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Abstract

This paper addresses the problem of identifying causal effects
from nonexperimental data in acausal Bayesian network, i.e.,
a directed acyclic graph that represents causal relationships.
The identifiability question asks whether it is possible to com-
pute the probability of some set of (effect) variables given
intervention on another set of (intervention) variables, in the
presence of non-observable (i.e., hidden or latent) variables.
It is well known that the answer to the question depends on
the structure of the causal Bayesian network, the set of ob-
servable variables, the set of effect variables, and the set of
intervention variables. Our work is based on the work of
Tian, Pearl, Huang, and Valtorta (Tian & Pearl 2002a; 2002b;
2003; Huang & Valtorta 2006), and extends it. We show that
the identify algorithm that Tian and Pearl define and prove
sound for semi-Markovian models can be transfered to gen-
eral causal graphs and is not only sound, but also complete.
This result effectively solves the identifiability question for
causal Bayesian networks that Pearl posed in 1995 (Pearl
1995), by providing a sound and complete algorithm for iden-
tifiability.

Introduction
This paper focuses on the feasibility of inferring the strength
of cause-and-effect relationships from a causal graph (Pearl
1995) (Pearl 2000), which is an acyclic directed graph ex-
pressing nonexperimental data and causal relationships. Be-
cause of the existence of unmeasured variables, the fol-
lowing identifiability questions arise: “Can we assess the
strength of causal effects from nonexperimental data and ca-
sual relationships? And if we can, what is the total causal
effect in terms of estimable quantities?”

The questions just given can partially be answered us-
ing graphical approaches due to Pearl and his collabora-
tors. More precisely, graphical conditions have been de-
vised to show whether a causal effect, that is, the joint re-
sponse of any setS of variables to interventions on a setT
of action variables, denotedPT (S) 1 is identifiable or not.
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1Pearl and Tian used notationP (s|do(t)) andP (s|t̂ ) in (Pearl
2000) andPt(s) in (Tian & Pearl 2002b), (Tian & Pearl 2003).

Those results are summarized in (Pearl 2000). For example,
“back-door” and “front-door” criteria anddo-calculus (Pearl
1995); graphical criteria to identifyPT (S) whenT is a sin-
gleton (Galles & Pearl 1995); graphical conditions under
which it is possible to identifyPT (S) whereT andS are,
possibly non-singleton, sets, subject to a special condition
called Q-identifiability (Pearl & Robins 1995).

Recently, Tian and Pearl published a series of papers re-
lated to this topic (Tian & Pearl 2002a; 2002b; 2003). Their
new methods combined the graphical character of causal
graph and the algebraic definition of causal effect. They
used both algebraic and graphical methods to identify causal
effects. The basic idea is, first, to transfer causal graphs to
semi Markovian graphs (Tian & Pearl 2002b), then to use
Algorithm 2 in (Tian & Pearl 2003) (henceforth, theIdentify
algorithm) to calculate the causal effects we want to know.

Tian and Pearl’s method was a great contribution to this
study area. But there were still some problems left. First,
even though we believe, as Tian and Pearl do, that the semi
Markovian models obtained from the transforming Projec-
tion algorithm in (Tian & Pearl 2002b) are equal to the orig-
inal causal graphs, and therefore the causal effects shouldbe
the same in both models, still, to the best of our knowledge,
there was no formal proof for this equivalence. Second, the
completeness question of the Identify algorithm in (Tian &
Pearl 2003) was still open, so that it was unknown whether
a causal effect was identifiable if that Identify algorithm
failed.

Following Tian and Pearl’s work, Huang and Valtorta
(2006) solved the second question. They showed that the
Identify algorithm 2 Tian and Pearl used on semi Markov-
ian models is sound and complete. A similar result was also
obtained by Shpitser and Pearl (2006) independently.

In this paper, we focus on general causal graphs directly
and our proofs show, as Tian and Pearl pointed out, that Al-
gorithm 2 in (Tian & Pearl 2003) can also be used in general
causal models, and we prove that the algorithm is sound and
complete.

