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Abstract

This paper addresses the problem of identifying causal effects from nonex-
perimental data in a causal Bayesian network, i.e., a directed acyclic graph that
represents causal relationships. The identifiability question asks whether it
is possible to compute the probability of some set of (effect) variables given
intervention on another set of (intervention) variables, in the presence of non-
observable (i.e., hidden or latent) variables. It is well known that the answer to
the question depends on the structure of the causal Bayesian network, the set
of observable variables, the set of effect variables, and the set of intervention
variables. Our work is based on the work of Tian and Pearl [1, 2, 3] and our
own work [4], and extends it. We show that the identify algorithm that Tian and
Pearl define and prove sound for semi-Markovian models can be transfered to
general causal graphs and is not only sound, but also complete. This result
effectively solves the identifiability question for causal Bayesian networks that
Pearl posed in 1995 [5], by providing a sound and complete algorithm for iden-
tifiability.



1 Introduction

This paper focuses on the feasibility of inferring the strength of cause-and-
effect relationships from a causal graph [5] [6], which is an acyclic directed
graph expressing nonexperimental data and causal relationships. Because of
the existence of unmeasured variables, the following identifiability questions
arise: ”Can we assess the strength of causal effects from nonexperimental data
and casual relationships? And if we can, what is the total causal effect in terms
of estimable quantities?”

The questions just given can partially be answered using a graphical ap-
proach due to Pearl and his collaborators. More precisely, graphical conditions
have been devised to show whether a causal effect, that is, the joint response
of any set S of variables to interventions on a set T of action variables, denoted
PT (S) 1 is identifiable or not. Those results are summarized in [6]. For example,
“back-door” and “front-door” criteria and do-calculus [5]; graphical criteria to
identify PT (S) when T is a singleton [7]; graphical conditions under which it
is possible to identify PT (S) where T and S are, possibly non-singleton, sets,
subject to a special condition called Q-identifiability [8]. Some further study
can be also found in [9] and [10].

Recently, J. Tian & J. Pearl and also J. Tian himself published a series of pa-
pers related to this topic [1, 2, 3, 11]. Their new methods combined the graphi-
cal character of causal graph and the algebraic definition of causal effect. They
used both algebraic and graphical methods to identify causal effects. The ba-
sic idea is, first, to transfer causal graphs to semi Markovian graphs [2], then
to use Algorithm 2 in [3] (henceforth, the Identify algorithm) to calculate the
causal effects we want to know.

Tian and Pearl’s method was a great contribution to this study area. But
there were still some problems left. First, even though we believe, as Tian and
Pearl do, that the semi Markovian models obtained from the transforming Pro-
jection algorithm in [2] are equal to the original causal graphs, and therefore the
causal effects should be the same in both models, still, to the best of our knowl-
edge, there is no formal proof for this equivalence. Second, the completeness
question of the Identify algorithm in [3] was still open, so that it was unknown
whether a causal effect is identifiable if the Identify algorithm 2 fails.

Following Tian and Pearl’s work, Huang and Valtorta [4] solved the second
question. They showed that the Identify algorithm 2 Tian and Pearl used on
semi Markovian models is sound and complete. Shpitser and Pearl recently
obtained a similar result independently [12].

In this paper, we focus on general causal graphs directly and our proofs
show, as Tian and Pearl pointed out, that Algorithm 2 in [3] can also be used
in general causal models. After that, we prove that the algorithm is complete,
which means a causal effect is identifiable if and only if the given algorithm
runs successfully and returns an expression which is the target causal effect in
terms of estimable quantities.

1Pearl and Tian used notation P (s|do(t)) and P (s|t̂ ) in [6] and Pt(s) in [2], [3].
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In the next section we present the definitions and notations used in this
paper. In section three, we repeat some important lemmas that will be used
to support the identify algorithm. We prove that an algorithm for a special
kind of identiafibility question, called Q[S], is sound and complete in section
four. Based on this result, in section five, we present a version of the identify
algorithm that can work on any causal graph. We also prove that this algorithm
is sound and complete. Conclusions are in section six. Proof of the correctness
of the lemmas we used in this article is given in the appendixes.

2 Definitions and Notations

Markovian models are popular graphical models for encoding distributional
and causal relationships. A Markovian model consists of a DAG G over a set of
variables V = {V1, . . . , Vn}, called a causal graph and a probability distribution
over V , which has some constraints on it that will be specified precisely below.
We use V (G) to show that V is the variable set of graph G. If it is clear in
the context, we also use V directly. The interpretation of such kind of model
consists of two parts. The first one says that each variable in the graph is in-
dependent of all its non-descendants given its direct parents. The second one
says that the directed edges in G represent causal influences between the cor-
responding variables. A Markovian model for which only the first constraint
holds is called a Bayesian network. This explains why Markovian models are
also called causal Bayesian networks. Some authors prefer to consider equation 3
(below) as definitional; others take equation 3 as following from more general
considerations about causal links. See [13] and [6].

In this paper, capital characters, like V , are used for variable sets; the lower
characters, like v, stand for the instances of variable set V . Capital character
like X , Y and Vi are also used for single variable, and their values can be x,
y and vi. Normally, we use F (V ) to denote a function on variable set V . An
instance of this function is denoted as F (V )(V = v), or F (V )(v), or just F (v).
Because all the variables are in the causal graph, we sometimes use node or
node set instead of variable and variable set.

As in most work on Bayesian networks and, more generally, on directed
graphs, we use Pa(Vi) to denote parent node set of variable Vi in graph G and
pa(Vi) to denote an instance of Pa(Vi). Ch(Vi) is Vi’s children node set; ch(Vi)
is an instance of Ch(Vi).

Based on the probabilistic interpretation, we get that the joint probability
function P (v) = P (v1, . . . , vn) can be factorized as

P (v) =
∏

Vi∈V

P (vi|pa(Vi)) (1)

The causal interpretation of Markovian model enables us to predict the in-
tervention effects. Here, intervention means some kind of modification of fac-
tors in product (1). The simplest kind of intervention is fixing a subset T ⊆ V
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of variables to some constants t,denoted by do(T = t) or just do(t), and then
the post-intervention distribution

PT (V )(T = t, V = v) = Pt(v) (2)

is given by:

Pt(v) = P (v|do(t)) =

{ ∏

Vi∈V \T P (vi|pa(Vi)) v consistent with t

0 v inconsistent with t
(3)

We note explicitly that the post-intervention distribution PT (V )(T = t, V =
v) = Pt(v) is a probability distribution.

