Identifiability in Causal Bayesian Networks: A Sound and Complete Algorthm*

Yimin Huang and Marco Valtorta
{huang6,mgy@cse.sc.edu
Department of Computer Science and Engineering
University of South Carolina
March 3, 2006

Abstract

This paper addresses the problem of identifying causal effects
from nonexperimental data incausal Bayesian networke.,

a directed acyclic graph that represents causal relationships.
The identifiability question asks whether it is possible to com-
pute the probability of some set of (effect) variables given
intervention on another set of (intervention) variables, in the
presence of non-observable (i.e., hidden or latent) variables.
It is well known that the answer to the question depends on
the structure of the causal Bayesian network, the set of ob-
servable variables, the set of effect variables, and the set of
intervention variables. Our work is based on the work of
Tian, Pearl, Huang, and Valtorta (Tian & Pearl 2002a; 2002b;
2003; Huang & Valtorta 2006), and extends it. We show that
the identify algorithm that Tian and Pearl define and prove
sound for semi-Markovian models can be transfered to gen-
eral causal graphs and is not only sound, but also complete.
This result effectively solves the identifiability question for
causal Bayesian networks that Pearl posed in 1995 (Pearl
1995), by providing a sound and complete algorithm for iden-
tifiability.

Introduction

This paper focuses on the feasibility of inferring the sgtn

of cause-and-effect relationships from a causal graphr(Pea
1995) (Pearl 2000), which is an acyclic directed graph ex-
pressing nonexperimental data and causal relationshigs. B
cause of the existence of unmeasured variables, the fol-
lowing identifiability questions arise: “Can we assess the
strength of causal effects from nonexperimental data and ca
sual relationships? And if we can, what is the total causal
effect in terms of estimable quantities?”

The questions just given can partially be answered us-
ing graphical approaches due to Pearl and his collabora-
tors. More precisely, graphical conditions have been de-
vised to show whether a causal effect, that is, the joint re-
sponse of any sef of variables to interventions on a sEt
of action variables, denoteBlr(S) ! is identifiable or not.

*University of South Carolina Department of Computer Science
Report CSE TR-2006-004
Copyright © 2006, American Association for Atrtificial Intelli-
gence (www.aaai.org). All rights reserved.

'Pearl and Tian used notatid(s|do(t)) and P(s|t ) in (Pearl
2000) andP, (s) in (Tian & Pearl 2002b), (Tian & Pearl 2003).

Those results are summarized in (Pearl 2000). For example,
“back-door” and “front-door” criteria ando-calculus (Pearl
1995); graphical criteria to identiff?r(S) whenT is a sin-
gleton (Galles & Pearl 1995); graphical conditions under
which it is possible to identifyPr(S) whereT and S are,
possibly non-singleton, sets, subject to a special canditi
called Q-identifiability (Pearl & Robins 1995).

Recently, Tian and Pearl published a series of papers re-
lated to this topic (Tian & Pearl 2002a; 2002b; 2003). Their
new methods combined the graphical character of causal
graph and the algebraic definition of causal effect. They
used both algebraic and graphical methods to identify ¢ausa
effects. The basic idea is, first, to transfer causal graphs t
semi Markovian graphs (Tian & Pearl 2002b), then to use
Algorithm 2 in (Tian & Pearl 2003) (henceforth, thaentify
algorithm) to calculate the causal effects we want to know.

Tian and Pearl's method was a great contribution to this
study area. But there were still some problems left. First,
even though we believe, as Tian and Pearl do, that the semi
Markovian models obtained from the transforming Projec-
tion algorithm in (Tian & Pearl 2002b) are equal to the orig-
inal causal graphs, and therefore the causal effects sbheuld
the same in both models, still, to the best of our knowledge,
there was no formal proof for this equivalence. Second, the
completeness question of the Identify algorithm in (Tian &
Pearl 2003) was still open, so that it was unknown whether
a causal effect was identifiable if that Identify algorithm
failed.

Following Tian and Pearl's work, Huang and Valtorta
(2006) solved the second question. They showed that the
Identify algorithm 2 Tian and Pearl used on semi Markov-
ian models is sound and complete. A similar result was also
obtained by Shpitser and Pearl (2006) independently.

