Discrete Graphical Models with One Hidden Variable

Marco Valtorta
Department of Computer
Science and Engineering
University of South Carolina
October 7, 2011

Joint work with:
Elizabeth Allman, John Rhodes (Mathematics, U. Fairbanks)
Elena Stanghellini (Statistics, U. Perugia)
Support from AIM is gratefully acknowledged.

Contents

- Identifiability problems
- Kruskal's Theorem and Its Application
- Examples
- Summary and conclusion

What is Identifiability?

- The sufficient parameters for discrete Bayesian network with hidden and observable nodes are the conditional probability tables (CPTs) for each family of nodes

1. Unidentifiability_1: The ability to determine whether the CPTs can be computed from observable data alone and, if so, to compute them
2. Unidentifiability_2: The ability to determine whether the causal effect of a set of observable variables on another observable variable in a causal Bayesian network with hidden nodes can be computed from observable data alone, and, if so, to compute it

- An Example of case 2 follows

Unidentifiability_2 Example(1)

- All the variables are binary.
- $P(U=0)=0.5$,
- $P(X=0 \mid U)=(0.6,0.4)$,
- $P(Y=0 \mid X, U)=$

$Y=0$	$X=0$	$X=1$
$U=0$	0.7	0.2
$U=1$	0.2	0.7

Unidentifiability_2 Example(2)

- Note that

$$
\begin{aligned}
& P(X, Y)=\sum_{U} P(Y \mid X, U) P(X \mid U) P(U) \\
& \qquad
\end{aligned}
$$

- Because of the excision semantics, the link from U to X is removed, and we have:

$$
P_{X}(Y)=\sum_{U} P(Y \mid X, U) P(U)
$$

- So, $P_{X=0}(Y=0)=(0.7 \times 0.5)+(0.2 \times 0.5)=0.45$

Unidentifiability_2 Example(3)

- All the variables are still binary.
- $P(U=0)=0.5$

$Y=0$	$X=0$	$X=1$
$U=0$	0.65	0.15
$U=1$	0.15	0.65

Unidentifiability_2 Example(4)

- Using

$$
P(X, Y)=\sum_{U} P(Y \mid X, U) P(X \mid U) P(U)
$$

- We still get:

	$X=0$	$X=1$
$Y=0$	0.25	0.25
$Y=1$	0.25	0.25

- From

$$
P_{X}(Y)=\sum_{U} P(Y \mid X, U) P(U)
$$

- We have $P_{X=0}(Y=0)=(0.65 \times 0.5)+(0.35 \times 0.5)=0.4<>0.45$
- So, $P_{X}(Y)$ is unidentifiable in this model

The Identifiability_2 Problem

- For a given causal Bayesian network, decide whether $P_{t}(s)$ (i.e., $P(S \mid d o(T)$) is identifiable or not
- If $P_{t}(s)$ is identifiable, give a closedform expression for the value of $P_{t}(s)$ in term of distributions derived from the joint distribution of all observed quantities, $\mathrm{P}(\mathrm{n})$

Contents

- Identifiability problems
- Kruskal's Theorem and Its Application
- Examples
- Summary and conclusion

Kruskal's Theorem

- Model with one hidden variable (r states) and three observable variables (s 1 , s2, s3 states)
- Provided that s1, s2, s3 are "large enough" relative to r, the parameters are generically identifiable_1
- In this presentation, we assume that all variables are binary

Application of Kruskal Theorem

Kruskal theorem can be applied to more complicated graphs:

1. Clumping several variables (all hidden or all observed) into a single one, with larger state space
2. Conditioning on the state of an
 observed variable
3. Marginalizing over an observed variable (making it hidden)
Operations 2 and 3 are novel in this context

Contents

- Identifiability problems
- Kruskal's Theorem and Its Application
- Examples
- Summary and conclusion

Two Observable Variables, One Hidden

- Neither of the two possible models is identifiable_1
- $P(S \mid d o(T))$ is unidentifiable_2 in the top model
- $P(S \mid d o(T))$ is identifiable_2 in the bottom model
- Effects are independent given their common cause, so
 when we marginalize out U, the effect of T is eliminated

Three Observed Variables

- The model of the original Kruskal Theorem (top) is (obviously) identifiable_1
- The causal effect of any leaf on any other leaf is identifiable_2
- If any edges are added, the model is unidentifiable_1

$$
\ln -2
$$

- P(S | do(T)) is identifiable_2
- $P(V \mid \operatorname{do}(W))$ is unidentifiable_2

Four Observed Variables

- Identifiable_1
- By clumping two observable variables together
- Identifiable_1
- By clumping the two observable variables that are connected by
 an arc

Four Observed Variables (ctd.)