In the next section we present the definitions and nota-
tions used in this paper. In section three, we repeat some
important lemmas that will be used to support the identify
algorithm. We prove that an algorithm for a special kind
of identiafibility question, calledQ[S], is sound and com-
plete in section four. Based on this result, in section five, we



present a version of the identify algorithm that can work on
any causal graph. We also prove that this algorithm is sound
and complete. Conclusions are in section six.

Definitions and Notations
Markovian models are popular graphical models for encod-
ing distributional and causal relationships. AMarkovian
modelconsists of a DAGG over a set of variablesV =
{V1, . . . , Vn}, called acausal graphand a probability distri-
bution overV , which has some constraints on it that will be
specified precisely below. We useV (G) to show thatV is
the variable set of graphG. If it is clear in the context, we
also useV directly. The interpretation of such kind of model
consists of two parts. The first one says that each variable in
the graph is independent of all its non-descendants given its
direct parents. The second one says that the directed edges
in G represent causal influences between the corresponding
variables. A Markovian model for which only the first con-
straint holds is called aBayesian network. This explains
why Markovian models are also calledcausal Bayesian net-
works.

In this paper, capital characters, likeV , are used for vari-
able sets; the lower characters, likev, stand for the instances
of variable setV . Capital character likeX, Y andVi are also
used for single variable, and their values can bex, y andvi.
Normally, we useF (V ) to denote a function on variable set
V . An instance of this function is denoted asF (V )(V = v),
or F (V )(v), or justF (v). Because all the variables are in
the causal graph, we sometimes use node or node set instead
of variable and variable set.

As in most work on Bayesian networks and, more gen-
erally, on directed graphs, we usePa(Vi) to denote parent
node set of variableVi in graphG andpa(Vi) to denote an
instance ofPa(Vi). Ch(Vi) isVi’s children node set;ch(Vi)
is an instance ofCh(Vi).

Based on the probabilistic interpretation, we get that the
joint probability functionP (v) = P (v1, . . . , vn) can be fac-
torized as

P (v) =
∏

Vi∈V

P (vi|pa(Vi)) (1)

The causal interpretation of Markovian model enables us
to predict the intervention effects. Here, intervention means
some kind of modification of factors in product (1). The
simplest kind of intervention is fixing a subsetT ⊆ V of
variables to some constantst, denoted bydo(T = t) or just
do(t), and then the post-intervention distribution

PT (V )(T = t, V = v) = Pt(v) (2)

is given by:

Pt(v) =

{ ∏

Vi∈V \T P (vi|pa(Vi)) v consistent witht
0 v inconsistent witht

(3)
We note explicitly that the post-intervention distribution
Pt(v) is a probability distribution.

When all the variables inV are observable, since all
P (vi|pa(Vi)) can be estimated from nonexperimental data,
as just indicated, all causal effects are computable. But when

some variables inV are unobservable, things are much more
complex.

Let N(G) andU(G) (or simplyN andU when the graph
is clear from the context) stand for the sets of observable
and unobservable variables in graphG respectively, that is
V = N ∪ U . The observed probability distributionP (n) =
P (N = n), is a mixture of products:

P (n) =
∑

Uk∈U

∏

Vi∈N

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (4)

The post-intervention distributionPt(n) is defined as:

Pt(n) =















∑

Uk∈U

∏

Vi∈N\T P (vi|pa(Vi))×
∏

Vj∈U P (vj |pa(Vj))

n consistent witht
0 n inconsistent witht

(5)

Sometimes what we want to know is not the post-
intervention distribution for the wholeN , but the post-
intervention distributionPt(s) of an observable variable
subsetS ⊂ N . For those two observable variable setS
andT , Pt(s) is given by:

Pt(s) =















∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T P (vi|pa(Vi))
∏

Vj∈U P (vj |pa(Vj))

s consistent witht
0 s inconsistent witht

(6)
We give out a formal definition ofidentifiability below,

which follows (Tian & Pearl 2003).
A Markovian model consists of four elements

M =< N,U,GN∪U , P (vi|pa(Vi)) >

where, (i)N is a set of observable variables; (ii)U is a set
of unobservable variables; (iii)G is a directed acyclic graph
with nodes corresponding to the elements ofV = N ∪ U ;
and (vi)P (vi|pa(Vi)), is the conditional probability of vari-
ableVi ∈ V given its parentsPa(Vi))in G.