In this paper, we focus on general causal graphs directly
and our proofs show, as Tian and Pearl pointed out, that Al-
gorithm 2 in (Tian & Pearl 2003) can also be used in general
causal models, and we prove that the algorithm is sound and
complete.

In the next section we present the definitions and nota-
tions used in this paper. In section three, we repeat some
important lemmas that will be used to support the identify
algorithm. We prove that an algorithm for a special kind
of identiafibility question, called)[S], is sound and com-
plete in section four. Based on this result, in section five, w



present a version of the identify algorithm that can work on

some variables i are unobservable, things are much more

any causal graph. We also prove that this algorithm is sound complex.

and complete. Conclusions are in section six.

Definitions and Notations

Markovian models are popular graphical models for encod-
ing distributional and causal relationships. Markovian
modelconsists of a DAGG over a set of variabley =
{V1,...,V,}, called acausal graptand a probability distri-
bution overV, which has some constraints on it that will be
specified precisely below. We u3§G) to show thatV is

the variable set of grap@'. If it is clear in the context, we
also uséd/ directly. The interpretation of such kind of model

consists of two parts. The first one says that each variable in

the graph is independent of all its non-descendants gigen it

direct parents. The second one says that the directed edges

Let N(G) andU(G) (or simply N andU when the graph
is clear from the context) stand for the sets of observable
and unobservable variables in gra@ghrespectively, that is
V = N UU. The observed probability distributiafi(n) =
P(N = n), is a mixture of products:

Pn)= Y [ Pllpa(vi)) IT Plojlpa(vy)) 4
UpeU V;eN V;eUu

The post-intervention distributioR; (n) is defined as:

ZUkeU HweN\T P(v;|pa(V;)) %

[Iv,ev P(vjlpa(V;))

n consistent witht
0 ninconsistent witht

Py(n) = )

in G represent causal influences between the corresponding  Sometimes what we want to know is not the post-

variables. A Markovian model for which only the first con-
straint holds is called 8ayesian network This explains
why Markovian models are also calledusal Bayesian net-
works

In this paper, capital characters, like are used for vari-
able sets; the lower characters, likestand for the instances
of variable sel/. Capital character lik&(, Y andV; are also
used for single variable, and their values can:bg andv;.
Normally, we use?’ (V') to denote a function on variable set
V. An instance of this function is denoted A§V ) (V' = v),
or F(V)(v), or just F(v). Because all the variables are in

intervention distribution for the wholeV, but the post-
intervention distributionP;(s) of an observable variable
subsetS C N. For those two observable variable set
andT, P.(s) is given by:

> viensnT 2uev Lvienr Pvilpa(Vi))
HVjeU P(vjlpa(V;))

s consistent witht
0 sinconsistent witht

Pt(S) =

(6)

We give out a formal definition oidentifiability below,

the causal graph, we sometimes use node or node set insteadvhich follows (Tian & Pearl 2003).

of variable and variable set.

As in most work on Bayesian networks and, more gen-
erally, on directed graphs, we ug(V;) to denote parent
node set of variabl®; in graphG andpa(V;) to denote an
instance ofPa(V;). Ch(V;) is V;’s children node seth(V;)
is an instance of'h (V).

Based on the probabilistic interpretation, we get that the
joint probability functionP(v) = P(vy,...,v,) can be fac-

torized as
Pw) =[] Puilpa(vi)) (1)
Viev

The causal interpretation of Markovian model enables us
to predict the intervention effects. Here, interventiorame
some kind of modification of factors in product (1). The
simplest kind of intervention is fixing a subsétC V' of
variables to some constartsdenoted bylo(T = t) or just
do(t), and then the post-intervention distribution

Pr(V)(T =tV = v) = Pi(v) ()

is given by:

Pv) { OHVieV\T P(vi|pa(V;)) v consistent witht

v inconsistent witht
3)
We note explicitly that the post-intervention distributio
P;(v) is a probability distribution.
When all the variables ifi/ are observable, since all
P(v;|pa(V;)) can be estimated from nonexperimental data,
asjustindicated, all causal effects are computable. Betwh

A Markovian model consists of four elements
M =< N, (]7 GNUU,P(vi|pa(Vi)) >

where, (i) NV is a set of observable variables; (i) is a set
of unobservable variables; (i} is a directed acyclic graph
with nodes corresponding to the elementd/of= N U U,
and (vi) P(v;|pa(V;)), is the conditional probability of vari-
ableV; € V given its parenta(V;))in G.