When all the variables in V are observable, since all P (vi|pa(Vi)) can be
estimated from nonexperimental data, as just indicated, all causal effects are
computable. But when some variables in V are unobservable, things are much
more complex.

Let N(G) and U(G) (or simply N and U when the graph is clear from the
context) stand for the sets of observable and unobservable variables in graph G
respectively, that is V = N ∪ U . The observed probability distribution P (n) =
P (N = n), is a mixture of products:

P (n) =
∑

Uk∈U

∏

Vi∈V

P (vi|pa(Vi)) =
∑

Uk∈U

∏

Vi∈N

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj))

(4)
The post-intervention distribution Pt(n) = PT=t(N = n) 2 is defined as:

Pt(n) =







∑

Uk∈U

∏

Vi∈N\T P (vi|pa(Vi))
∏

Vj∈U P (vj |pa(Vj))

n consistent with t
0 n inconsistent with t

(5)

Sometimes what we want to know is not the post-intervention distribution
for the whole N , but the post-intervention distribution Pt(s) of an observable
variable subset S ⊂ N . For those two observable variable set S and T , Pt(s) =
PT=t(S = s) is given by:

Pt(s) =







∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T P (vi|pa(Vi))
∏

Vj∈U P (vj |pa(Vj))

s consistent with t
0 s inconsistent with t

(6)
The identifiability question is defined as whether the causal effect PT (S),

that is all Pt(s) given by (6), can be determined uniquely from the distribu-
tion P (N = n) given by (4), and thus independent of the unknown quantities
P (vi|pa(Vi))s, where Vi ∈ U or there are some Vj ∈ Pa(Vi), Vj ∈ U .

2In this paper, we only consider the situation in which T ⊆ N .
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We give out a formal definition of identifiability below, which follows [3].
A Markovian model consists of four elements

M =< N,U,GN∪U , P (vi|pa(Vi)) >

where, (i) N is a set of observable variables; (ii) U is a set of unobservable
variables; (iii) G is a directed acyclic graph with nodes corresponding to the
elements of V = N ∪ U ; and (vi) P (vi|pa(Vi)), is the conditional probability of
variable Vi ∈ V given its parents Pa(Vi))in G.

Definition 1 The causal effect of a set of variables T on a disjoint set of vari-
ables S is said to be identifiable from a graph G if all the quantities Pt(s) can
be computed uniquely from any positive probability of the observed variables

— that is , if PM1
t (s) = PM2

t (s) for every pair of models M1 and M2 with
PM1(n) = PM2(n) > 0 and G(M1) = G(M2).

This definition means that, given the causal graph G, the quantity Pt(s) can
be determined from the observed distribution P (n) alone; the details of M are
irrelevant.

Normally, when we talk about S and T , we think they are both observable
variable subsets of N and mutually disjoint. So, equation 6 can be replaced by

Pt(s) =
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (7)

From now on, we will use this definition instead of equation 6.
We are sometimes interested in the causal effect on a set of observable vari-

ables S due to all other observable variables. In this case, keeping the conven-
tion that N stands for the set of all observable variables and T stands for the
set of variables whose effect we want to compute, T = N\S, and equation 7
simplifies to

Pn\s(s) =
∑

uk∈U

∏

Vi∈S

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (8)

In formula 8, the subscript n\s indicates a configuration of the variable or
variables in the set N\S. For convenience and for uniformity with [2], we
define

Q[S] = PN\S(S) (9)

and interpret this equation as stating that Q[S] is the causal effect of N\S on S.
Note that Q[S] is identifiable if Q[S]M1(s) = Q[S]M2(s) for every pair of

models M1 and M2 with Q[N ]M1(n) = Q[N ]M2(n) > 0 and G(M1) = G(M2).
We define the c-component relation on the unobserved variable set U of graph

G as:
For any U1 ∈ U and U2 ∈ U , they are related under the c-component rela-

tion if and only if at least one of conditions below is satisfied:
(i) there is an edge between U1 and U2,
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(ii) U1 and U2 are both parents of the same observable node,
(iii) both U1 and U2 are in the c-component relation with respect to another

node U3 ∈ U .
Observe that the c-component relation in U is reflexive, symmetric and tran-

sitive, so it defines a partition of U . Based on this relationship, we can therefore
divide U into disjoint and mutually exclusive c-component related parts.

A c-component of variable set V on graph G consists of all the unobservable
variables belonging to the same c-component related part of U and all observ-
able variables that have an unobservable parent which is a member of that
c-component. According to the definition of c-component relation, it is clear
that an observable node can only appear in one c-component. If an observ-
able node has no unobservable parent, then it is a c-component on V by itself.
Therefore, the c-components form a partition on all of the variables.

For any pair of variables V1 and V2 in causal graph G, if there is an unob-
servable node Ui which is a parent for both of them, then path V1 ← Ui → V2

is called a bidirected link3.
A path between V1 and V2 is called an extended bidirected link (or divergent

path) if (i) there is at last one internal node in that path; (ii) all the internal
nodes in the path are unobservable nodes; (iii) one and only one internal node
in the path is a divergent node and there is no convergent internal node. In
other words, an extended bidirected link between V1 and V2 means that for V1

and V2 there is an unobservable node Ui, such that there are two directed paths
from Ui to V1 and from Ui to V2 respectively, and all nodes in these two paths
are unobservable.

In a Bayesian network with hidden variables, if each hidden variable is a
root node with exactly two observed children, then corresponding model is
called a semi-Markovian model.

We now introduce a way of reducing the size of causal graphs that pre-
serves the answer to an identifiability question. It is more convenient to work
with the reduced graphs than with the original, larger ones. Studying defini-
tion (4) and (5), we note that, if there is an unobservable variable in graph G
that has no child, then it can be summed out in both (4) and (5) and removed.
Formally, If we have a model M =< N,U,GN∪U , P (vi|pa(Vi)) >, U ′ ∈ U and
U ′ has no child in GN∪U , then the identification problem in M is equal to the
identification problem in M ′ =< N,U\{U ′}, G′, P ′(vi|pai) >, where G′ is the
subgraph of GN∪U obtained by removing node U ′ and all links attached with it.
P ′(vi|pa(Vi)) is obtained by removing all P (u′|pa(U ′)) in set P (vi|pa(Vi)). The
overall distribution (of all variables common to both models) and the causal
distribution (of only the observable variables) in these two models are still the
same.