Definition 1 The causal effect of a set of variablesT on a
disjoint set of variablesS is said to be identifiable from a
graphG if all the quantitiesPt(s) can be computed uniquely
from any positive probability of the observed variables —
that is, if PM1

t (s) = PM2
t (s) for every pair of modelsM1

and M2 with PM1(n) = PM2(n) > 0 and G(M1) =
G(M2).

This definition captures the intuition that, given the causal
graphG, in an identifiable model, the quantityPt(s) can
be determined from the observed distributionP (n) alone.
Normally, when we useS and T , we think they are both
observable variable subsets ofN and mutually disjoint. So,
s is always consistent witht in 6.

We are sometimes interested in the causal effect on a set of
observable variablesS due to all other observable variables.
In this case, keeping the convention thatN stands for the
set of all observable variables andT stands for the set of
variables whose effect we want to compute,T = N\S, for
convenience and for uniformity with (Tian & Pearl 2002b),
we define

Q[S] = PN\S(S) (7)



and interpret this equation as stating thatQ[S] is the causal
effect ofN\S onS.

We define thec-component relationon the unobserved
variable setU of graphG as: For anyU1 ∈ U andU2 ∈ U ,
they are related under the c-component relation if and only
if at least one of conditions below is satisfied:
(i) there is an edge betweenU1 andU2

(ii) U1 andU2 are both parents of the same observable node
(iii) both U1 andU2 are in the c-component relation with re-
spect to another nodeU3 ∈ U .
Observe that the c-component relation inU is reflexive,
symmetric and transitive, so it defines a partition ofU .
Based on this relationship, we can therefore divideU into
disjoint and mutually exclusive c-component related parts.
A c-componentof variable setV on graphG consists of
all the unobservable variables belonging to the same c-
component related part ofU and all observable variables
that have an unobservable parent which is a member of that
c-component. According to the definition of c-component
relation, it is clear that an observable node can only appear
in one c-component. If an observable node has no unob-
servable parent, then it is a c-component onV by itself.
Therefore, the c-components form a partition on all of the
variables.

For any pair of variablesV1 andV2 in causal graphG, if
there is an unobservable nodeUi which is a parent for both
of them, the pathV1 ← Ui → V2 is called abidirected link.
A path betweenV1 andV2 is called anextended bidirected
link (or divergent path) if (i) there is at last one internal node
in that path; (ii) all the internal nodes in the path are unob-
servable nodes; (iii) one and only one internal node in the
path is a divergent node and there is no convergent internal
node.

In a Bayesian network with hidden variables, if each hid-
den variable is a root node with exactly two observed chil-
dren, then corresponding model is called asemi-Markovian
model. The causal graph is transformed to a model in which
each unobservable variable is an ancestor of one or more ob-
servable variables in such a way that the answer to an iden-
tifiability question is preserved. We details of this transfor-
mation are given in (Huang & Valtorta 2006).

We conclude this section by giving several simple graph-
ical definitions that will be needed later.

For a given set of variablesC, we definedirected unob-
servable parent setDUP (C) as below. A nodeV belongs
to DUP (C) if and only if both of these two conditions are
satisfied: i)V is an unobservable node; ii) there is a directed
path fromV to an element ofC such all the internal nodes
on that path are unobservable nodes.