Definition 1 The causal effect of a set of variabl&son a
disjoint set of variablesS' is said to be identifiable from a
graphG if all the quantitiesP; (s) can be computed uniquely
from any positive probability of the observed variables —
that is, if P (31>v = PMz(s) for every pair of models\/;
and M, with PMi(n) = PM2(n) > 0 and G(M;)
G(Ms).

This definition captures the intuition that, given the cdusa
graphG, in an identifiable model, the quantit};(s) can
be determined from the observed distributiBiin) alone.
Normally, when we us& and T, we think they are both
observable variable subsets@fand mutually disjoint. So,

s is always consistent within 6.

We are sometimes interested in the causal effect on a set of
observable variableS due to all other observable variables.
In this case, keeping the convention thétstands for the
set of all observable variables afidstands for the set of
variables whose effect we want to compufe= N\S, for
convenience and for uniformity with (Tian & Pearl 2002b),

we define
Q[S] = Pn\s(S) (7)



and interpret this equation as stating tha5] is the causal
effect of N\S on S.

We define thec-component relatioron the unobserved
variable seUU of graphG as: For any/; € U andU, € U,
they are related under the c-component relation if and only
if at least one of conditions below is satisfied:

(i) there is an edge betweén andU,

(iiy Uy andU, are both parents of the same observable node
(iii) both U; andU;, are in the c-component relation with re-
spect to another nodé; € U.

Observe that the c-component relation linis reflexive,
symmetric and transitive, so it defines a partition (6f
Based on this relationship, we can therefore diidénto
disjoint and mutually exclusive c-component related parts
A c-componenof variable setl” on graphG consists of

all the unobservable variables belonging to the same c-
component related part df and all observable variables

that have an unobservable parent which is a member of that

c-component. According to the definition of c-component

Lemmas

In this section we present some lemmas that will be used in
the next two sections. We begin with two lemmas proved
in (Tian & Pearl 2002b).

Lemmal LetW C C C N. If W is an ancestral set in

G¢, then
> QIC]

VieC\W

QW] (8)

Lemma2 Let H C N, and we have c-components
Hi{,...,H] inthesubgraptGy, H; = H/NH,1 <i<n,
then

(i) Q[H] can be decomposed as

C)

(i) Each Q[H;] is computable fron®[H], in the follow-

relation, it is clear that an observable node can only appear ing way. Letk be the number of variables if, and let a

in one c-component. If an observable node has no unob-

servable parent, then it is a c-component16rby itself.
Therefore, the c-components form a partition on all of the
variables.

For any pair of variable¥; andV; in causal graplt, if
there is an unobservable notfg which is a parent for both
of them, the path; — U; — V4 is called abidirected link
A path betweerl; andV; is called anextended bidirected
link (or divergent pathif (i) there is at last one internal node
in that path; (ii) all the internal nodes in the path are unob-
servable nodes; (iii) one and only one internal node in the

path is a divergent node and there is no convergent internal

node.

In a Bayesian network with hidden variables, if each hid-
den variable is a root node with exactly two observed chil-
dren, then corresponding model is callesleamni-Markovian
model The causal graph is transformed to a model in which

topological order of variables i beV,, < ... < V,
in Gy, Let HY = {V},,,...,V},} be the set of variables
in H ordered beford/,; (includingVy,;),j =1,...,k,and
H©) = ¢. Then eac)[H;,),i = 1,...,n,is given by

Q[H(j)}
Q[H;] = ST (10)
{j|vh1:[eHi} QUHY]
where eactQ[HY)], j = 0,1,..., k, is given by
QHY] = 3 Q[H] (11)

R\h(

Lemma 2 means that i[H] is identifiable, then each
Q[H;] is also identifiable.
In the special case for whichh = N, Lemma 2 im-

each unobservable variable is an ancestor of one or more ob-plies that, for a given grapfy, becaus€)[ V| is identifiable,

servable variables in such a way that the answer to an iden-

tifiability question is preserved. We details of this tramsf
mation are given in (Huang & Valtorta 2006).

We conclude this section by giving several simple graph-
ical definitions that will be needed later.