By repeating the transformation given above, any general causal model can
be transformed to a model in which each unobservable variable is an ancestor
of one or more observable variables. (This is analogous to barren node removal

3We use this term, because in all cases, the three-node structure can be replaced by the two
observable nodes with a special bidirected edge between them.

5



in Bayesian networks.) From now on in this paper, we assume that all models
we study satisfy this property.

We conclude this section by giving several simple graphical definitions that
will be needed later. For a given set of variables C, we define directed observable
parent set DOP (C) as below. A node V belongs to DOP (C) if and only if both
of these two conditions are satisfied: i) V is an observable node; ii) there is a
directed path from V to an element of C such all the internal nodes on that path
are observable nodes. We define the directed unobservable parent set DUP (C) by
replacing the word “observable” with “unobservable” in the previous defini-
tion.

For a given observable variable set C ⊆ N , let GC denotes the subgraph of
G composed only of variables in C∪DUP (C) and all the links between variable
pairs in C ∪DUP (C). Let An(C) be the union of C and the set of ancestors of
the variables in C and De(C) be the union of C and the set of descendants of
the variables in C. An observable variable set S ⊆ N in graph G is called an
ancestral set if it contains all its own observed ancestors, i.e., S = An(S) ∩N .

3 Lemmas

In a recent paper [3], Tian and Pearl propose an algorithm to answer the iden-
tifiability question in semi-Markovian models. Huang and Valtorta [4] proved
its completeness for semi-Markovian models. We will extend the algorithm to
general causal graphs in the next two sections and prove that the algorithm is
complete.

In this section we present some lemmas that will be used in the next two
sections. We begin with two lemmas proved in [2]. Since our definition of
Q[S] is equal to the definition of Q[S] in [2], Lemma 1 in [2] is still correct, and
therefore we have:

Lemma 1 Let W ⊆ C ⊆ N . If W is an ancestral set in GC , then

∑

Vi∈C\W

Q[C] = Q[W ] (10)

We recall that GC includes all variables in C and the subset of the unobserv-
able variables in G for which there is a path to a variable in C, and such that
all the internal nodes (if they are exist) in that path are in U . The lemma says
that in such a subgraph, if W is a set of observable variables whose ancestor set
includes no other observable variables in the subgraph, then Q[W ] can be cal-
culated directly from Q[C] by marginalizing variables in C\W . In particular,
note that if Q[C] is identifiable, then Q[W ] is also identifiable. We will exploit
this observation later on.

Another very important lemma is also from [2]. We only use the first two
parts of it, which are:
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Lemma 2 Let H ⊆ N , and we have c-components H ′
1, . . . ,H

′
n in the sub graph GH ,

Hi = H ′
i ∩H , 1 6 i 6 n, then

(i) Q[H] can be decomposed as

Q[H] =

n
∏

i=1

Q[Hi] (11)

(ii) Each Q[Hi] is computable from Q[H], in the following way. Let k be the num-
ber of variables in H , and let a topological order of variables in H be Vh1

< . . . < Vhk

in GH , Let H(j) = {Vh1
, . . . , Vhj

} be the set of variables in H ordered before Vhj
(

including Vhj
), j = 1, . . . , k,and H(0) = φ. Then each Q[Hi],i = 1, . . . , n,is given by

Q[Hi] =
∏

{j|Vhj
∈Hi}

Q[H(j)]

Q[H(j−1)]
(12)

where each Q[H(j)], j = 0, 1, . . . , k, is given by

Q[H(j)] =
∑

h\h(j)

Q[H] (13)

Lemma 2 means that if Q[H] is identifiable, then each Q[Hi] is also identifi-
able.

In the special case for which H = N , Lemma 2 implies that, for a given
graph G, because Q[N ] is identifiable, Q[C ∩ N ] is identifiable for each c-
components C in G.

Lemma 3 Let S, T ⊂ N be two disjoint sets of observable variables, If PT (S) is not
identifiable in G, then PT (S) is not identifiable in the graph resulted from adding
a directed or bidirected edge to G. Equivalently, if PT (S) is identifiable in G, then
PT (S) is still identifiable in the graph resulted from removing a directed or bidirected
edge from G.

Intuitively, this lemma says the unidentifiablility would not change by adding
any links. This property is mentioned in [6]. A formal prove of it in semi-
Markovian model can be found in [3]. We give out a proof of this lemma in
appendix A, which is straightly follow the proof in [3].

Lemma 4 Let S, T ⊂ N be two disjoint sets of observable variables, If S1 and T1

are subset of S, T , and PT1
(S1)is not identifiable in a subgraph of G, which does not

include node in S\S1 ∪ T\T1, then PT (S) is not identifiable in the graph G.

Prove: Assume that PT1
(S1)is not identifiable in a subgraph of G, which we

will name G′ , and which does not include node S\S1 ∪ T\T1. we can add all
node in G but do not in G′ into G′ as isolated nodes. Then we have(trivially)
that PT (S) is not identifiable in this new graph. According to lemma 3, it is not
identifiable in graph G either. �
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Lemma 5 Let A ⊂ B ⊂ N . Q[A] is computable from Q[B] if and only if Q[A]GB
is

computable from Q[B]GB

[3] gives a proof of this lemma when the models are semi-Markovian. Note
that Q[A] = PV \A(A), the only if part of this lemma can be gotten directly from
lemma 4. A formal proof of the if part can be found in Appendix B.

4 Identify Algorithm For Q[S]

Based the lemmas in the last section, we give out an algorithm to calculate
Q[S]. Here S ⊂ N is a subset of observable variables.

The first version of this algorithm is given by Tian and Pearl [3] on semi-
Markovian models. They pointed out, in [3], that it could be transfered to gen-
eral models. Huang and Valtorta [4] have proved Tian and Pearl’s algorithm
is sound and complete on semi-Markovian models. The algorithm below is
the transfered version on general models and we also give out a proof of its
soundness and completeness in this section.

