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Back-Door Criterion
Definition

A set of variables Z satisfies the back-door criterion relative to an
ordered pair of variables (Xi ,Xj) in a DAG G if:

(i) no node in Z is a descendant of Xi ; and

(ii) Z blocks every path between Xi and Xj that contains an
arrow into Xi .

Figure: S1 = {X3, X4} and S2 = {X4, X5} would qualify under the back-door criterion, but S3 = {X4}
would not because X4 does not d-separate Xi from Xj along the path (Xi , X3, X1, X4, X2, X5, Xj ).
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Back-Door Adjustment Theorem

If a set of variables Z satisfies the back-door criterion relative to
(X ,Y ), then the causal effect of X on Y is identifiable and is
given by the formula

P(y |x̂) =
∑
z

P(y |x , z)P(z). (1)
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A set of variables Z satisfies the front-door criterion relative to an
ordered pair of variables (X ,Y ) in a DAG G if:

(i) Z intercepts all directed paths from X to Y ;

(ii) there is no unblocked back-door path from X to Z ; and

(iii) all back-door paths from Z to Y are blocked by X .

Figure: A diagram representing the front-door criterion.
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z
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Preliminary Notation

Figure: Subgraphs of G used in the derivation of causal effects.
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Inference Rules
Rules of do Calculus

Rule 1 (Insertion/deletion of observations):

P(y |x̂ , z ,w) = P(y |x̂ ,w) if (Y ⊥⊥ Z |X ,W )GX
.

Rule 2 (Action/observation exchange):

P(y |x̂ , ẑ ,w) = P(y |x̂ , z ,w) if (Y ⊥⊥ Z |X ,W )GXZ
.

Rule 3 (Insertion/deletion of actions):

P(y |x̂ , ẑ ,w) = P(y |x̂ ,w) if (Y ⊥⊥ Z |X ,W )G
X ,Z(W )

.

where Z (W ) is the set of Z -nodes that are not ancestors of
any W -node in GX .
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P(y |x̂ , ẑ ,w) = P(y |x̂ ,w) if (Y ⊥⊥ Z |X ,W )G
X ,Z(W )

.

where Z (W ) is the set of Z -nodes that are not ancestors of
any W -node in GX .

Mohammad Ali Javidian, Marco Valtorta University of South Carolina

An Illustrated Proof of Front-Door Adjustment Theorem



The Back-Door Criterion The Front-Door Criterion do Calculus Proof of Theorem 2.

Inference Rules
Rules of do Calculus

Rule 1 (Insertion/deletion of observations):

P(y |x̂ , z ,w) = P(y |x̂ ,w) if (Y ⊥⊥ Z |X ,W )GX
.

Rule 2 (Action/observation exchange):
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P(y |x̂ , ẑ ,w) = P(y |x̂ ,w) if (Y ⊥⊥ Z |X ,W )G
X ,Z(W )

.

where Z (W ) is the set of Z -nodes that are not ancestors of
any W -node in GX .

Mohammad Ali Javidian, Marco Valtorta University of South Carolina

An Illustrated Proof of Front-Door Adjustment Theorem



The Back-Door Criterion The Front-Door Criterion do Calculus Proof of Theorem 2.

Proof of Front-Door Adjustment Theorem
Step 1: Compute P(z |x̂)

X ⊥⊥ Z in GX because there is no outgoing edge from X in GX , and
also by condition (ii) of the definition of the front-door criterion, all
back-door paths from X to Z are blocked.

G satisfies the applicability condition for Rule 2:

P(y |x̂ , ẑ ,w) = P(y |x̂ , z ,w) if (Y ⊥⊥ Z |X ,W )GXZ
.

In Rule 2, set y = z , x = ø, z = x ,w = ø:

P(z |x̂) = P(z |x) because (Z⊥⊥ X )GX
.
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∑

x P(y |x , ẑ)P(x |ẑ).

X ⊥⊥ Z in GZ because there is no incoming edge to Z in GZ , and also all
paths from X to Z either by condition (ii) of the definition of the
front-door criterion (blue-type paths), or because of existence of a collider
node on the path (green-type paths) are blocked.
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∑

x P(y |x , ẑ)P(x |ẑ).
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(Z⊥⊥ Y |X )GZ because there is no outgoing edge from Z in GZ , and also
by condition (iii) of the definition of the front-door criterion, all
back-door paths from Z to Y are blocked by X .
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XZ
.

In Rule 2, set y = y , x = ø, z = z ,w = x :

P(y |x , ẑ) = P(y |x , z) because (Z⊥⊥ Y |X )GZ .
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by condition (iii) of the definition of the front-door criterion, all
back-door paths from Z to Y are blocked by X .

G satisfies the applicability condition for Rule 2:
P(y |x̂ , ẑ ,w) = P(y |x̂ , z ,w) if (Y ⊥⊥ Z |X ,W )G

XZ
.

In Rule 2, set y = y , x = ø, z = z ,w = x :

P(y |x , ẑ) = P(y |x , z) because (Z⊥⊥ Y |X )GZ .
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Proof of Front-Door Adjustment Theorem
Step 2 (continued): Compute P(y |ẑ)

P(y |ẑ) =
∑

x P(y |x , ẑ)P(x |ẑ) =
∑

x P(y |x , z)P(x).

This formula is a special case of the back-door formula in
Theorem 1.
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P(y |x̂ , ẑ ,w) = P(y |x̂ , z ,w) if (Y ⊥⊥ Z |X ,W )G

XZ
.

In Rule 2, set y = y , x = x , z = z ,w = ø :
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Proof of Front-Door Adjustment Theorem
Step 3 (continued): Compute P(y |x̂)

(Y ⊥⊥ X |Z)G
XZ

because there is no incoming edge to X in GXZ , and also
all paths from X to Y are blocked either because of condition (i) of the
definition of the front-door criterion (blue-type paths)[directed paths from
X to Y ], or because of the existence of a collider on the path (green-type
paths) (note that the case T ∈ Z cannot happen because there is no
incoming edge to Z in GXZ ).
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Proof of Front-Door Adjustment Theorem
Step 3 (continued): Compute P(y |x̂)

G satisfies the applicability condition for Rule 3:

P(y |x̂ , ẑ ,w) = P(y |x̂ ,w) if (Y ⊥⊥ Z |X ,W )G
X,Z(W )

.

In Rule 3, set y = y , x = z , z = x ,w = ø:

P(y |ẑ , x̂) = P(y |ẑ) because (Y ⊥⊥ Z |X )G
XZ

.

P(y |x̂) =
∑

z P(y |z , x̂)P(z |x̂) =
∑

z P(z |x)
∑

x′ P(y |x ′, z)P(x ′).
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P(y |ẑ , x̂) = P(y |ẑ) because (Y ⊥⊥ Z |X )G
XZ

.

P(y |x̂) =
∑

z P(y |z , x̂)P(z |x̂) =
∑

z P(z |x)
∑

x′ P(y |x ′, z)P(x ′).

Mohammad Ali Javidian, Marco Valtorta University of South Carolina

An Illustrated Proof of Front-Door Adjustment Theorem



The Back-Door Criterion The Front-Door Criterion do Calculus Proof of Theorem 2.

Proof of Front-Door Adjustment Theorem
Step 3 (continued): Compute P(y |x̂)

G satisfies the applicability condition for Rule 3:
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