For a given set of variableS, we definedirected unob-
servable parent seDU P(C') as below. A nodd’ belongs
to DU P(C) if and only if both of these two conditions are
satisfied: i)V is an unobservable node; ii) there is a directed
path fromV to an element o€ such all the internal nodes
on that path are unobservable nodes.

For a given observable variable s€t C N, let G¢
denotes the subgraph 6f composed only of variables in
C U DUP(C) and all the links between variable pairs in
C UDUP(C). Let An(C) be the union ofC and the set
of ancestors of the variables @ and De(C') be the union
of C and the set of descendants of the variable€'inAn
observable variable sét C N in graph( is called anan-
cestral setif it contains all its own observed ancestors, i.e.,
S =An(S)NN.

Q[C N N is identifiable for each c-component Céh

Lemma 3 LetS,T C N be two disjoint sets of observable
variables, If Pr(S) is not identifiable inG, then Pr(S) is
not identifiable in the graph resulted from adding a directed
or bidirected edge t@7. Equivalently, ifPr(.S) is identifi-
able in G, then Pr(S) is still identifiable in the graph ob-
tained by removing a directed or bidirected edge fréin

Proof: Intuitively, this lemma states that unidentifiaibfil
does not change by adding any links. This property is men-
tioned in (Pearl 2000), and its proof for semi-Markovian
model can be found in (Tian & Pearl 2003). It is straight-
forward, although technically complex, to extend the resul
to general Markovian models. We omit this part of the proof
due to space limitd]

Lemma4 LetS,T C N be two disjoint sets of observable
variables, IfS; and T} are subset of5, T, and Pr, (S1) is
not identifiable in a subgraph a¥, which does not include
nodes inS\ Sy UT\T1, thenPr(S) is not identifiable in the
graph@.



Proof: Assume thaPr, (S1)is not identifiable in a subgraph
of G, which we will nameG’, and which does not include
nodesS\:S; UT\T;. We can add all nodes i but not in
G’ as isolated nodes int6’. Then we have (trivially) that
Pr(S) is not identifiable in this new graph. According to
lemma 3,Pr(S) is not identifiable in grapld: either.]

Lemmabs LetA C B C N. Q[A] is computable fron)[B]
if and only ifQ[A]¢,, is computable fron)[B]¢ ,

Proof: Tian and Pearl(2003) gives a proof of this lemma
when the models are semi-Markovian. That proof can be
easily transformed to general Markovian models. We omit
this part due to space limit&l

Identify Algorithm For Q[S]

Based the lemmas in the last section, we give out an algo-
rithm to calculatel)[S], which is a transfered version of the
similar algorithm in (Tian & Pearl 2003). Heie C N is a
subset of observable variables.

Assume N(G) be partitioned intoNy,..., Ny in G,

each of them belongs to a c-components, and we have c-

componentssy, ..., S;inGg, S; =

SinsS,1<5<L.
Based on lemma 2, for any modei

on graphwe have
(12)

Because eacli;,j = 1,...,!, is a c-component idx g,
which is a subgraph of7, it must be included in ong&v;,
N; € {N1,...,Ny}. We have:

Lemma 6 Q[S] is identifiable if and only if eacld)[S;] is
identifiable in graph ;.

Proof: Only if part: From lemma 5, eacB[S;] is identi-
fiable in Gy, means eacly)[S;] is identifiable fromQ[N;]
on G. When we have)[N], according to lemma 2, we can
compute all the)[N,]s. So, eacld)[S;] is identifiable from
Q[N]. Based on equation 12)[S] is identifiable.

If part: If one Q[S;] is unidentifiable inQ[N;] in graph
G n;, then, from lemma 4Q[S] is unidentifiable ]

Now let us consider how to compu€[S;| from Q[N;].
Note thatS; C N; and bothG'y, andGs, are graphs with
just one c-component.

We give out the algorithm (which follows (Tian & Pearl
2003)) to geY[C] form Q[T].

Algorithm Identify( C,7,Q)

INPUT:C C T C N, Q = Q[T], Gr andG¢ are both
composed of one single c-component.

OUTPUT: Expression fo€[C] in terms of@) or FAIL.