Assume N(G) be partitioned into N1, . . . , Nk in G, each of them belongs to a
c-components, and we have c-components S′

1, . . . , S
′
l in graph GS , Sj = S′

j ∩S,
1 6 j 6 l.

Based on theorem 2, for any model on graph G, We have

Q[S] =

l
∏

j=1

Q[Sj ] (14)

Because each Sj ,j = 1, . . . , l, is a c-component in GS , which is a subgraph
of G, it must be included in one Nj , Nj ∈ {N1, . . . , Nk}. We have:

Lemma 6 Q[S] is identifiable if and only if each Q[Sj ] is identifiable in graph GNj
.

Prove: only if part: based on lemma 5, each Q[Sj ] is identifiable in graph
GNj

means each Q[Sj ] is identifiable from Q[Nj ] on graph G. When we have
Q[N ], according to lemma 2, we can compute all the Q[Nj ]s. So, each Q[Sj ] is
identifiable from Q[N ]. Based on equation 14, Q[S] is identifiable.

If part: If one Q[Sj ] is unidentifiable in Q[Nj ] in graph GNj
, then from

lemma 4, we have Q[S] is unidentifiable. �

Now let us consider how to compute Q[Sj ] from Q[Nj ]. Note that Sj ⊂ Nj

and both GNj
and GSj

are graphs with just one c-component.
Let F = An(Sj)GNj

∩Nj

If F = Sj , that is, Sj is an ancestral set in GNj
, the by lemma 1, Q[Sj ] is

computable as: Q[Sj ] =
∑

Nj\Sj
Q[Nj ].

If F = Nj , we will prove Q[Sj ] is not identifiable in GNj
.

If Sj ⊂ F ⊂ Nj , by lemma 1, we know Q[F ] =
∑

Nj\F Q[Nj ].

Assume that in graph GF , Sj is contained in a c-component H ′, Assume
H = H ′ ∩ N ,( Note that here Sj must belong to one c-component). By lemma
2, Q[H] is computable from Q[F ], and is computable with Equation 12.
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We obtain that the problem of whether Q[Sj ] is computable from Q[Nj ] is
reduced to that of whether Q[Sj ] is computable from Q[H].

Using lemma 5, we know Q[Sj ] is computable from Q[Nj ] in GNj
if and

only if Q[Sj ] is identifiable form Q[H] in graph GH .
Next, we give out the algorithm (which follows [3]) to get Q[C] form Q[T ].
Function Identify (C,T ,Q)
INPUT: C ⊆ T ⊆ N , Q = Q[T ], GT and GC are both composed of one single

c-component.
OUTPUT: Expression for Q[C] in terms of Q or FAIL.
Let A = An(C)GT

∩ T
i) If A = C, output Q[C] =

∑

T\C Q[T ].

ii) If A = T , output FAIL.
iii) If C ⊂ A ⊂ T

1. Assume that in GA, C is contained in a c-component T ′
1, T1 = T ′

1 ∩A.

2. Compute Q[T1] from Q[A] =
∑

T\A Q[T ] with lemma 2

3. Output Identify(C,T1,Q[T1]).

From the discussions above, we know i) and iii) always work. ii) is handled
by lemma below.

Lemma 7 In a general Markovian model G, if

1. G itself is a c-component.

2. S ⊂ N(G) and GS has only one c-component.

3. All variables in N\S are ancestors of S.

then Q[S] is unidentifiable in G.

The proof of this lemma is in appendix C. Putting all the analysis above
together, we have

Algorithm Computing Q[S]
INPUT: S ⊆ N .
OUTPUT: Expression for Q[S] or FAIL.
Let N(G) be partitioned into N1, . . . , Nk, each of them belonging to a c-components

in G, and S be partitioned into S1, . . . , Sl, each of them belonging to a c-components
in GS , and Sj ⊆ Nj . We can

i), Compute each Q[Nj ] with lemma 2.
ii), Compute each Q[Sj ] with Identify algorithm above with C = Sj ,T = Nj ,Q =

Q[Nj ].
iii), If in ii), we get Fail as return value of Identify algorithm of any Sj , then Q[S]

is unidentifiable in graph G; else Q[S] is identifiable and Q[S] =
∏l

j=1 Q[Sj ]

Theorem 1 The computing Q[S] algorithm is sound and complete.
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From theorem 1, we can have the two lemmas below,

Lemma 8 If S ⊂ N in graph G and e is a link that gets out of one S node, graph G′ is
the same as graph G except it does not have link e. Then Q[S] is identifiable in graph
G if and only if Q[S] is identifiable in graph G′.

Proof: Note that e is a link that gets out of an S node. So, graph G and
G′ have the same c-component partition. Any c-component in G is also a c-
component in G′, and vice versa. Graph GS and G′

S also have the same c-
component partition. Any c-component in GS is also a c-component in G′

S ,
and vice versa.

When we use the above algorithm to compute QG[S] in causal graph G and

compute QG′

[S] in causal graph G′, the only difference is between computing

QG[Sj ] and QG′

[Sj ] with Identify algorithm above with C = Sj ,T = Nj ,Q =
Q[Nj ], where link e is out of a node in Sj .

We note that when computing Q[Sj ] with the Identify algorithm, in both
case we get the same A and T1, and the same c-component partition.

From Identify function, computing Q[S] algorithm and theorem 1, we know
Q[S] is identifiable in graph G if and only if Q[S] is identifiable in graph G′. �

We also have

Lemma 9 Let S ⊂ N in graph G and graph G′ be obtained by removing all links
getting out from S nodes in graph G. Then Q[S] is identifiable in graph G if and only
if Q[S] is identifiable in graph G′.

Proof: This result directly follows from lemma 8 above. �

5 Identify Algorithm For Pt(s)

Lemma 10 Assume S ⊂ N in graph G, X1 ∈ S , X2 ∈ S. Let < X1, U1, . . . , Uk,X2 >
be a directed path from X1 to X2 in G, with Ui ∈ U(G), 1 6 i 6 k, and let T ⊂ N
and T ∩ S = φ. Let graph G′ be obtained by removing link < X1, U1 > from graph
G. If PT (S) is unidentifiable in graph G′, then PT (S\{X1}) is unidentifiable in G.

