
1

Basic Computation

Part 01

Procedural 
Programming

•Hardware

–CPU runs a program’s statements one at a time

•Starts from the “Entry Point”

•Left to Right then Top to Bottom

–Memory stores information that can be accessed and 
modified by the CPU

•Java Programs

–Organized by Projects, then Classes, then Methods

•Body of something is in between curly braces “{}”

–The main method is Java’s “Entry Point”

•Code should be written in the body of the Main Method for 
now

Problem 
Solving

1. Identify your Data.

2. Determine how the data changes over time.

3. Consider structures for both behavior and 
data.

4. Group together (encapsulate) related 
information into Classes of Objects.

5. Develop functionality / methodologies that 
relates to the behavior of your Objects.

6. Further identify relationships between the 
Classes and optimize the structure.

7. Determine if there exists software patterns 
that may assist. 

Identify 
Data

Determine how 
it changes

Is this enough 
to solve this 

problem?

Are you sure?

Implement 
the Solution

Group related 
Information in 

Classes

Develop Methods 
related to the 
Information

Identify Class 
Relationships

Is this enough 
to solve this 

problem?

Look for Related 
Software Patterns

Start
End

True

True

True

False

False

False

Problem 
Solving

1. Identify your data.

– What information do we need to keep in our 
memory?

– What information is variable and what 
information is constant?

– What is the type of data? Numeric? 
Words/Strings? Collections? Other Structures?

Identify 
Data

Determine how 
it changes

Is this enough 
to solve this 

problem?

Are you sure?

Implement 
the Solution

Group related 
Information in 

Classes

Develop Methods 
related to the 
Information

Identify Class 
Relationships

Is this enough 
to solve this 

problem?

Look for Related 
Software Patterns

Start
End

True

True

True

False

False

False

Variables

•Variables store data such as number or 
characters

–Containers or Boxes

–Implemented using Memory

int numberOfCats = 1;

1 2

3 4

5 6



2

Variables

•Value is the name we called the stored data

–Values are stored in a memory location

•Its value can be changed

int numberOfCats = 2;

Variables

•We must declare variables before using them

–Spoken:
“I need a container of this size called this name”

•Declaring a variable requires

–Type

–Identifier (name)

Declaring Syntax

<<type>> <<identifier>>;

int numberOfCats;

Type Identifier

Example

Types

Types

•Type corresponds to the type of data and the 
number of bytes in memory

•Programming Languages may be

–Strongly Typed

–Weakly (Loosely) Typed

•Only use the Type when Declaring

•2 Major Types

–Class (Object)

–Primitive

•Primitive types are used for simple values such 
as a number or single character

•Class Types are used for a class of objects and 
combine both data and methods (functionality)

–Reference

–Contents

Types

Primitive Types

• Integer (Whole Number) Types
–byte

–short

–int (Most Common)

–long

•Floating-point (Decimal) Types
–float

–double (Most Common)

•Character Type
–char 

•Boolean Type
–boolean

Primitive Types

•Integer (Whole Number) Values
–Examples: 0 -1 365 12000

•Floating-point (Decimal) Types
–Include the Decimal Point

–Examples: 0.99 -22.8 3.14159

•Character Type
–Single Quotes NOT Double Quotes

–Examples: ‘a’ ‘A’ ‘#’ ‘ ‘ 

•Boolean Type
–Only 2 values

–Examples: true false

Types

Primitive Types

Data Type Size Description

byte 1 byte Stores whole numbers from -128 to 127

short 2 bytes Stores whole numbers from -32,768 to 32,767

int 4 bytes Stores whole numbers from -2,147,483,648 to 2,147,483,647

long 8 bytes Stores whole numbers from -9,223,372,036,854,775,808 to 
9,223,372,036,854,775,807

float 4 bytes Stores fractional numbers. Sufficient for storing 6 to 7 decimal digits

double 8 bytes Stores fractional numbers. Sufficient for storing 15 decimal digits

boolean 1 bit Stores true or false values

char 2 bytes Stores a single character/letter or ASCII values

7 8

9 10

11 12



3

Identifiers

Identifiers

•An identifier is a name, such as the name of a 
variable.