LetA = An(C)g, NT

) If A=C,outputQ[C] = 37 o Q[T] (Cf. lemma 1)

i) If A =T, output FAIL

iifCcAcCT

Assume that id7 4, C' is contained in a c-componefy,
T, =T/ NA

2. Compute)[T1] from Q[A] = 37\ 4 Q[T (Cf. lemma 2)
Output IdentifyC',T1,Q[T1])

We obtain that the problem of whethé)[C] is com-
putable fromQ[T] is reduced to that of whethep[C] is
computable fronQ[17].

Using lemma 5, we know[C] is computable fron®)[T]
in G if and only if Q[C] is identifiable formQ[7}] in graph
Gr,.

From the discussions above, we know i) and iii) always
work. Case ii) is handled by the lemma below.

Lemma 7 In a general Markovian modéF, if

1. G itself is a c-component
2. S C N(G) andGg has only one c-component
3. Allvariables inN\ S are ancestors of

then@[S] is unidentifiable inG.

Proof: We know this lemma is true when the models are
semi-Markovian (Huang & Valtorta 2006) (Shpitser & Pearl
2006). And any general Markovian model with gragh
can be transformed to a semi-Markovian model with graph
PJ(G, N) through the following a projection (Verma 1993):
1. Add each variable itV as a node oPJ(G, N)

2. For each pair of variableX,Y € N, if there is an edge
between them iid7, add the edge t®J (G, N)

3. For each pair of variableX,Y € N, if there exists a di-
rected path fromX to Y in G such that every internal node
on the path is i/, add edgeX — Y to PJ(G,N) (if it
does not exist yet)

4. For each pair of variableX,Y € N, if there exists a di-
vergent path betweel andY in G such that every internal
node on the path is iy, add a bidirected edge betweé&n
andY in PJ(G, N)

If model G and S € N(G) satisfy the conditions of
lemma7,thenPJ (G, N(G)) andS satisfy those conditions
too. So we just need to prove that(¥.S] is unidentifiable
in PJ(G, N) thenQ[S] is unidentifiable inG.

QI[S] is unidentifiable in PJ(G, N) means we have
two modelsM; and M, on graphP.J(G, N) that satisfy
PMi(n) = PMz(n) > 0, butQM1[S] # QM=[S].

Based onM; and M, we construct two models/; and
M, on a subgraph off. We assume the state space for each
nodeV; in PJ(G, N)is S(V;).

We define a state space s&$(X) for each nodeX in
V(G) and set them to be empty at the beginning.

A) For each nodeX in N, we add its state space in
PJ(G, N) toits state space set. Thatd$'(X) = {S(X)}.

B) Ifin PJ(G, N), observable nod& is a parent of ob-
servable nod&’, then there are some directed paths fr&m
to Y in G such that all internal nodes on those paths are in
U. We select one of these paths and add state sfia&e
into the state space sets of all the internal nodes on thiat pat
if it is not in them yet.

C) For any bidirected link ilPJ(G, N), assume it is be-
tween observable nodé§, Y and the unobservable node on
the link isU,,,. Select the shortest divergent path betwgen
andY in G and add the state spaceldf, to the state space
set of internal nodes on that path if it is not in them yet.

For any observable nod¥ in PJ(G, N), we denote the
set of all X's parents’ state space &a(X). We define
the state space of each nodgihas the product of its state



space set. Then the product B&(X)'s state space can be

versa. From Algorithm Identify(C,T,Q), Algorithm Com-

transformed to the product of all state spaces in a bag that puting Q[S], and theorem 1, we know th&t[S] is identifi-

consists of all the state space sets of nodeBdfX). We
call this bagPB(X), whichis} . p,x) SS(Y).

If X is an observable node, then its CPTRYV (G, N)
is defined as a map from the product$Pa(X), to S(X).
We define fork = 1, 2,

PMi(X = z|SPa(X) = a,(PB(X) — SPa(X)) = b) =
PMe(X = z|SPa(X) = a)
(13)
If the same node state spacediPa(X) appears more than
once onPB(X), then we arbitrarily select one of them in
the above definition.
If X is an unobservable node &', assume its state
space sebS(X) = {Y1,...,Y,, Z1,..., Zn}, WhereY;,
1 < i < n, are state spaces that also exisPiB(X), while
Z1,...,Zy donot. The CPT ofX is defined as

PMi(yy, o yns 215 Zml W - Y, D)
_ [ zieziz0y PMi(Z; = z) ally; =y
0 exist y; # y;
(14)

HereS(Y]) is the same state space®¥;) in PB(X), y; is
an instance of it. If a same node state spacgin ..., Y,}
appears more than once 6B (X), then we arbitrarily se-
lect one of them in the above definition.