The proof of this lemma is in Appendix D.
We define s-ancestor set of S ⊆ N in graph G here. The s-ancestor set D of S

in G is a observable variable set that S ⊆ D ⊆ N and D = An(S) in GD.

Lemma 11 Assume D is an s-ancestor set of observable node set S on graph G, then
∑

D\S Q[D] is identifiable if and only if Q[D] is identifiable.

Proof: if part is easy, by definition, if Q[D] is identifiable,
∑

D\S Q[D] is

identifiable.
If Q[D] is unidentifiable, then we know form the lemma 9 that Q[D] is

unidentifiable in graph G′, here G′ is gotten by removing all links that get out
from nodes in D from G.

10



Because D is a s-ancestor set of S, we can find an order of nodes in D\S as
X1, . . . ,Xk, and in graph G for each Xi, 1 6 i 6 k, there is a directed path from
Xi to one node in S ∪ {X1, . . . ,Xi−1}, and all nodes in the middle of that path
are unobservable. Assume for a given Xi, 1 6 i 6 k, the link, which gets out
from Xi in G but is not exist in G′, is ei. And graph Gi is gotten by add link ei

to graph Gi−1, G0 = G′.
Notes we have Q[D] = PN\D(D) is unidentifiable in G′. From lemma 10,

we have PN\D(D\{X1}) is unidentifiable in graph G1, using this lemma again,
we have PN\D(D\{X1,X2}) is unidentifiable in graph G2, and finally, we have
PN\D(S) is unidentifiable in graph Gk. Notes Gk is a subgraph of G, according
to lemma 3, if PN\D(S), which equals to

∑

D\S Q[D], is unidentifiable in Gk

then it is unidentifiable in G. �

Based the lemmas above, we get an algorithm to solve the identifiability
problem on general Markovian models.

What we want to compute is:

Pt(s) =
∑

N\(T∪S)

Pt(n\t) =
∑

N\(T∪S)

Q[N\T ] (15)

Let D = An(S)GN\T
. D is an ancestral set in graph GN\T , Lemma 1 allows

us to conclude that
∑

N\(T∪D) Q[N\T ] = Q[D]. Therefore, we can rewrite Pt(s)

from Equation (15) as:

Pt(s) =
∑

N\(T∪S)

Q[N\T ] =
∑

D\S

∑

N\(T∪D)

Q[N\T ] =
∑

D\S

Q[D] (16)

Note that D is a s-ancestor set of S, according to lemma 11,
∑

D\S Q[D] is

identifiable if and only if Q[D] is identifiable.
Now the identifiability problem of PT (S) is transfered to the identifiability

problem of Q[D], which can be solved by the algorithm in the last section.
Finally, we give out the algorithm which follows [3] to deal the identifiable

problem.
Algorithm Computing PT (S)
INPUT: two disjoint observable variable sets S, T ⊂ N .
OUTPUT: the expression for PT (S) or FAIL.

1. Let D = An(S)GN\T

2. Using the Computing Q[S] algorithm in last section to compute Q[D].

3. If the algorithm returns FAIL, then output FAIL.

4. Else, output PT (S) =
∑

D\S Q[D]

Our discussion above shows,

Theorem 2 The above computing PT (S) algorithm is sound and complete.

11



6 Conclusion

In this paper, we review the identify algorithm given by J.Tian and J.Pearl,
which can be used only on semi Markovian graphs. We extend that algorithm
into an identify algorithm that can be used on general causal graphs and prove
that the extended algorithm is sound and complete. This result shows the
power of the algebraic approach to solving identifiability problems and closes
the identifiability problem.

Future work includes implementing the modified identify algorithm and
analyzing its efficiency, extending the results of this paper to conditional causal
effects, and providing an explanation of the causal effect formula found by the
identify algorithm in terms of applications of the rules of the do calculus by
J.Pearl in [6].
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Appendix A

This appendix contains the proof of lemma 3, which we repeat:
Lemma 3 Let S, T ⊂ N be two disjoint sets of observable variables, If PT (S)

is not identifiable in G, then PT (S) is not identifiable in the graph resulting
from adding a directed or bidirected edge to G. Equivalently, if PT (S) is iden-
tifiable in G, then PT (S) is still identifiable in the graph resulted from removing
a directed or bidirected edge from G.

Proof: This proof follows [3]. The only difference is that in [3] the models
are semi Markovian, while here we deal with general casual networks.

If PT (S) is not identifiable in G, then there exist two models with the same
causal graph G, M1 and M2, such that for all instances N = n

PM1(n) = PM2(n) > 0 (17)

but for at least one instance T = t, S = s

PM1
t (s) 6= PM2

t (s) (18)

where:

P (n) =
∑

Uk∈U

∏

Vi∈N

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (19)

Pt(s) =
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (20)

For a graph G′ with extra edges added to G, we will construct new models
based on M1 and M2 in which the added edges are ineffective.
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Let G′ be the graph identical to G except having an extra edge X −→ Vj .
We construct two models M ′

1 and M ′
2 with the causal graph G′ as

PM ′
k(vi|pa(Vi)) = PMk(vi|pa(Vi)), i 6= j, k = 1, 2 (21)

PM ′
k(vj |pa(Vj),X) = PMk(vj |pa(Vj)), k = 1, 2 (22)

here, pa(Vi) is an instance of Pa(Vi), the parent set of Vi in graph G.
When (M1,M2) satisfies 17 and 18, (M ′

1,M
′
2) satisfies them also. So, PT (S)

is not identifiable in G′. �

Appendix B

This appendix contains the proof of lemma 5, which we repeat:
Lemma 5 Let A ⊂ B ⊂ N . Q[A] is computable from Q[B] if and only if

Q[A]GB
is computable from Q[B]GB

Proof: Note that Q[A] = PV \A(A). The only if part of this lemma follows
from lemma 4. Tian and Pearl [3] give a proof of this statement when models
are semi-Markovian. Our proof follows their proof on the if part.