For a given observable variable setC ⊆ N , let GC

denotes the subgraph ofG composed only of variables in
C ∪ DUP (C) and all the links between variable pairs in
C ∪ DUP (C). Let An(C) be the union ofC and the set
of ancestors of the variables inC andDe(C) be the union
of C and the set of descendants of the variables inC. An
observable variable setS ⊆ N in graphG is called anan-
cestral set if it contains all its own observed ancestors, i.e.,
S = An(S) ∩N .

Lemmas
In this section we present some lemmas that will be used in
the next two sections. We begin with two lemmas proved
in (Tian & Pearl 2002b).

Lemma 1 Let W ⊆ C ⊆ N . If W is an ancestral set in
GC , then

∑

Vi∈C\W

Q[C] = Q[W ] (8)

Lemma 2 Let H ⊆ N , and we have c-components
H ′

1, . . . ,H
′
n in the sub graphGH , Hi = H ′

i∩H, 1 6 i 6 n,
then

(i) Q[H] can be decomposed as

Q[H] =
n

∏

i=1

Q[Hi] (9)

(ii) Each Q[Hi] is computable fromQ[H], in the follow-
ing way. Letk be the number of variables inH, and let a
topological order of variables inH be Vh1

< . . . < Vhk

in GH , Let H(j) = {Vh1
, . . . , Vhj

} be the set of variables
in H ordered beforeVhj

( includingVhj
), j = 1, . . . , k,and

H(0) = φ. Then eachQ[Hi],i = 1, . . . , n,is given by

Q[Hi] =
∏

{j|Vhj
∈Hi}

Q[H(j)]

Q[H(j−1)]
(10)

where eachQ[H(j)], j = 0, 1, . . . , k, is given by

Q[H(j)] =
∑

h\h(j)

Q[H] (11)

Lemma 2 means that ifQ[H] is identifiable, then each
Q[Hi] is also identifiable.

In the special case for whichH = N , Lemma 2 im-
plies that, for a given graphG, becauseQ[N ] is identifiable,
Q[C ∩N ] is identifiable for each c-component C inG.

Lemma 3 Let S, T ⊂ N be two disjoint sets of observable
variables, IfPT (S) is not identifiable inG, thenPT (S) is
not identifiable in the graph resulted from adding a directed
or bidirected edge toG. Equivalently, ifPT (S) is identifi-
able in G, thenPT (S) is still identifiable in the graph ob-
tained by removing a directed or bidirected edge fromG.

Proof: Intuitively, this lemma states that unidentifiablility
does not change by adding any links. This property is men-
tioned in (Pearl 2000), and its proof for semi-Markovian
model can be found in (Tian & Pearl 2003). It is straight-
forward, although technically complex, to extend the result
to general Markovian models. We omit this part of the proof
due to space limits.�

Lemma 4 Let S, T ⊂ N be two disjoint sets of observable
variables, IfS1 and T1 are subset ofS, T , andPT1

(S1) is
not identifiable in a subgraph ofG, which does not include
nodes inS\S1 ∪ T\T1, thenPT (S) is not identifiable in the
graphG.



Proof: Assume thatPT1
(S1)is not identifiable in a subgraph

of G, which we will nameG′, and which does not include
nodesS\S1 ∪ T\T1. We can add all nodes inG but not in
G′ as isolated nodes intoG′. Then we have (trivially) that
PT (S) is not identifiable in this new graph. According to
lemma 3,PT (S) is not identifiable in graphG either.�

Lemma 5 LetA ⊂ B ⊂ N . Q[A] is computable fromQ[B]
if and only ifQ[A]GB

is computable fromQ[B]GB

Proof: Tian and Pearl(2003) gives a proof of this lemma
when the models are semi-Markovian. That proof can be
easily transformed to general Markovian models. We omit
this part due to space limits.�

Identify Algorithm For Q[S]
Based the lemmas in the last section, we give out an algo-
rithm to calculateQ[S], which is a transfered version of the
similar algorithm in (Tian & Pearl 2003). HereS ⊂ N is a
subset of observable variables.

