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Introduction Automated Reasoning and the Integration Problem

Knowledge-based systems

Knowledge-based systems normally comprise two components:

A knowledge base (KB)

An inference engine
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Introduction Using Logical Knowledge in Probabilistic Reasoning

Bayesian networks

C

ED

A

B

A1 A2
B1 0.2 0.1
B2 0.6 0.6
B3 0.2 0.3

Pr(V) =
∏

V∈V Pr(V | π(V ))

The directed acyclic graph constrains Pr(V)

Few parameters are needed to descrive Pr(V), because of the independence constraints

Probability update is fast
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Introduction Using Logical Knowledge in Probabilistic Reasoning

A Bayesian network with its CPTs and reasoning result given ev idence

CPT stands for Conditional Probability Table
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Introduction Using Logical Knowledge in Probabilistic Reasoning

An extra node representing logical relations is added

Suppose we also have some logical knowledge about the relation between A and B in KB, such as
A → B.
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Introduction Using Logical Knowledge in Probabilistic Reasoning

A more complex example

Pr(C|e) =?
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Introduction Our Framework for Integration

Reasoning systems with the combination of logic and Bayesian networks

1 Specify special knowledge using the most suitable languages, while reasoning in an uniform
engine

2 Make use of pre-existing logical knowledge bases for probabilistic reasoning (to complete the
model or minimize potential inconsistencies).

Statements in Logic

Probability Theory

Query, Observations, and Assumptions

Conclusions

Bayesian Networks

LBN

PBN

CBN

Composition
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Logical Bayesian Network Generation Propositional Case Algorithm

Relation search

Require: the probabilistic atom set P from PBN containing query, observations, and assumptions, the set of logical formulas KB = {R1, R2, ..., Rz},
z = |KB|, and the sets A1,A2, ...,Az . Ai comprises all the atoms appearing in its corresponding logical formula Ri ∈ KB, where 1 ≤ i ≤ z.

1: V = P ;
2: E = ∅;
3: L = ∅;
4: for i = 1 to z do
5: Tag Ri as not visited;
6: end for
7: while true do
8: Changed ⇐ false ;
9: for i = 1 to z do

10: if Ri is not visited then
11: if Ai ∩ V 6= ∅ then
12: V = V ∪ Ai ∪ {Ri};
13: for all A ∈ Ai do
14: E = E ∪ {(A, Ri )};
15: end for
16: Build CPT Θi for Ri based on its logical structure;
17: L = L ∪ {Θi};
18: Tag Ri as visited;
19: Changed ⇐ true ;
20: end if
21: end if
22: end for
23: if Changed = false then
24: break ;
25: end if
26: end while
27: return BN(V, E,L);
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Logical Bayesian Network Generation Propositional Case Algorithm

Creating the CPT by a formula’s logical structure

A B

A B

if (A → B)
A true false
B true false true false

true 1 0 1 1
false 0 1 0 0
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Logical Bayesian Network Generation FOL Case Modification of Algorithm

A FOL case example

Probabilistic atom set

P = {P(a),P(b)}

The original FOL KB’s formulas

1 ∀xP(x) → Q(x),
2 ∀xH(x) → L(x),
3 H(c).

P(a) Q(b)Q(a)P(b)

P(a) Q(a) P(b) Q(b)

P(x) Q(x)

O
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Correctness

Theorem

Theorem

For a BN resulting from relation search, G = (V, E,L), for any U ∈ V and any V ′ ⊆ V , if

V ′ |= U,

then

Pr(U = true|V ′ = true) = 1

in G, where V ′ = true means that all the nodes in V ′ of G are set to true.
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Correctness Weighted Model Counting

Weighted model count

Definition (Darwiche, 2009)

Let ∆ be a propositional sentence over Boolean variables X1, ...,Xn and let Wt be a function that
assigns a weight Wt(xi ) ≥ 0 to each value xi of variable Xi . The weighted model count (WMC) of
∆ is defined as the sum of weights assigned to its models:

WMC(∆)
def
=

∑

x1,...,xn|=∆

Wt(x1, ..., xn),

where

Wt(x1, ..., xn)
def
=

n∏

i=1

Wt(xi ).
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Correctness Weighted Model Counting

CNF encoding

At first we define two types of Boolean variables: indicator variables and parameter variables. In
particular, for each network variable X with parents U, we have

A Boolean variable Ix , called an indicator variable, for each value x of network variable X .