Assume that Q[A] is not computable from Q[B]. Then, there exist two mod-
els, M1 and M2, with the same causal graph G, that satisfy, for any (t, a, c),

QMk [B](b, t) = PMk

N\B
(B)(b, t) =

∑

Uk∈U

∏

Vi∈{B∪U}

P (vi|pa′(Vi), ti, u
i), k = 1, 2

(23)
where t is an instance of T = N\B, Pa′(Vi) = Pa(Vi) ∩B, Ti = Pa(Vi) ∩ T ,

U i = Pa(Vi) ∩ U . We also have

QM1 [B](b, t) = QM2 [B](b, t) > 0 (24)

for all values (b, t), but

QM1 [A](b′, t′) 6= QM2 [A](b′, t′) (25)

for a particular value (b′, t′).
We construct two models, M ′

1 and M ′
2 with the same causal graph GB as

PM ′
k(vi|pa′(Vi), u

i) = PMk(vi|pa′(Vi), Ti = t′i, u
i), k = 1, 2 (26)

Note that Q[B]GB
can be written as:

Q[B]
M ′

k

GB
(b) =

∑

Uk∈DUP (B)

∏

Vi∈{B∪DUP (B)} PMk(vi|pa′(Vi), ti, u
i)

=
∑

Uk∈U

∏

Vi∈{B∪U)} PMk(vi|pa′(Vi), ti, u
i), k = 1, 2

(27)

This is because the nodes in U\DUP (B) have no effect on B nodes when the
T nodes are set.
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Then we have

Q[B]
M ′

k

GB
(b) = Q[B]Mk(b, t′), Q[A]

M ′
k

GB
(b) = Q[A]Mk(b, t′), k = 1, 2 (28)

From the discussion above, we have:

QM ′
1 [B]GB

(b) = QM ′
2 [B]GB

(b) > 0 (29)

for all values b, but

QM ′
1 [A]GB

(b′) 6= QM ′
2 [A]GB

(b′) (30)

for value b′, which means that Q[A]GB
is not computable from Q[B]GB

. �

Appendix C

This appendix contains the proof of lemma 7, which we repeat:
lemma 7 In a (general) Markovian model G, if

1. G itself is a c-component.

2. S ⊂ N(G) and GS has only one c-component.

3. All variables in N\S are ancestors of S.

then Q[S] is unidentifiable in G.
We call these three properties unidentifiable properties.
In this section, we first introduce the projection process to transfer general

Markovian models to semi-Markovian models; then we prove if the projection,
which is a semi-Markovian model, is unidentifiable then the original graph is
unidentifiable. Finally we show any semi-Markovian model we are studying
in this section is unidentifiable.

Projection

Verma [14] showed any Bayesian network with arbitrary hidden variables can
be converted to a semi-Markovian model by constructing its projection.

Projection The projection of a DAG G over observable nodes set N and unob-
servable node set U , denoted by PJ(G,N), is a DAG over N with bidirected edges
constructed as follows:

1. Add each variable in N as a node of PJ(G,N).
2. For each pair of variables X,Y ∈ N , if there is an edge between them in G, add

the edge to PJ(G,N).
3. For each pair of variables X,Y ∈ N , if there exists a directed path from X to Y

in G such that every internal node on the path is in U , add edge X → Y to PJ(G,N)
(if it does not exist yet).
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Figure 1: Semi-Markovian Projection

4. For each pair of variables X,Y ∈ N , if there exists a divergent path between X
and Y in G such that every internal node on the path is in U , add a bidirected edge
between X and Y in PJ(G,N).

Figure 1 is an example of a general Markovian model and its semi-Markovian
projection.

Verma [14] shows that G and PJ(G,N) have the same set of conditional
independence relations among N . Tian and Pearl [2] shows G and PJ(G,N)
share additional non-independence equality constraints among variables. Our
result does not depend on these observation.

From the definition of the projection, we have

Lemma 12 Assume model G and S ∈ N(G) satisfy the three unidentifiable proper-
ties. Then, PJ(G,N(G)) and S all satisfy the three unidentifiable properties.

Proof: First note that for any two observable nodes in G, if they are in the same
c-component, then they are still in the same c-component in PJ(G,N(G)).

Second, for two observable node X and Y , if X is an ancestor of Y in G,
then X is still Y ’s ancestor in PJ(G,N(G)). �

From Projection to Original Model

A property of projection PJ(G,N) is given in the following:

Lemma 13 If Q[S] is unidentifiable in PJ(G,N) then Q[S] is unidentifiable in G.

Prove: Assume we have graph G, V (G) = N ∪ U , S ⊂ N .
Q[S] is unidentifiable in PJ(G,N) means we have two model M1 and M2

on graph PJ(G,N) that

∑

U∈U(PJ(G,N))

∏

V ∈V (PJ(G,N)) PM1(V |Pa(V )) =
∑

U∈U(PJ(G,N))

∏

V ∈V (PJ(G,N)) PM2(V |Pa(V )) > 0
(31)

but there exists an instance N = n, for which

∑

U∈U(PJ(G,N))

∏

V ∈(U(PJ(G,N))∪S) PM1(V |Pa(Vi))(n) 6=
∑

U∈U(PJ(G,N))

∏

V ∈(U(PJ(G,N))∪S) PM2(V |Pa(Vi))(n)
(32)

We assume the state space for each node Vi in PJ(G,N) is S(Vi)

17



Now based on M1 and M2, we construct two models M ′
1 and M ′

2 on a sub-
graph of G. We define a state space set SS(X) for each node X in V (G), and at
the beginning we set SS(X) = φ. Then we follow the three steps below.

A) For each node X in N , we add its state space in PJ(G,N) to its state
space set. That is SS(X) = {S(X)}.

B) If in PJ(G,N), observable node X is a parent of observable node Y ,
from the projection precess, we know there are some directed paths from X to
Y in G such that all internal nodes on those paths are in U . We select one of
these paths and add state space S(X) into the state space sets of all the internal
nodes on that path if it is not in them yet.

C) For any bidirected link in PJ(G,N), assume it is between observable
nodes X , Y and the unobservable node on the link is Uxy . From the projection
process, we know there exists at least one divergent path between X and Y in G
such that every internal node on the path is in U(G). We select the shortest path
that satisfies this property and denote the unobservable node with divergent
links on that path as U ′

xy . Then we add the state space of Uxy to the state space
set of all nodes on that path if it is not in them yet, except X and Y .

After the three steps above, we remove from G all unobservable nodes
whose state space sets are still empty. The resulting graph G′ is a subgraph
of G. From lemma 4, we know that if Q[S] is unidentifiable in G′, then it is
unidentifiable in G. Our model construction below is on G′.

