example in more detail
input = “—-“-““n“
A D A 2 3 2 . 2
copyinpee RN RN ENENENENERENEN
A D A 2 3 2 . 2

workingIndex = 3 I

name o | 1] 2
A D A

Current Line of Code

String name = copyInput.substring(0,workingIndex) ;

9 = 3

Example in more detail
input = “—-“-““n“
A D A 2 3 2 . 2
copyinpee RN RN ENENENENERENEN
A D A 2 3 2 . 2

workingIndex = 3

copyInput =

2 3 2 . 2

Current Line of Code

copyInput = copyInput.substring(workingIndex+1) ;

9 = 3

Example in more detail

R RN
input =
A D A 2 3 2 o 2
2 3 2 . 2

copyInput =

workingIndex = 3

Current Line of Code

copyInput = copyInput.substring(workingIndex+1) ;

File Edit View Help

9 = 3

Gooed

RProgramming

Practices

* Documentation and Style is important

— Most programs are modified over time to
respond to new requirements

— Programs that are easy to read and understand
are easy to modify

— You have to be able to read it in order to
debug it
* Meaningful Identifiers
— ldentifiers should suggest its use
— Stick to common conventions

* Commenting
— Self documenting with Clean Style is best
— Comments are written as needed

— Used by programmers to explain code, but ignored
by the compiler

— Include your name at the beginning of every file

— It’s good to write an explanatory comment at the
beginning of the file

* |Indentation

— Use indentation to “line-up” code within their
respective bodies

— Clearly indicates “nested” statements

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Example in more detail
	Example in more detail
	Example in more detail
	Example in more detail
	Example in more detail
	Example in more detail
	Slide Number 30