A Boolean variable Px|u , called a parameter variable, for each instantiation xu of the family
XU.
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Correctness Weighted Model Counting

Indicator clauses and parameter clauses

A set of indicator clauses are generated for each variable X with values x1, x2, ..., xk as
follows:

Ix1 ∨ Ix2 ∨ ... ∨ Ixk

¬Ixi ∨ ¬Ixj , for i < j .

These clauses ensure that exactly one indicator variable for variable X will be true.

A set of parameter clauses are generated for each variable X and its parameter variable
Px|u1,u2,...,um . These include an IP clause,

Iu1 ∧ Iu2 ∧ ... ∧ Ium ∧ Ix ⇒ Px|u1,u2,...,um ,

and a set of PI clauses,

Px|u1,u2,...,um ⇒ Ix

Px|u1,u2,...,um ⇒ Iui , for i = 1, ...,m.

These clauses ensure that a parameter variable is true if and only if the corresponding
indicator variables are true. We typically write these parameter clauses as one equivalence:

Iu1 ∧ Iu2 ∧ ... ∧ Ium ∧ Ix ⇔ Px|u1,u2,...,um .
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Correctness Weighted Model Counting

Correspondence lemma

Lemma (Darwiche, 2009)

Let G be a Bayesian network inducing probability distribution Pr and let ∆G be its CNF encoding
given by its indicator clauses and parameter clauses. For any evidence e = e1, ..., ek , we have

Pr(e) = WMC(∆G∧Ie1∧...∧Iek )
,

given the following weights:

Wt(Ix ) = Wt(¬Ix ) = Wt(¬Px|u) = 1

and

Wt(Px|u) = θx|u.
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Correctness Weighted Model Counting

Proof - Main idea

Main idea:
1 Use weighted model counting, over the Bayesian network G, to conclude the joint probability of

evidence e = {U = false} ∪ V′ = true to be 0
2 Follow Bayes’ rule to conclude the posterior probability Pr(U = true|V′ = true) = 1

Notation:
V′ = {S1, S2, ...,Sk}, where k ≤ |V|
e = {u, s1, s2, ..., sk}
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Correctness Proof of Correctness: Propositional Case

Notation

Suppose that after relation search, the set of partial formulas R = {R1,R2, ...,Rm} of KB are
selected according to probabilistic atoms P . R ⊆ KB.

The set of atoms appearing in R is denoted by A = {A1,A2, ...An}. Note that, for some
1 ≤ i ≤ n and 1 ≤ j ≤ m, Ai and Rj might be exactly the same atomic formula.

The set of atoms appearing in {U} ∪ V ′ is denoted by A′ = {A1,A2, ...Al}, where l ≤ n. Note
that Si and Aj might be the same formula, for some 1 ≤ i ≤ k and 1 ≤ j ≤ l , as Si could also
be an atomic formula.
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Correctness Proof of Correctness: Propositional Case

Notation, ctd.

Suppose V is any node of G.

If V represents an atomic formula, then it is a parent of some other nodes. (Note that there is
no isolated node in G.)

If V represents a compound formula, then it is a child of some atomic formulas that compose
V .

A compound formula represented by V contains some of the connectives ¬, ∨, ∧, or →.

Suppose {B1,B2, ...,Bh} are atoms appearing in V , with 1 ≤ h ≤ n.

We use ΘV |B1,B2,...,Bh
to represent the CPT of node V , one specific entry of which is denoted

by θ, given parents B1,B2, ...,Bh.

We use Πtrue to represent any assignment over {B1,B2, ...,Bh} that make formula V evaluate
to true, and Πfalse to represent any assignment over {B1,B2, ...,Bh} that make formula V
evaluate to false.