For any observable node X in PJ(G,N), we note the set of all X’s parents’
state space as SPa(X). If Y is one of X’s parents in PJ(G,N), then there is at
least one parent node Z of X in G′, such that state space S(Y ) is in Z’s state
space set.

We define the state space of each node in G′ as the product of its state space
set.

Let us now consider the conditional probalitity table of each node X in G′

as a mapping from the product of Pa(X)’s state space to that X’s state space.
Based on our construction, the product of Pa(X)’s state space can be trans-

formed to the product of all state spaces in a bag that consists of all the state
space sets of nodes in Pa(X). We call this bag PB(X), which is

∑

Y ∈Pa(X) SS(Y ).

The CPT of X maps the product of PB(X) to X’s state space.
If X is an observable node, then its CPT in PJ(G,N) is defined as a map

from the product of SPa(X), that is
∏

Y ∈SPa(X) S(Y ), to S(X). Note that

SPa(X) is a subset of PB(X). We define for k = 1, 2,

PM ′
k(X = x|SPa(X) = a, (PB(X)− SPa(X)) = b) =

PMk(X = x|SPa(X) = a)
(33)

If the same node state space in SPa(X) appears more than once on PB(X),
then we just arbitrarily select one of them in the above definition.

If X is an unobservable node in G′, assume its state space set SS(X) =
{Y1, . . . , Yn, Z1, . . . , Zm}, where Yi, 1 6 i 6 n, are state spaces that also exist
in PB(X), while Z1, . . . , Zm do not.Note that Z1, . . . , Zm come from step C) of
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our construction when X is selected as U ′
xy .The CPT of X is defined as

PM ′
k(X = (y1, . . . , yn, z1, . . . , zm)|y′

1, . . . , y
′
n, PB(X)\{Y ′

1 , . . . , Y ′
n} = b)

=

{ ∏

Zi∈{Z1,...,Zm} PMk(Zi = zi) all yj = y′
j

0 exist yj 6= y′
j

(34)

Here S(Y ′
j ) is the same state space as S(Yj) in PB(X), y′

j is an instance of it.
If a same node state space in {Y1, . . . , Yn} appears more than once on PB(X),
then we just arbitrarily select one of them in the above definition.

If PB(X)\{Y ′
1 , . . . , Y ′

n} is empty, then
∏

Zi∈{Z1,...,Zm} PMk(Zi = zi) is 1 in

above equation.
Based on the definition of causal effect and the construction above, we have

for i = 1, 2 and for any instance v of V (PJ(G,N)), which is the whole variable
set on PJ(G,N), we can get a mapping instance for all variables in V (G′).
Note that for each variable in V (G′), its state space is the product of some
state spaces of variable in V (PJ(G,N)). So, the mapping is given by forcing
each part of the product to have the same value that the state space has in v.

If we call the new instance on V (G) as v′, we have PMk(v) = PM ′
k(v′). For

any instance v′′ of V (G′) that could not be obtained by this kind of mapping

PM ′
k(v′′) = 0.
Based on definition, we have the observed probability distribution of M ′

i

is completely as same as it for Mi, which means for any instance n of N(G).

PMk(n) = PM ′
k(n) > 0.

With the model construction given above, for any instance v of V (PJ(G,N)),
if v = (u, t, s), where u, t, s are instance of U,N\S = T and S, and we call the
new instance on V (G) after mapping as v′, we have

PMk

N\S=t
(v) = P

M ′
k

N\S=t
(v′). This is because the causal effect part is obtained

by removing the conditional probability table of S\N nodes from the joint
probability formula. And that part is the same for Mk and M ′

k under our con-
struction.

For any instance v′′ of V (G′) which cannot be obtained by the mapping,

set P
M ′

k

N\S=t
(v′′) = 0. This is because for the causal graph, when we remove all

links into the N\S nodes, all the CPTs for unobservable nodes are unchanged.
So, if an instance is not from the mapping, the inconsistency of values in an
unobservable node will cause the whole formula to be zero.

So, the causal effect on S is also completely the same.
This proves the result that if PJ(G,N) is unidentifiable, then G must be

unidentifiable.
�

Unidentifiability of Projection

We also have

Lemma 14 In a semi-Markovian model G, if
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1. G itself is a c-component.

2. S ⊂ N(G) and GS has only one c-component.

3. All variables in N\S are ancestors of S.

then Q[S] is unidentifiable in G.

Proof: this lemma is proved by Huang and Valtorta in [4] and by Shpitser and
Pearl in [12]. �

Proof of lemma 7

Proof: Compose the three lemmas in this section. �

Appendix D

This appendix contains the proof of lemma 10, which we repeat:
Lemma 10 Assume S ⊂ N in graph G, X1 ∈ S , X2 ∈ S. Let < X1, U1, . . . , Uk,X2 >

be a directed path from X1 to X2 in G, with Ui ∈ U(G), 1 6 i 6 k, and let T ⊂ N
and T ∩ S = φ. Let graph G′ be obtained by removing link < X1, U1 > from
graph G. If PT (S) is unidentifiable in graph G′, then PT (S\{X1}) is unidenti-
fiable in G.

Proof: We assume path X1 ∈ S , X2 ∈ S , < X1, U1, . . . , Uk,X2 > is a
shortest path. Therefore, we may not remove any U node in this path but keep
it still be a path from X1 to X2. Otherwise, we can remove some U node in it
to get a shortest path.

By definition, in graph G′, Pt(s) is given by:

Pt(s) =
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T∪U

P (vi|pa(Vi)) (35)

In graph G,

Pt(s\{x1}) =
∑

Vl∈(N\S)\T∪{X1}

∑

Uk∈U

∏

Vi∈N\T∪U

P (vi|pa(Vi)) (36)

When PT (S) is unidentifiable in graph G′, we know there are two models
M1 and M2 on G′ that: PM1(n) = PM2(n), which means:

∑

Uk∈U

∏

Vi∈V

PM1(vi|pa(Vi)) =
∑

Uk∈U

∏

Vi∈V

PM2(vi|pa(Vi)) > 0 (37)

but for given (s, t),PM1
t (s) 6= PM2

t (s).
Now, based on M1 and M2, we create models M ′

1 and M ′
2 on graph G. First,

we define a probability function F . F is defined from S(X1) to (0, 1), where
S(X1) is the state space of X1 in model Mi, i = 1, 2. Let F be such that for any
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a ∈ S(X1), P (F (a) = 0) > 0, P (F (a) = 1) > 0 and P (F (a) = 0) + P (F (a) =
1) = 1.