Based on this definition, we have» (n) = PMk(n) >
0 andQMi[S] # QM:[S]. O

Putting all the analysis above together, we have

Algorithm Computing QI5]

INPUT: S C N.

OUTPUT: Expression fo€[S] or FAIL.

Let N(G) be partitioned intoNy, . .., N, each of them
belonging to a c-components i@, and S be partitioned
into Sy, ..
inGg,andS; € N;. We can

i), Compute eacl)[V,] with lemma 2.

ii), Compute eachQ[S;] with Identify algorithm above
with C = Sj,T = Nj,Q = Q[Nj]

iii), If in ii), we get Fail as return value of Identify algo-
rithm of anyS;, thenQ[S] is unidentifiable in grapl@; else

Q[S] is identifiable and[S] = [T}_, Q[S;]

Theorem 1 The computing®[S] algorithm is sound and
complete.

The two lemmas below follow from theorem 1.

Lemma8 If S C N in graphG, e is a link exiting oneS
node, and grapiG’ is the same as grapty except that it
does not have link, thenQ|S] is identifiable in graph if
and only ifQ[S] is identifiable in grapthG’.

Proof: Sincee is a link exiting anS node, graphG and

G’ have the same c-component partition. Any c-component

in G is also a c-component i, and vice versa. Graph

Gs andG also have the same c-component partition. Any

c-component inG s is also a c-component iG’;, and vice

., 51, each of them belonging to a c-components

able in graphG if and only if Q[S] is identifiable in graph
G'.0O

We also have
Lemma9 LetS C N ingraphG and graphG’ be obtained
by removing all links getting out frorfi nodes in grapltG.
ThenQ[S] is identifiable in graphG if and only if Q[S] is
identifiable in graphG’.

Proof: This result directly follows from lemma 8 above.

Identify Algorithm For P,(s)

Lemma 10 AssumeS C N in graphG, X; € S, X5 € S.
Let< X,,U4,...,U,, X2 > be a directed path fronX; to
Xoin G, withU; € U(G),1 < i < k,and letT ¢ N
andT NS = ¢. Let graphG’ be obtained by removing link
< X1,U; > from graphG. If Pr(S) is unidentifiable in
graphG’, thenPp(S\{X1}) is unidentifiable inG.

Proof: WhenPr(S) is unidentifiable in graplty’, there
are two models\/; and M, on G’ such that: PMi(n) =
PM2(p) > 0, but for given (s,t), PM(s) = a >
Ptﬂ"fz (S) = b > 0. Assume in thas, X;| = x1, X2 = xo.

Now, based oid/; andM,, we create modeld/; and M}
on graphG. First, we define a probability functioR. F'is
defined fromS(X;) to (0, 1), whereS(X;) is the state space
of X7 inmodelM;, i = 1,2. Let F' be suchthaP(F(z;) =
0) = 0.5; foranyz € S(X1),z # z1, P(F(x) = 0) =
(a—=0b)/4. P(F(x) =0)+ P(F(z) =1) = 1forall z in
S(Xq).

For any nodeX, which is not in{Uy, ..., Uy, X5}, we
define fori; = 1, 2 the state space foX in model M, to be
the state space of in model M. For any nodeX, which
isin{U,...,Us}, we define fori = 1, 2 the state space for
X in model M, to be the product of the state spacedin
model M, and state spacg(X;). The state space df; in
Mj is defined as5(X3) x {0,1}.