Wang and Valtorta (CSE@USC) Instantiation to Support the Integration May 16, 2011 22 / 53



Correctness Proof of Correctness: Propositional Case

CPT entries

Because we build G’s CPTs purely based on the logical structure of each formula node, it is
obvious that

θV=true|Πtrue
= 1,

θV=true|Πfalse
= 0,

θV=false|Πtrue
= 0,

θV=false|Πfalse
= 1.

In another word, the probability of any state value of a compound formula node is 1 if this value is
consistent with the formula’s evaluation under its parents’ value configuration. Otherwise, it is 0.
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Correctness Proof of Correctness: Propositional Case

Evidence probability

Now consider the evidence e = {U = false} ∪ V ′ = true, i.e., e = {u, s1, s2, ..., sk}, and calculate
its probability, represented by Pr(e).

The weighted model counting method shows that each instantiation of G corresponds to a model
of G’s CNF encoding. (All the variables/literals of clauses corresponding to the instantiated values
of nodes of G and related CPTs are set to true and all others are set to false.)
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Correctness Proof of Correctness: Propositional Case

Compatible instantiations

If we assume there are totally t nodes in G, i.e., |G| = t , then the list of all the nodes is
{U,S1,S2, ...,Sk ,Q1,Q2, ...,Qt−k−1}, where Q nodes represent the other nodes that are not
evidence.

Note that a Q node could be either an atomic formula node or a compound formula node. The
number of instantiations is 2t , as each node’s value is binary.

However, we only need to consider the instantiations compatible to evidence
{u, s1, s2, ..., sk}. This means, no matter what values it assigns to other nodes, the key
instantiations, based on which we will calculate the joint probability, must assign nodes U =
false and S1 = true, S2 = true, ..., Sk = true. The number of these instantiations is 2t−k−1.
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Correctness Proof of Correctness: Propositional Case

Logic perspective

Consider the set of formulas {U} ∪ V ′ = {U,S1,S2, ...,Sk} and the set of atoms appearing in it
A′ = {A1,A2, ...Al}:

Because V ′ |= U, {¬U} ∪ V ′ is unsatisfiable. Thus an assignment of {U} ∪ V ′, i.e.,
{U,S1,S2, ...,Sk}, over A′ = {A1,A2, ...Al} that is restricted to evaluate U to false while
satisfying {S1,S2, ...,Sk} does not exist.

This means that for any assignment over A′, as long as it makes U = false, there is at least
one formula Sx that logically evaluates to false, where 1 ≤ x ≤ k .
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Correctness Proof of Correctness: Propositional Case

CNF encoding perspective

Because V = R∪A, any instantiation of G includes exactly one assignment over A, the set of
atomic formulas appearing in compound formulas of G.

For any instantiation c of G compatible to evidence {u, s1, s2, ..., sk}, it might evaluate formula U
to either true or false.
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Correctness Proof of Correctness: Propositional Case

CNF encoding perspective, ctd.

If U = false , we can always find at least one formula Sx ∈ V ′ that logically evaluates to false. We
use cx to represent the partial assignment over atoms only related to Sx (cx ⊆ c, as c is an
assignment over not only atomic formula nodes, but also compound formula nodes). Then
considering one model ω of the CNF encoding corresponding to this instantiation c, the weight of
one parameter variable/literal that is related to the evidential value Sx = true, Psx |cx , is

Wt(Psx |cx ) = θsx |cx = 0.

So the weight of the model ω is

Wt(ω) = Wt(Psx |cx ) ∗

t−1∏

i=1

Wt(Pi ) = 0,

where Pi represents another parameter variable/literal of the model ω that is not Psx |cx .
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Correctness Proof of Correctness: Propositional Case

CNF encoding perspective, ctd.

If U = true , and if we use cu to denote the partial assignment over atoms only related to U, then

Wt(Pu|cu
) = θu|cu

= 0.

The weight of the model ω is still

Wt(ω) = Wt(Pu|cu
) ∗

t−1∏

i=1

Wt(Pi ) = 0.
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Correctness Proof of Correctness: Propositional Case

CNF encoding perspective, ctd.