For any node X , which is not in {U1, . . . , Uk,X2} , we define for i = 1, 2 the
state space for X in model M ′

k to be just the state space of X in model Mk.
For any node X , which is in {U1, . . . , Uk} , we define for i = 1, 2 the state

space for X in model M ′
k to be the product of the state space of X in model Mk

and state space S(X1), Here, S(X1) is the state space of X1 in Mk.
The state space of X2 in M ′

k is defined as S(X2)× {0, 1}. Here, S(X2) is the
state space of X2 in Mk,k = 1, 2.

Then we define the CPT for all the nodes.
First for any node X that is not in {U1, . . . , Uk,X2} and has no parent in

{U1, . . . , Uk,X2}, then both its parents’ state spaces and its state space are the
same as those in Mk. We define

PM ′
i (x|pa(X)) = PMi(x|pa(X)) (38)

For any node X , that is not in {U1, . . . , Uk,X2} but have some parent in
{U1, . . . , Uk,X2}, then its own state space is the same as in Mk but some of its
parents’ state spaces are changed. If one of those parent is node Y , the state
space of Y becomes S(Y )× S(X1) or S(Y )× (0, 1). We define

PM ′
i (x|pa′(X), (y1, x1), . . . , (yn, x1)) = PMi(x|pa′(X), y1, . . . , yn) (39)

Here {y1, . . . , yn} is an instance of {Y1, . . . , Yn} = Pa(X) ∩ {U1, . . . , Uk,X2} in
model Mk and pa′(X) is an instance of Pa′(X) = Pa(X)\{Y1, . . . , Yn} in model
Mk.

For u1, which is an instance of U1 in model Mk, and x1, which is an instance
of X1 in model Mk, k = 0, 1 we define

PM ′
i ((u1, x1)|pa(U1),X1 = x′

1) =

{

PMi(u1|pa(U1)) x1 = x′
1

0 x1 6= x′
1

(40)

Here, pa(U1) is an instance of Pa(U1) in model Mk.
For ui, which is an instance of Ui ∈ {U2, . . . , Uk} in model Mk, and x1,

which is an instance of X1 in model Mk, k = 0, 1 we define for node Ui

PM ′
i ((ui, x1)|pa′(Ui), (ui−1, x

′
1)) =

{

PMi(ui|pa′(Ui), ui−1) x1 = x′
1

0 x1 6= x′
1

(41)

Here, pa′(Ui) is an instance of Pa′(Ui) = Pa(Ui)\{Ui−1} in model Mk.
For x2, which is an instance of X2 in model Mk i = 1, 2,m = 0, 1, we define

PM ′
i ((x2,m)|pa′(X2), (uk, x1)) = PMi(x2|pa′(X2), uk)× P (F (x1) = m) (42)

Here, Pa′(X2) ∪ {Uk} is the parent set of X2 in graph G′.
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Note that for a given (pa(X2), x1) = (pa′(X2), uk, x1), we have

∑

x2,m

PM ′
i ((x2,m)|pa′(X2), uk, x1) =

∑

x2

PMi(x2|pa′(X2), uk)×
∑

m

P (F (x1) = m) = 1

(43)
Note that under this construction, for any Ui, if its value on the X1 part is

not equal to the value of the X1 part in one of its parents, the CPT entry of Ui

will be zero. This means for a given instance of all variables in model M ′
k, only

those where all X1 part have the same value will enter into the joint probability
calculation.

Then for any instance n of N in model M ′
1 and M ′

2, if in n,X1 = x1 and
X2 = (x2,m), m = 0, 1 we have

PM ′
1(n) =

∑

Uk∈U

∏

Vi∈V PM ′
1(vi|pa(Vi)) =

∑

Uk∈U

∏

Vi∈V PM1(vi|pa(Vi))(n)× P (F (x1) = m) =
∑

Uk∈U

∏

Vi∈V PM2(vi|pa(Vi))(n)× P (F (x1) = m) =
∑

Uk∈U

∏

Vi∈V PM ′
2(vi|pa(Vi)) =

PM ′
2(n) > 0

(44)

We know that for given (s, t),PM1
t (s) 6= PM2

t (s) and we assume that for that
s, X1 = x1 and X2 = x2.

Note that
∑

X1
PMi

t (s\{x1}) 6 1. This is because after setting the values of
T nodes, the result model is still a Bayesian network.

Assume PM1
t (s) = a > PM2

t (s) = b > 0. If we define P (F (x1) = 0) =
0.5, but P (F (x) = 0) = (a − b)/4 for all x ∈ S(X1),x 6= x1. We have for
(s\{x2}, (x2, 0), t)

P
M ′

1
t (s\{x1})(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) =

∑

Vl∈(N\S)\T∪{X1}

∑

Uk∈U

∏

Vi∈V \T PM ′
1(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) >
∑

X1=x1

∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM ′
1(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) =
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM1(vi|pa(Vi))(S = s, T = t)× P (F (x1) = 0) =

= 0.5a
(45)
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but,

P
M ′

2
t (s\{x1})(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) =

∑

Vl∈(N\S)\T∪{X1}

∑

Uk∈U

∏

Vi∈V \T PM ′
2(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) =
∑

X1=x1

∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM ′
2(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t)+
∑

X1 6=x1

∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM ′
2(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) <
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM2(vi|pa(Vi))(S = s, T = t)× P (F (x1) = 0)+
∑

Vl∈(N\S)\T∪{X1}

∑

Uk∈U

∏

Vi∈V \T PM2(vi|pa(Vi))

(S\{X1} = s\{x1}, T = t)× P (F (Xi 6= x1) = 0) 6

0.5b +
∑

X1
PM2

t (s\{x1})× (a− b)/4 6

0.5b + (a− b)/4 < 0.5a
(46)

From models M ′
1 and M ′

2, we know PT (S\{X1} is unidentifiable in G.
�
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