Assume N(G) be partitioned intoN1, . . . , Nk in G,
each of them belongs to a c-components, and we have c-
componentsS′

1, . . . , S
′
l in GS , Sj = S′

j ∩ S, 1 6 j 6 l.
Based on lemma 2, for any model on graphG, we have

Q[S] =

l
∏

j=1

Q[Sj ] (12)

Because eachSj ,j = 1, . . . , l, is a c-component inGS ,
which is a subgraph ofG, it must be included in oneNj ,
Nj ∈ {N1, . . . , Nk}. We have:

Lemma 6 Q[S] is identifiable if and only if eachQ[Sj ] is
identifiable in graphGNj

.

Proof: Only if part: From lemma 5, eachQ[Sj ] is identi-
fiable inGNj

means eachQ[Sj ] is identifiable fromQ[Nj ]
on G. When we haveQ[N ], according to lemma 2, we can
compute all theQ[Nj ]s. So, eachQ[Sj ] is identifiable from
Q[N ]. Based on equation 12,Q[S] is identifiable.

If part: If one Q[Sj ] is unidentifiable inQ[Nj ] in graph
GNj

, then, from lemma 4,Q[S] is unidentifiable.�
Now let us consider how to computeQ[Sj ] from Q[Nj ].

Note thatSj ⊂ Nj and bothGNj
andGSj

are graphs with
just one c-component.

We give out the algorithm (which follows (Tian & Pearl
2003)) to getQ[C] form Q[T ].

Algorithm Identify( C,T ,Q)
INPUT: C ⊆ T ⊆ N , Q = Q[T ], GT andGC are both

composed of one single c-component.
OUTPUT: Expression forQ[C] in terms ofQ or FAIL.
LetA = An(C)GT

∩ T
i) If A = C, outputQ[C] =

∑

T\C Q[T ] (Cf. lemma 1)
ii) If A = T , output FAIL
iii) If C ⊂ A ⊂ T

1. Assume that inGA, C is contained in a c-componentT ′
1,

T1 = T ′
1 ∩A

2. ComputeQ[T1] fromQ[A] =
∑

T\A Q[T ] (Cf. lemma 2)

3. Output Identify(C,T1,Q[T1])

We obtain that the problem of whetherQ[C] is com-
putable fromQ[T ] is reduced to that of whetherQ[C] is
computable fromQ[T1].

Using lemma 5, we knowQ[C] is computable fromQ[T ]
in GT if and only if Q[C] is identifiable formQ[T1] in graph
GT1

.
From the discussions above, we know i) and iii) always

work. Case ii) is handled by the lemma below.

Lemma 7 In a general Markovian modelG, if

1. G itself is a c-component
2. S ⊂ N(G) andGS has only one c-component
3. All variables inN\S are ancestors ofS

thenQ[S] is unidentifiable inG.

Proof: We know this lemma is true when the models are
semi-Markovian (Huang & Valtorta 2006) (Shpitser & Pearl
2006). And any general Markovian model with graphG
can be transformed to a semi-Markovian model with graph
PJ(G,N) through the following a projection (Verma 1993):
1. Add each variable inN as a node ofPJ(G,N)
2. For each pair of variablesX,Y ∈ N , if there is an edge
between them inG, add the edge toPJ(G,N)
3. For each pair of variablesX,Y ∈ N , if there exists a di-
rected path fromX to Y in G such that every internal node
on the path is inU , add edgeX → Y to PJ(G,N) (if it
does not exist yet)
4. For each pair of variablesX,Y ∈ N , if there exists a di-
vergent path betweenX andY in G such that every internal
node on the path is inU , add a bidirected edge betweenX
andY in PJ(G,N)
If model G and S ∈ N(G) satisfy the conditions of
lemma 7, then,PJ(G,N(G)) andS satisfy those conditions
too. So we just need to prove that ifQ[S] is unidentifiable
in PJ(G,N) thenQ[S] is unidentifiable inG.