- We conjecture that this is unidentifiable_1, and so are variants where the horizontal arcs are oriented in different ways

- P(S | do(T)) is
unidentifiable_2, but
- $P(V \mid$ do($T)$) is identifiable_2

Four Observed Variables

1. Condition on the states of 1
2. The resulting distributions arise from the Kruskal graph with O as the central node
3. Obtain the CPT $4 \mid 0$ using Kruskal's theorem
4. Obtain $1,2,3,4 \mid 0$ by inverting $4 \mid 0$

There are a few other ways of obtaining the parameters; one starts by marginalizing out 1

Two edges with
a common source: Identifiable_1

Four Observed Variables

- Condition on 2
- The resulting distribution arise from a Kruskal BN with 0 as the central node
- Apply Kruskal, obtaining the CPTs of 0 and $4 \mid 0$
- Continue as in the previous case

Two edges forming a directed path: Identifiable_1

- Marginalizing over 2 does not seem to work

A Surprise

P(W | do(X))
is not
identifiable_2!

(3) Causal Graphic Editor								-	回	Σ
Create	Move	Delete	Query	Observe	S Variable	T Variable	C Variable	Bi Edge elete BiEd		

Fontrol Panel
File Options Identifying SEMs Help

$\mathrm{Q}[\{X, W, Y, Z\}]=,\mathrm{P}(\mathrm{X}) \mathrm{P}(\mathrm{W} \mid \mathrm{X}) \mathrm{P}(\mathrm{Y} \mid \mathrm{X}, \mathrm{W}) \mathrm{P}(\mathrm{Z} \mid \mathrm{X}, \mathrm{W}, \mathrm{Y})$
Print C -component of G.
$\mathrm{S}[0]: \mathrm{X}, \mathrm{W}, \mathrm{Y}, \mathrm{Z}$,
$\mathrm{Q}[\{\mathrm{X}, \mathrm{W}, \mathrm{Y}, \mathrm{Z}\}]=,\mathrm{P}(\mathrm{X}) \mathrm{P}(\mathrm{W} \mid \mathrm{X}) \mathrm{P}(\mathrm{Y} \mid \mathrm{X}, \mathrm{W}) \mathrm{P}(\mathrm{Z} \mid \mathrm{X}, \mathrm{W}, \mathrm{Y})$

$\mathrm{Pt}(\mathrm{s})$ is UNIDENTIFIABLE!
Jin Tian's CIBN, available at http://www.cs.iastate.edu/~jtian/Soft ware/CIBN.htm

Contents

- Identifiability problems
- Kruskal's Theorem and Its Application
- Examples
- Summary and conclusion

Comments

- We obtained additional results on graphs with five observables
- I omitted the important issue of generic vs. absolute identifiability. Our results for identifiability_1 are generic. The results for identifiability_2 are absolute.
- Some heuristics have emerged, e.g., when both conditioning and marginalization lead to a result, marginalization is more efficient

Comments (ctd.)

- In some cases, by assuming a hidden variable is binary, a model may go from unidentifiable to identifiable for generic parameter values
- In these cases, it appears that the one needs not rational formulas, but algebraic ones, in order to solve for parameter values
- It appears that for identifiability_2, one always can obtain rational formulas for parameter values, when they are identifiable

References

- Elizabeth S. Allman, Catherine Matias, and John A. Rhodes "Identifiability of parameters in latent structure models with many observed variables." Annals of Statistics, 37 (2009), 30993132.
- Yimin Huang and Marco Valtorta. "On the completeness of an identifiability algorithm for semi-Markovian models." Annals of Mathematics and Artificial Intelligence, 54 (2008), 363-408.
- Jin Tian and Ilya Shpitser. "On Identifying Causal Effects." In:Rina Dechter, Hector Geffner, and Joseph Halpern (eds.) Heuristics, Probability, and Causality: A Tribute to Judea Pearl. College Press (2010), 523-543.
- Elena Stanghellini, Barbara Vantaggi "On the identification of discrete graphical models with hidden nodes." arXiv:1009.4279v1 (2008).
- These slides are available through http://www.cse.sc.edu/~mgv/talks/index.html

Questions?