This conclusion holds for all the other models. Thus

Pr(e) = Pr(u,V ′ = true) = Pr(u, s1, s2, ..., sk ) =

2t−k−1∑

i=1

Wt(ωi ) = 0,

where ωi represents a model corresponding to the different instantiation of G compatible to
evidence {u, s1, s2, ..., sk}.
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Correctness Proof of Correctness: Propositional Case

CNF encoding perspective: conclusion

Finally

Pr(u|V ′ = true) =
Pr(u,V ′ = true)

Pr(u,V ′ = true) + Pr(u,V ′ = true)

=
Pr(u,V ′ = true)

Pr(u,V ′ = true) + 0

= 1.
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Correctness Proof of Correctness: Propositional Case

Example of use of WMC in the proof

Query

D

The original KB’s formulas

1 (B ∨ C) → A
2 D → B
3 D → E ,
4 F → G

Search result

R = {(B ∨ C) → A,D → B,D → E},
V = {A,B,C,D,E , (B ∨ C) → A,D → B,D →

E}.
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Correctness Proof of Correctness: Propositional Case

CPTs for the example

A B C (B ∨ C) → A Θ(B∨C)→A|A,B,C

T T T T 1
F 0

T T F T 1
F 0

T F T T 1
F 0

T F F T 1
F 0

F T T T 0
F 1

F T F T 0
F 1

F F T T 0
F 1

F F F T 1
F 0

B D D → B ΘD→B|B,D

T T T 1
F 0

T F T 1
F 0

F T T 0
F 1

F F T 1
F 0

D E D → E ΘD→E|D,E

T T T 1
F 0

T F T 0
F 1

F T T 1
F 0

F F T 1
F 0
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Correctness Proof of Correctness: Propositional Case

Example, ctd.

For some set of formulas V ′ ⊆ V , e.g.,

V ′ = {D, (B ∨ C) → A,D → B},

it is obvious that

V ′ |= A.

We want to show:

Pr(A = true|D = true, (B ∨ C) → A = true,D → B = true) = 1,

which can be simplified as:

Pr(a|d , (b ∨ c) → a, d → b) = 1.

We start by following the method of weighted model counting to calculate

Pr(a, d , (b ∨ c) → a, d → b),

the probability of evidence {A = false,D = true, (B ∨ C) → A = true,D → B = true} in the
Bayesian network G.
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Correctness Proof of Correctness: Propositional Case

CNF encoding

Indicator Clauses
A Ia ∨ Ia ¬Ia ∨ ¬Ia
B Ib ∨ Ib ¬Ib ∨ ¬Ib
... ... ... ...
E Ie ∨ Ie ¬Ie ∨ ¬Ie
D → B Id→b ∨ Id→b ¬Id→b ∨ ¬Id→b
D → E Id→e ∨ Id→e ¬Id→e ∨ ¬Id→e
... ... ... ...

Parameter Clauses
A Ia ⇔ Pa Ia ⇔ Pa
B Ib ⇔ Pb Ib ⇔ Pb
... ... ... ...
E Ie ⇔ Pe Ie ⇔ Pe
D → B Id ∧ Ib ∧ Id→b ⇔ Pd→b|d,b Id ∧ Ib ∧ Id→b ⇔ Pd→b|d,b

Id ∧ Ib ∧ Id→b ⇔ Pd→b|d,b Id ∧ Ib ∧ Id→b ⇔ Pd→b|d,b
Id ∧ Ib ∧ Id→b ⇔ Pd→b|d,b Id ∧ Ib ∧ Id→b ⇔ Pd→b|d,b
Id ∧ Ib ∧ Id→b ⇔ Pd→b|d,b Id ∧ Ib ∧ Id→b ⇔ Pd→b|d,b

D → E Id ∧ Ie ∧ Id→e ⇔ Pd→e|d,e Id ∧ Ie ∧ Id→e ⇔ Pd→e|d,e
Id ∧ Ie ∧ Id→e ⇔ Pd→e|d,e Id ∧ Ie ∧ Id→e ⇔ Pd→e|d,e
Id ∧ Ie ∧ Id→e ⇔ Pd→e|d,e Id ∧ Ie ∧ Id→e ⇔ Pd→e|d,e
Id ∧ Ie ∧ Id→e ⇔ Pd→e|d,e Id ∧ Ie ∧ Id→e ⇔ Pd→e|d,e

... ... ... ...