Q[S] is unidentifiable inPJ(G,N) means we have
two modelsM1 and M2 on graphPJ(G,N) that satisfy
PM1(n) = PM2(n) > 0, butQM1 [S] 6= QM2 [S].

Based onM1 andM2, we construct two modelsM ′
1 and

M ′
2 on a subgraph ofG. We assume the state space for each

nodeVi in PJ(G,N) is S(Vi).
We define a state space setSS(X) for each nodeX in

V (G) and set them to be empty at the beginning.
A) For each nodeX in N , we add its state space in

PJ(G,N) to its state space set. That isSS(X) = {S(X)}.
B) If in PJ(G,N), observable nodeX is a parent of ob-

servable nodeY , then there are some directed paths fromX
to Y in G such that all internal nodes on those paths are in
U . We select one of these paths and add state spaceS(X)
into the state space sets of all the internal nodes on that path
if it is not in them yet.

C) For any bidirected link inPJ(G,N), assume it is be-
tween observable nodesX, Y and the unobservable node on
the link isUxy. Select the shortest divergent path betweenX
andY in G and add the state space ofUxy to the state space
set of internal nodes on that path if it is not in them yet.

For any observable nodeX in PJ(G,N), we denote the
set of allX ’s parents’ state space asSPa(X). We define
the state space of each node inG′ as the product of its state



space set. Then the product ofPa(X)’s state space can be
transformed to the product of all state spaces in a bag that
consists of all the state space sets of nodes inPa(X). We
call this bagPB(X), which is

∑

Y ∈Pa(X) SS(Y ).
If X is an observable node, then its CPT inPJ(G,N)

is defined as a map from the product ofSPa(X), to S(X).
We define fork = 1, 2,

PM ′
k(X = x|SPa(X) = a, (PB(X)− SPa(X)) = b) =

PMk(X = x|SPa(X) = a)
(13)

If the same node state space inSPa(X) appears more than
once onPB(X), then we arbitrarily select one of them in
the above definition.

If X is an unobservable node inG′, assume its state
space setSS(X) = {Y1, . . . , Yn, Z1, . . . , Zm}, whereYi,
1 6 i 6 n, are state spaces that also exist inPB(X), while
Z1, . . . , Zm do not. The CPT ofX is defined as

PM ′
k(y1, . . . , yn, z1, . . . , zm|y

′
1, . . . , y

′
n, b)

=

{ ∏

Zi∈{Z1,...,Zm} PMk(Zi = zi) all yj = y′
j

0 exist yj 6= y′
j

(14)
HereS(Y ′

j ) is the same state space asS(Yj) in PB(X), y′
j is

an instance of it. If a same node state space in{Y1, . . . , Yn}
appears more than once onPB(X), then we arbitrarily se-
lect one of them in the above definition.

Based on this definition, we havePMk(n) = PM ′
k(n) >

0 andQM ′
1 [S] 6= QM ′

2 [S]. �

Putting all the analysis above together, we have
Algorithm Computing Q[S]
INPUT: S ⊆ N .
OUTPUT: Expression forQ[S] or FAIL.
Let N(G) be partitioned intoN1, . . . , Nk, each of them

belonging to a c-components inG, and S be partitioned
into S1, . . . , Sl, each of them belonging to a c-components
in GS , andSj ⊆ Nj . We can

i), Compute eachQ[Nj ] with lemma 2.
ii), Compute eachQ[Sj ] with Identify algorithm above

with C = Sj ,T = Nj ,Q = Q[Nj ].
iii), If in ii), we get Fail as return value of Identify algo-

rithm of anySj , thenQ[S] is unidentifiable in graphG; else
Q[S] is identifiable andQ[S] =

∏l
j=1 Q[Sj ]

Theorem 1 The computingQ[S] algorithm is sound and
complete.

The two lemmas below follow from theorem 1.