•Identifiers should be meaningful

•Identifiers may contain ONLY

–Letters

–Digits (0 through 9)

–The underscore character (_)

–And the dollar sign symbol ($) which has a special 
meaning

•Identifiers CANNOT contain

–Spaces of any kind

–Digit as the First Character

–Dots “.”

–Asterisks “*”

–Other types of special characters

•Identifiers are Case Sensitive

–“Stuff”, “stuff”, “STUFF”, and “sTuFf” would all be 
considered different identifiers

•Identifiers CANNOT be a reserved word

–Example Reserved Words: int, public, class

Identifiers

Naming Conventions

•Class Types start with an Uppercase character

–Example: String

•Primitive Types start with a Lowercase character

–Example: int

•Variables identifiers of both start with a 
Lowercase Character

•Multiword identifiers are “punctuated” using 
uppercase characters

Good Examples

int test01;

double largeValues;

boolean inClass;

Bad Examples

int 1Test;//Started with a digit

double big vals;//Used a space

boolean class;//Class is a reserved word

Memory

Declaring 
Variables

Example

int i;

double j;

char o;

Identifier Contents Byte 
Address

… … …

28

… … …

MemoryExample

int i;

double j;

char o;

Identifier Contents Byte 
Address

… … …

28

… … …

Declaring 
Variables

MemoryExample

int i;

double j;

char o;

Identifier Contents Byte 
Address

… … …

i 0 28

… … …

Declaring 
Variables

13 14

15 16

17 18



4

MemoryExample

int i;

double j;

char o;

Identifier Contents Byte 
Address

… … …

i 0 28

… … …

Declaring 
Variables

MemoryExample

int i;

double j;

char o;

Identifier Contents Byte 
Address

… … …

i 0 28

j 0.0 32

… … …

Declaring 
Variables

MemoryExample

int i;

double j;

char o;

Identifier Contents Byte 
Address

… … …

i 0 28

j 0.0 32

… … …

Declaring 
Variables

MemoryExample

int i;

double j;

char o;

Identifier Contents Byte 
Address

… … …

i 0 28

j 0.0 32

o ‘\u0000’ 40

… … …

Declaring 
Variables

MemoryExample

int i;

double j;

char o;

Identifier Contents Byte 
Address

… … …

i 0 28

j 0.0 32

o ‘\u0000’ 40

??? ??? 42

… … …

Declaring 
Variables

Example

int i;

double j;

char o;

Memory Concept

Physical Memory Concept

Identifier Contents Byte 
Address

… … …

i 0 28

j 0.0 32

o ‘\u0000’ 40

Future Variable - 42

… … …

id i

Byte 28 29 30 31

Bit 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Declaring 
Variables

19 20

21 22

23 24



5

Assigning Values

Syntax

<<identifier>> = <<value>>;

Assignment
Operator

•The equals symbol “=” is the assignment operator

•Stores values found on the right hand side (RHS) of 
the operator into the identifier found on the left 
hand side (LHS)

•Assignments are valid if the type matches are is at 
least compatible
–Primitive types can be stored in other primitive types as 
long the type’s byte amount is less than or equal to value 
being stored

–Otherwise “type casting” is required

–Type casting does not round it cuts off everything past the 
decimal point “.”

•Spoken:
–“Store this value in this container”

Examples

i = 0;

j = 22.3;

o = ‘h’;

i = (int)j;//Type cast from double to int

//Value stored in “i” is 22

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

25 26

27 28

29 30



6

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

j 0.0 32

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

j 22.3 32

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

j 22.3 32

o ‘\u0000’ 40

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

j 22.3 32

o ‘h’ 40

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

j 22.3 32

o ‘h’ 40

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

31 32

33 34

35 36



7

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 0 28

j 22.3 32

o ‘h’ 40

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 22 28

j 22.3 32

o ‘h’ 40

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Memory

Variables
Types

•Declare and assigning initial values

–Good programming practice to assign initial values

–Shortens two statements into one

–Types are not still used after the declaration

Identifier Contents Byte 
Address

… … …

i 22 28

j 22.3 32

o ‘h’ 40

… … …

Example

int i = 0;

double j = 22.3;

char o = ‘h’;

i = (int)j;