Wang and Valtorta (CSE@USC) Instantiation to Support the Integration May 16, 2011 35 / 53



Correctness Proof of Correctness: Propositional Case

Compatible instantiations

Given evidence

{A = false,D = true, (B ∨ C) → A = true,D → B = true},

we can list all the compatible instantiations of the Bayesian network G:

Evidence Nodes (fixed values) Other Nodes
A D (B ∨ C) → A D → B B C E D → E

1 a d (b ∨ c) → a d → b b c e d → e
2 a d (b ∨ c) → a d → b b c e d → e
3 a d (b ∨ c) → a d → b b c e d → e
4 a d (b ∨ c) → a d → b b c e d → e
... ... ... ... ... ... ... ... ...
16 a d (b ∨ c) → a d → b b c e d → e

Each instantiation corresponds to a model of the CNF encoding :

ω Truth assignment sets these variables to true and all others to false
1 Ia, Id , I(b∨c)→a, Id→b, Ib, Ic , Ie, Id→e,Pa,Pd ,P(b∨c)→a|a,b,c ,Pd→b|b,d ,Pb,Pc ,Pe,Pd→e|d,e
2 Ia, Id , I(b∨c)→a, Id→b, Ib, Ic , Ie, Id→e,Pa,Pd ,P(b∨c)→a|a,b,c ,Pd→b|b,d ,Pb,Pc ,Pe,Pd→e|d,e
3 Ia, Id , I(b∨c)→a, Id→b, Ib, Ic , Ie, Id→e,Pa,Pd ,P(b∨c)→a|a,b,c ,Pd→b|b,d ,Pb,Pc ,Pe,Pd→e|d,e
4 Ia, Id , I(b∨c)→a, Id→b, Ib, Ic , Ie, Id→e,Pa,Pd ,P(b∨c)→a|a,b,c ,Pd→b|b,d ,Pb,Pc ,Pe,Pd→e|d,e
... ... ...
16 Ia, Id , I(b∨c)→a, Id→b, Ib, Ic , Ie, Id→e,Pa,Pd ,P(b∨c)→a|a,b,c ,Pd→b|b,d ,Pb,Pc ,Pe,Pd→e|d,e
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Correctness Proof of Correctness: Propositional Case

Model weight

In each model, there is at least one variable/literal whose weight is equal to 0. For example, in
model 2, ω2, they are P(b∨c)→a|a,b,c and Pd→e|d,e, as we know from the logical relations:

Wt(P(b∨c)→a|a,b,c) = θ(b∨c)→a|a,b,c = 0
and

Wt(Pd→e|d,e) = θd→e|d,e = 0.

Thus,

Wt(ω2) = 0,

as the weight of model ω2 is based on the product of the weights of all the variables/literals in
ω2 and there is at least one 0 weight among these factors. This holds for all the other models.

Therefore even if there are 16 models, the sum of their weights, the actual probability of
evidence, is still 0, i.e.,

Pr(a, d , (b ∨ c) → a, d → b) = Wt(ω1) + Wt(ω2) + ...+ Wt(ω16) = 0.
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Correctness Proof of Correctness: Propositional Case

Propositional case example: conclusion

Now we can use this conclusion and Bayes’ rule to calculate Pr(a|d , (b ∨ c) → a, d → b):

Pr(a|d , (b ∨ c) → a, d → b) =
Pr(a, d , (b ∨ c) → a, d → b)

Pr(a, d , (b ∨ c) → a, d → b) + Pr(a, d , (b ∨ c) → a, d → b)

=
Pr(a, d , (b ∨ c) → a, d → b)

Pr(a, d , (b ∨ c) → a, d → b) + 0

= 1.
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Correctness Proof of Correctness: First-Order Case

First-order case proof

If V ′ |= U, then FOL theory
{¬U} ∪ V ′ = {¬U,S1,S2, ...,Sk} is
logically unsatisfiable. We define
F = U ∧ S1 ∧ S2 ∧ ... ∧ Sk and
F ′ = ¬U ∧ S1 ∧ S2 ∧ ... ∧ Sk . Then a
Herbrand structure of F is also the one of F ′

and vice versa. Note that every subformula
of F has a corresponding node in G. We
know that F ′ is unsatisfiable. This means
that all interpretations (more commonly
called structures in FOL) of F ′, including its
Herbrand structures, that evaluate formula
U to false will also evaluate at least one
formula Sx (1 ≤ x ≤ k ) to false.