Lemma 8 If S ⊂ N in graphG, e is a link exiting oneS
node, and graphG′ is the same as graphG except that it
does not have linke, thenQ[S] is identifiable in graphG if
and only ifQ[S] is identifiable in graphG′.

Proof: Sincee is a link exiting anS node, graphG and
G′ have the same c-component partition. Any c-component
in G is also a c-component inG′, and vice versa. Graph
GS andG′

S also have the same c-component partition. Any
c-component inGS is also a c-component inG′

S , and vice

versa. From Algorithm Identify(C,T,Q), Algorithm Com-
putingQ[S], and theorem 1, we know thatQ[S] is identifi-
able in graphG if and only if Q[S] is identifiable in graph
G′. �

We also have

Lemma 9 LetS ⊂ N in graphG and graphG′ be obtained
by removing all links getting out fromS nodes in graphG.
ThenQ[S] is identifiable in graphG if and only ifQ[S] is
identifiable in graphG′.

Proof: This result directly follows from lemma 8 above.�

Identify Algorithm For Pt(s)
Lemma 10 AssumeS ⊂ N in graphG, X1 ∈ S , X2 ∈ S.
Let < X1, U1, . . . , Uk,X2 > be a directed path fromX1 to
X2 in G, with Ui ∈ U(G), 1 6 i 6 k, and letT ⊂ N
andT ∩ S = φ. Let graphG′ be obtained by removing link
< X1, U1 > from graphG. If PT (S) is unidentifiable in
graphG′, thenPT (S\{X1}) is unidentifiable inG.

Proof: WhenPT (S) is unidentifiable in graphG′, there
are two modelsM1 andM2 on G′ such that:PM1(n) =

PM2(n) > 0, but for given (s, t), PM1
t (s) = a >

PM2
t (s) = b > 0. Assume in thats, X1 = x1, X2 = x2.
Now, based onM1 andM2, we create modelsM ′

1 andM ′
2

on graphG. First, we define a probability functionF . F is
defined fromS(X1) to (0, 1), whereS(X1) is the state space
of X1 in modelMi, i = 1, 2. LetF be such thatP (F (x1) =
0) = 0.5; for any x ∈ S(X1),x 6= x1, P (F (x) = 0) =
(a − b)/4. P (F (x) = 0) + P (F (x) = 1) = 1 for all x in
S(X1).

For any nodeX, which is not in{U1, . . . , Uk,X2}, we
define fori = 1, 2 the state space forX in modelM ′

k to be
the state space ofX in modelMk. For any nodeX, which
is in {U1, . . . , Uk}, we define fori = 1, 2 the state space for
X in modelM ′

k to be the product of the state space ofX in
modelMk and state spaceS(X1). The state space ofX2 in
M ′

k is defined asS(X2)× {0, 1}.
For any nodeX that is not in{U1, . . . , Uk,X2} and

has no parent in{U1, . . . , Uk,X2}, its CPT inM ′
k is the

same as the CPT inMk. For any nodeX, that is not in
{U1, . . . , Uk,X2} but has some parent in{U1, . . . , Uk,X2},
then its own state space is the same as inMk but some of its
parents’ state spaces are changed. It is simple to insure that
this change does not effect the CPT: we omit the details.

Foru1 andx1we define

PM ′
i ((u1, x1)|pa(U1), x

′
1) =

{

PMi(u1|pa(U1)) x1 = x′
1

0 x1 6= x′
1

(15)
For ui, which is an instance ofUi ∈ {U2, . . . , Uk}, we

define

PM ′
i ((ui, x1)|pa′(Ui), (ui−1, x

′
1))

=

{

PMi(ui|pa′(Ui), ui−1) x1 = x′
1

0 x1 6= x′
1

(16)

Forx2, which is an instance ofX2,m = 0, 1, we define

PM ′
i ((x2,m)|pa′(X2), (uk, x1))

= PMi(x2|pa′(X2), uk)× P (F (x1) = m)
(17)



Then for any instancen of N in modelM ′
1 andM ′

2,

PM ′
1(n) = PM ′

2(n) > 0 (18)

But for (s\{x2}, (x2, 0), t),

P
M ′

1
t (s\{x1}) > 0.5a (19)

P
M ′

2
t (s\{x1}) < 0.5b + (a− b)/4 < 0.5a (20)

From modelsM ′
1 andM ′

2, we conclude thatPT (S\{X1})
is unidentifiable inG. �

We define thes-ancestor setD of S in G to be an observ-
able variable set for whichS ⊆ D ⊆ N andD = An(S) in
GD.