Assignment
Operator

Syntax

public static final <<type>> <<identifier>> = <<value>>;

Constants

•Establishes a value that cannot change

•MUST assign a value initially

•Great for avoiding “magic numbers”

•Good programming practice

–Make the scope public

–Make it static

–Capitalize all characters in the identifier Examples

public static final double PI = 3.14159;

public static final int BOARD_SIZE = 10;

Syntax

<<identifier>> = <<value>> <<operator>> <<value>>;

Math 
Operators

•Performs computation and then assigns the 
results

•Order of Operations

•Basic Math Operations

–Addition “+”

–Subtraction “-”

–Multiplication “*”

–Division “/”

•Mod Operator “%”

–Returns the remainder after division

–Ex: 15 % 2 = 1

Examples

//Variables

int value = 64 % i + 32;

//Constants

public static final double PI = 3.14159;

public static final double PI_SQ = PI*PI;

Syntax

<<identifier>> <<C&A operator>> <<value>>;

Math 
Operators

•Compute and Assign (C&A) Operators
–Shorthand for applying some operator and value to a variable

–Same as: 
•<<identifier>> = <<identifier>> <<operator>> <<value>>;

•Ex: i = i+1; i+=1; i++; //Same statements 

•Common Versions
–“+=” – add and assign

–“-=” – subtract and assign

–“*=” – multiply and assign

–“/=” – divide and assign

–“%=” – mod and assign

• Special versions
–“++” – Increase by 1
•Same as “+= 1”

–“--” – Decrease by 1
•Same as “-=1”

Examples

i += 128; //If i = 32 now it is 160

j %= 2; //If j = 28.0 now it is 0.0

37 38

39 40

41 42



8

•Integers are ALWAYS Integers

–Anything past the decimal point is cut off

–Also can be considered “rounding down” or “taking 
the floor”

–Example: 1/3 = 0

–Logic Error

More Math 
Notes

•eNotation

–Allows number to be written in scientific notation

–Example: 865000000.0 can be written as 8.65e8

•Imprecision with Floating-Point Numbers

–Floating point numbers are approximations as they 
are finite

–Example: 1.0/3.0 is slightly less than 1/3 ergo 1.0/3.0 
+ 1.0/3.0 + 1.0/3.0 < 1.0

–Logic Errors

Syntax

System.out.println(<<value>>);

Basic Input 
and Output

•For now, input and output is done in the 
Console

•Command Line Interface

•Console Outputs (Writes)

–Left to Right

–Up to Down

•Console Inputs (Reads)

–Left to Right

–Up to Down

Examples

int i = 22;

System.out.println(i);

Syntax

System.out.println(<<argument>>);
System.out.print(<<argument>>);

Basic 
Output

•System.out.println(<<argument>>);

–Statement used to output the argument and adds a 
new line after

•System.out.print(<<argument>>);

–Statement used to output the argument but stays on 
the same line

•“Prints” to the standard system output (the 
console)

Examples

int i = 22;

System.out.println(i);

Basic Input

•Use Scanner to read from Console

•Must import type Scanner from “java.util” package
–import java.util.Scanner;

•Create an instance of type Scanner that “scans” the 
standard system input
–Scanner keyboard = new Scanner(System.in);

•Useful methods
–next() 

–nextLine() 

–nextInt()

–nextDouble()

•Also can be used to “scan” Strings, files, network 
traffic, etc.

Examples
Scanner keyboard = new Scanner(System.in);

String name = keyboard.nextLine();

int i = keyboard.nextInt();

keyboard.nextLine();//Useful “fix-up”

double j = keyboard.nextDouble();

keyboard.nextLine();//Useful “fix-up”

System.out.println(name+ “ “ + i + “ “ + j);

Console
JJ

64

3.14

JJ 64 3.14

43 44

45 46


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46

