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What is Identifiability?
• The sufficient parameters for discrete Bayesian network 

with hidden and observable nodes are the conditional 
probability tables (CPTs) for each family of nodes

1. Unidentifiability_1: The ability to determine whether 
the CPTs can be computed from observable data alone 
and, if so, to compute them

2. Unidentifiability_2: The ability to determine whether 
the causal effect of a set of observable variables on 
another observable variable in a causal Bayesian 
network with hidden nodes can be computed from 
observable data alone, and, if so, to compute it

• An Example of case 2 follows
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Unidentifiability_2 Example(1)
• All the variables are  

binary.
• P(U=0) = 0.5,
• P(X=0|U) = (0.6,0.4),
• P(Y=0|X,U) =

Y=0 X =0 X= 1

U =0 0.7 0.2

U=1 0.2 0.7

X Y

U
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Unidentifiability_2 Example(2)
• Note that 

• We get:

• Because of the excision semantics, the link from U to X is 
removed, and we have: 

• So, PX=0 (Y=0) = (0.7x0.5) + (0.2x0.5) = 0.45


U

X UPUXYPYP )(),|()(

X =0 X= 1

Y =0 0.25 
(=0.7x0.6x0.5+
0.2x0.4x0.5)

0.25

Y=1 0.25 0.25


U

UPUXPUXYPYXP )()|(),|(),(
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Unidentifiability_2 Example(3)
• All the variables are still binary.
• P(U=0) = 0.5
• P(X=0|U) = (0.7,0.3)
• P(Y=0|X,U) = 

Y=0 X =0 X= 1

U =0 0.65 0.15

U=1 0.15 0.65

X Y

U
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Unidentifiability_2 Example(4)
• Using 

• We still get:

• From

• We have PX=0 (Y=0) = (0.65x0.5) + (0.35x 0.5) = 0.4 <> 0.45
• So, PX(Y) is unidentifiable in this model


U

X UPUXYPYP )(),|()(

X =0 X= 1

Y =0 0.25 0.25

Y=1 0.25 0.25


U

UPUXPUXYPYXP )()|(),|(),(
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The Identifiability_2 Problem

• For a given causal Bayesian network, 
decide whether Pt(s) (i.e., P(S | do(T)) is 
identifiable or not

• If Pt(s) is identifiable, give a closed-
form expression for the value of Pt(s) in 
term of distributions derived from the 
joint distribution of all observed 
quantities, P(n)
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Kruskal’s Theorem
• Model with one hidden 

variable (r states) and three 
observable variables (s1, 
s2, s3 states)

• Provided that s1, s2, s3 are 
“large enough” relative to r, 
the parameters are 
generically identifiable_1

• In this presentation, we 
assume that all variables 
are binary

Kruskal Graph
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Application of Kruskal Theorem
Kruskal theorem can be applied to 
more complicated graphs:
1. Clumping several variables (all 

hidden or all observed) into a 
single one, with larger state space

2. Conditioning on the state of an 
observed variable

3. Marginalizing over an observed 
variable (making it hidden)

Operations 2 and 3 are novel in this 
context
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Two Observable Variables, One Hidden

• Neither of the two possible 
models is identifiable_1 

• P(S|do(T)) is unidentifiable_2 in 
the top model

• P(S|do(T)) is identifiable_2 in 
the bottom model
– Effects are independent 

given their common cause, so 
when we marginalize out U, 
the effect of T is eliminated 13

U

T S

U

T S
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Three Observed Variables
• The model of the original Kruskal 

Theorem (top) is (obviously) 
identifiable_1

• The causal effect of any leaf on 
any other leaf is identifiable_2

• If any edges are added, the 
model is unidentifiable_1

• P(S | do(T)) is identifiable_2
• P(V | do(W)) is unidentifiable_2 
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Four Observed Variables
• Identifiable_1

– By clumping two 
observable variables 
together

• Identifiable_1
– By clumping the two 

observable variables 
that are connected by 
an arc

15
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Four Observed Variables (ctd.)
• We conjecture that this 

is unidentifiable_1, 
and so are variants 
where the horizontal 
arcs are oriented in 
different ways

• P(S  | do(T)) is 
unidentifiable_2, but

• P(V | do(T)) is 
identifiable_2

16
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Four Observed Variables
1. Condition on the states of 1
2. The resulting distributions 

arise from the Kruskal graph 
with 0 as the central node

3. Obtain the CPT 4|0 using 
Kruskal’s theorem

4. Obtain 1,2,3,4|0 by 
inverting 4|0

There are a few other ways of 
obtaining the parameters; one 
starts by marginalizing out 1 17

0

2 1 3 4

Two edges with
a common source:
Identifiable_1
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Four Observed Variables
• Condition on 2
• The resulting distribution arise 

from a Kruskal BN with 0 as 
the central node

• Apply Kruskal, obtaining the 
CPTs of 0 and 4|0

• Continue as in the previous 
case

• Marginalizing over 2 does not 
seem to work
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A Surprise
P(W | do(X)) 
is not
identifiable_2!
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Jin Tian’s CIBN, available at 
http://www.cs.iastate.edu/~jtian/Soft
ware/CIBN.htm
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Comments
• We obtained additional results on graphs with five 

observables
• I omitted the important issue of generic vs. 

absolute identifiability.  Our results for 
identifiability_1 are generic.  The results for 
identifiability_2 are absolute.

• Some heuristics have emerged, e.g., when both 
conditioning and marginalization lead to a result, 
marginalization is more efficient
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Comments (ctd.)
• In some cases, by assuming a hidden variable is 

binary, a model may go from unidentifiable to 
identifiable for generic parameter values

• In these cases, it appears that the one needs not 
rational formulas, but algebraic ones, in order to 
solve for parameter values

• It appears that for identifiability_2, one always 
can obtain rational formulas for parameter values, 
when they are identifiable
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Questions?
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