Lemma 11 If D is an s-ancestor set of observable node set
S on graphG, then

∑

D\S Q[D] is identifiable if and only if
Q[D] is identifiable.

Proof: The if part is easy since, ifQ[D] is identifiable,
∑

D\S Q[D] is identifiable.
If Q[D] is unidentifiable, then we know form the lemma 9

thatQ[D] is unidentifiable in graphG′, whereG′ is obtained
by removing fromG all links that exit nodes inD.

BecauseD is an s-ancestor set ofS, we can find an order
of nodes inD\S, sayX1, . . . ,Xk, such that in graphG for
eachXi, 1 6 i 6 k, there is a directed path fromXi to one
node inS ∪ {X1, . . . ,Xi−1}, and all nodes in the middle
of that path are unobservable. Assume for a givenXi, 1 6

i 6 k, the link fromXi in G that does not exist inG′ is ei.
And graphGi is obtained by adding linkei to graphGi−1,
starting withG0 = G′.

Note that Q[D] = PN\D(D) is unidentifiable in
G′. From lemma 10,PN\D(D\{X1}) is unidentifiable
in graph G1. Using this lemma again, we have that
PN\D(D\{X1,X2}) is unidentifiable in graphG2, and, fi-
nally, we have thatPN\D(S) is unidentifiable in graphGk.
Since Gk is a subgraph ofG, according to lemma 3, if
PN\D(S), which equals to

∑

D\S Q[D], is unidentifiable in
Gk, then it is unidentifiable inG. �

Based the lemmas above, we can obtain an algorithm to
solve the identifiability problem on general Markovian mod-
els.

What we want to compute is:

Pt(s) =
∑

N\(T∪S)

Pt(n\t) =
∑

N\(T∪S)

Q[N\T ] (21)

Let D = An(S)GN\T
. D is an ancestral set

in graph GN\T , Lemma 1 allows us to conclude that
∑

N\(T∪D) Q[N\T ] = Q[D]. Therefore, we have:

Pt(s) =
∑

D\S

∑

N\(T∪D)

Q[N\T ] =
∑

D\S

Q[D] (22)

SinceD is a s-ancestor set ofS, according to lemma 11,
∑

D\S Q[D] is identifiable if and only ifQ[D] is identifi-
able.

Algorithm Computing PT (S)
INPUT: two disjoint observable variable setsS, T ⊂ N .
OUTPUT: the expression forPT (S) or FAIL.

1. LetD = An(S)GN\T

2. Using the ComputingQ[S] algorithm in last section to
computeQ[D].

3. If the algorithm returns FAIL, then output FAIL.

4. Else, outputPT (S) =
∑

D\S Q[D]

Our discussion above shows,

Theorem 2 The ComputingPT (S) algorithm is sound and
complete.

Conclusion
In this paper, we review the identify algorithm for semi
Markovian graphs given by J.Tian and J.Pearl. We extend
that algorithm into an identify algorithm that can be used
on general causal graphs and prove that the extended algo-
rithm is sound and complete. This result shows the power
of the algebraic approach to solving identifiability problems
and closes the identifiability problem.

Future work includes implementing the modified identify
algorithm and analyzing its efficiency, extending the results
of this paper to conditional causal effects, and providing an
explanation of the causal effect formula found by the iden-
tify algorithm in terms of applications of the rules of the
graphical do calculus by J.Pearl in (Pearl 2000).
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