P(a) Q(b)Q(a)P(b)

P(a) Q(a) P(b) Q(b)

P(x) Q(x)

O
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Correctness Proof of Correctness: First-Order Case

First-order case proof, ctd.

For BN G, each instantiation includes one
instantiation of G’s root nodes, which are all
ground atomic formulas because of the way
G is built. (The root nodes also include the
O nodes, which are also atomic
propositions.) Such an instantiation of root
nodes in G has defined a Herbrand
structure for the language of G. Thus given
an instantiation G, there is a corresponding
evaluation for any formula appearing in G
and this evaluation result is fixed.

In addition, for each quantified formula
appearing in G, all its possible groundings
based on constants available in the relation
search result (R∪ P) also appear in G.

P(a) Q(b)Q(a)P(b)

P(a) Q(a) P(b) Q(b)

P(x) Q(x)

O
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Correctness Proof of Correctness: First-Order Case

Proof, ctd.

Consider the special CNF encoding of BN G. Any instantiation of G corresponds to a model
of such a CNF encoding. To compute Pr(e) through the weighted model count, we only
consider instantiations of G that are compatible with evidence e = {u, s1, s2, ..., sk}.

We choose one arbitrary instantiation of G compatible with e. The Herbrand structure
contained in the current instantiation is denoted by H. We know that formula U can evaluate
to true or false under H. We consider these two cases separately.
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Correctness Proof of Correctness: First-Order Case

Proof: U evaluates to false in H

U is false in H. Because of the unsatisfiability of F ′, we know that F ′ does not have a Herbrand
model. Therefore if U evaluates to false in H, there must be at least a Sx that evaluates to false in
H. As we know that the nodes of G are in three levels, node Sx might appear in the first level
(being an atomic formula node), in the second level (being a ground formula), or in the third level
(being a quantified formula).

Note that atomic formulas, appearing as root nodes in G, definitely evaluate to the same
values as their state values in the instantiation. Remember that all the nodes S1,S2, ...,Sk
are in state true, as the current instantiation is compatible with evidence e. Since Sx is false in
H, Sx could not be in the first level. This also excludes the case that Sx is an O node.

If Sx is in the second level, then there is an inconsistency between its logical evaluation,
which is false based on its parents’ state values, and its state value, which is true as
determined by e.
If node Sx is in the third level, i.e., it is a quantified formula, there are two cases for possible
instantiations of its parent nodes, which are groundings of Sx , in G:

1 All the parent nodes of Sx are in state value true.
2 There is at least one parent node of Sx in state false, including its O node.

Therefore, if node Sx is in the third level of G, for any possible instantiation compatible with e,
we can always find a node with logical inconsistency. This node might be Sx itself, or one of
its parents Sx g .
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Correctness Proof of Correctness: First-Order Case

Proof: U evaluates to true in H

U is true in H. There are three cases for the appearance of U: U is an O node, a ground formula
that is not an O node, and a quantified formula.

1 U is an O node. This case is impossible.
Being a root node, an O node should have the same evaluation as its state value false, which
is compatible with evidence e.

2 U is a ground formula but not an O node.
Still, U cannot be a root node. Thus U is a second level grounding. U has a state value false,
which is compatible with evidence e, but it evaluates to true. Thus U itself has an
inconsistency.