For any nodeX that is not in{Uq,..., U, X2} and
has no parent i{Us,...,Uy, X2}, its CPT inMj, is the
same as the CPT inf;. For any nodeX, that is not in
{Uy,...,Ux, X2} buthas some parent{t/, ..., Uy, X2},
then its own state space is the same a%/jnbut some of its

parents’ state spaces are changed. It is simple to insure tha

this change does not effect the CPT: we omit the details.
Foru; andx;we define

’ M; o — ol
PMi((U1,JC1)|pa(U1),$/1) _ { OP (u1]pa(Uy)) ii #ch’i
(15)
For u;, which is an instance d¥; € {Us,...,U}, we
define
PM((ug, 1) |pa’ (Uy), (wi-1, 71))
| PMi(u|pad (Us),uiq) a1 =) (16)
10 x1 # )

For x5, which is an instance aky,m = 0, 1, we define

PMi((z9,m)|pa’(Xa), (ur, 1))

_ PM?'(gc2|pa’(X2)7Uk) X P(F(;Ul) = m) an



Then for any instance of N in model M| and M,

PMi(n) = PM2(n) >0 (18)

But for (s\{x2}, (x2,0),1),
PMi(s\{z1}) > 0.5a (19)
PM2(s\{21}) < 0.5b+ (a —b)/4 < 0.5a  (20)

From models\/] andM), we conclude thaPr(S\{X1})
is unidentifiable inG. O

We define thes-ancestor seb of S in G to be an observ-
able variable set for which C D C N andD = An(S) in
Gp.

Lemma 11 If D is an s-ancestor set of observable node set
S on graphG, then}_ p,, s Q[D] is identifiable if and only if
Q[D] is identifiable.

Proof: The if part is easy since, @§[D] is identifiable,
>_p\s Q[D] is identifiable.

If Q[D] is unidentifiable, then we know form the lemma 9
thatQ[D] is unidentifiable in grapl’, whereG’ is obtained
by removing fromG all links that exit nodes iD.

BecauseD is an s-ancestor set 6f we can find an order
of nodes inD\ S, say Xy, ..., X, such that in grapli+ for
eachX;, 1 < i < k, there is a directed path frod, to one
node inS U {Xy,...,X;_1}, and all nodes in the middle
of that path are unobservable. Assume for a gisgn1 <
1 < k, the link from X; in G that does not exist i is e;.
And graphG; is obtained by adding link; to graphG;_,
starting withGo = G'.

Note that Q[D] Py\p(D) is unidentifiable in
G'. From lemma 10,Py\p(D\{X1}) is unidentifiable
in graph G;. Using this lemma again, we have that
P\ p(D\{X1, X»}) is unidentifiable in grapld-», and, fi-
nally, we have thafyy p(S) is unidentifiable in grapldy,.
Since Gy, is a subgraph ofz, according to lemma 3, if
Pn\p(S5), which equals td _ ,, 5 Q[D], is unidentifiable in
G, then it is unidentifiable iy, OJ

Based the lemmas above, we can obtain an algorithm to
solve the identifiability problem on general Markovian mod-
els.

What we want to compute is:

P(s)= >, PMm\= > QIN\T] (1)
N\(TUS) N\(TUS)
Let D = An(S)gy... D is an ancestral set

in graph Gx\7, Lemma 1 allows us to conclude that
2n(rup) QIN\T] = Q[D]. Therefore, we have:

P(s)=Y_ Y QIN\T|=) Q[D]

D\S N\(TuD) D\S

(22)

SinceD is a s-ancestor set ¢f, according to lemma 11,
>_p\s Q[D] is identifiable if and only ifQ[D] is identifi-
able.

Algorithm Computing Pr(.S)

INPUT: two disjoint observable variable sefs7 C N.

OUTPUT: the expression faP(S) or FAIL.

1. LetD = An(S)
2. Using the Computin@[S] algorithm in last section to

GN\T

computeQ[D].
3. If the algorithm returns FAIL, then output FAIL.
4. Else, outpulr(S) = >_p\ 5 QD]

Our discussion above shows,

Theorem 2 The Computing®r(S) algorithm is sound and
complete.

Conclusion

In this paper, we review the identify algorithm for semi
Markovian graphs given by J.Tian and J.Pearl. We extend
that algorithm into an identify algorithm that can be used
on general causal graphs and prove that the extended algo-
rithm is sound and complete. This result shows the power
of the algebraic approach to solving identifiability prabke
and closes the identifiability problem.

Future work includes implementing the modified identify
algorithm and analyzing its efficiency, extending the ressul
of this paper to conditional causal effects, and providing a
explanation of the causal effect formula found by the iden-
tify algorithm in terms of applications of the rules of the
graphical do calculus by J.Pearl in (Pearl 2000).
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