3 U is a quantified formula. We have a similar analysis as before.
If all the parent nodes of U are in state value true, then there is an inconsistency in U, as we
know that the CPT of U is an AND table, but its state value is false to be compatible with e.
Otherwise, there is at least one parent in state value false. Based on the definition of the truth
value of a quantified formula, all the parent formulas (node O or not) of U in G need to
evaluate to true in H. Being a root node, the O node cannot be in state value false, as its state
value should be the same value as its evaluation in H. Therefore there must be a grounding in
state value false, which however evaluates to true. Then this grounding has an inconsistency.
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Correctness Proof of Correctness: First-Order Case

Proof: model weight

Because of the way CPTs are built in G, as shown in the propositional case analysis, the entries of
a CPT of a non-root node in G all have value 0, if the logical evaluation of its logical formula, given
its parents’ state values, is inconsistent with the node’s real state value. For a node with such
inconsistency, denoted by S, if we use c to represent the state values of its parent nodes in the
current instantiation, and the corresponding truth assignment of CNF encoding is denoted by ω,
we know that

Wt(Ps|c) = θs|c = 0,

and the weight of the model ω is

Wt(ω) = Wt(Ps|c) ∗

t−1∏

i=1

Wt(Pi ) = 0,

where t is the number of nodes in G, i.e., |G| = t , and Pi represents the other parameter literal of
the model ω that is not Ps|c .
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Correctness Proof of Correctness: First-Order Case

First-order case proof: evidence probability and conclusi on

This result holds for all the other models. Thus

Pr(e) = Pr(u,V ′ = true) = Pr(u, s1, s2, ..., sk ) =
2t−k−1∑

i=1

Wt(ωi ) = 0,

where ωi represents the model corresponding to the different instantiation of G compatible with
evidence {u, s1, s2, ..., sk}. Thus, as claimed in the statement of the theorem,

Pr(u|V ′ = true) =
Pr(u,V ′ = true)

Pr(u,V ′ = true) + Pr(u,V ′ = true)
=

Pr(u,V ′ = true)

Pr(u,V ′ = true) + 0
= 1.

This concludes the proof of correctness for the first-order case.
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Partial Instantiation

Why partial instantiation?

In the FOL case, as the number of atoms containing different variables in a quantified formula
increases, the number of groundings could increase exponentially. This might make the BN G very
large. However, many nodes, including atoms and groundings, in this BN are not meaningful in
real use.
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Partial Instantiation

Context predicates and context facts

In a well-defined KB, besides formulas representing rules, there are some facts that represent
basic and fixed features of a few context constants in KB. For atoms describing such features, any
groundings of them that are not explicitly specified in KB are regarded impossible. This is often
referred as closed world assumption, i.e., for a feature F of a sequence of constants C in the
domain, if F (C) is not listed as a fact, then we believe F (C) is false. We call the predicates like F
context predicates and the set of related facts context facts.

Therefore, we can control the number of groundings of quantified formulas by discarding
meaningless instantiations.
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Partial Instantiation

Implicative Normal Form

In addition, we assume that all the rules in KB are in Implicative Normal Form (INF). Note that any
formula can be easily translated into INF.

For example, (A1 ∧ A2) ∨ (B1 ∧ B2) → C, where A1, A2, B1, and B2 are literals and C is a
subformula, can be converted into A1 ∧ A2 → C and B1 ∧ B2 → C.
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Partial Instantiation

One extra step

We add one extra step for the instantiation process of quantified formulas in INF. We will still
try all the possible instantiations of a quantified formula that contains context predicates. We
discard a grounding unless all of the context predicates appearing in its body are context
facts.

The idea is simple. Each rule in KB naturally adds one constraint to the set of possible
worlds. However, when one part of the body of the rule, which is in INF, is deterministically
false, the rule will not constrain anything, based on the definition of logical implication. Then
adding the rule is truly meaningless.

Thus we can just ignore such groundings when building the BN. In applications, the users can
define their context predicates and context facts flexibly for controlling the size of resulting BN.
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Conclusion and Future Work

Conclusion and future work

In this paper, we presented a new way of translating logical knowledge into Bayesian networks that
supports a new approach to the integration problem of logical and probabilistic reasoning that is
easy to understand, simple to implement, and efficient to execute.

Future work:

The method presented in this paper can be used not only for the general integration problem
but also the traditional BN learning problem.

We are exploring how to use soft evidence for the improvement of accurate reasoning for
many problems, such as classification.
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Conclusion and Future Work

Questions?
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