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Abstract

This paper addresses the problem of identifying causal effects from nonex-
perimental data in a causal Bayesian network, i.e., a directed acyclic graph that
represents causal relationships. The identifiability question asks whether it
is possible to compute the probability of some set of (effect) variables given
intervention on another set of (intervention) variables, in the presence of non-
observable (i.e., hidden or latent) variables. It is well known that the answer
to the question depends on the structure of the causal Bayesian network, the
set of observable variables, the set of effect variables, and the set of interven-
tion variables. Sound algorithms for identifiability have been proposed, but no
complete algorithm is known. We show that the identify algorithm that Tian
and Pearl defined for semi-Markovian models [1, 2, 3], an important special
case of causal Bayesian networks, is both sound and complete. We believe
that this result will prove useful to solve the identifiability question for general
causal Bayesian networks.



1 Introduction

This paper focuses on the feasibility of inferring the strength of cause-and-
effect relationships from a causal graph [4], which is an acyclic directed graph
expressing nonexperimental data and causal relationships. Because of the ex-
istence of unmeasured variables, the following identifiability questions arise:
”Can we assess the strength of causal effects from nonexperimental data and
causal relationships? And if we can, what is the total causal effect in terms of
estimable quantities?”

The questions just given can partially be answered using a graphical ap-
proach due to Pearl and his collaborators. More precisely, graphical conditions
have been devised to show whether a causal effect, that is, the joint response
of any set S of variables to interventions on a set T of action variables, denoted
PT (S) 1 is identifiable or not. Those results are summarized in [4]. For example,
“back-door” and “front-door” criteria and do-calculus [5]; graphical criteria to
identify PT (S) when T is a singleton [6]; graphical conditions under which it
is possible to identify PT (S) where T and S are, possibly non-singleton, sets,
subject to a special condition called Q-identifiability [7]. Some further study
can be also found in [8] and [9].

Recently, J. Tian by himself and in collaboration with J. Pearl published a se-
ries of papers [1, 2, 3, 10] related to this topic. Their new methods combine the
graphical characters of causal graph and the algebraic definition of causal ef-
fect. They used both algebraic and graphical methods to identify causal effects.
The basic idea is first to transfer causal graphs to semi-Markovian graphs [2],
then to use Algorithm 2 in [3] to calculate the causal effects we want to know.

Tian and Pearl’s method is a great contribution to this study area, but there
are still two open questions left. First, even though we believe, as Tian and
Pearl do, that the semi Markovian models obtained from the transforming Pro-
jection algorithm in [2] are equal to the original causal graphs, and therefore the
causal effects should be the same in both models, still, to the best of our knowl-
edge, there is no formal proof for this equivalence. Second, the completeness
question of the indentification algorithm in [3] (which we will simply call the
identify algorithm from now on) is still open, so that it is unknown whether a
causal effect is identifiable if the identify algorithm fails.

In this paper, we focus on the second question. Our conclusion shows that
Tian and Pearl’s identify algorithm on semi-Markovian models is sound and
complete, which means that a causal effect on a semi-Markovian model is iden-
tifiable if and only if the given algorithm can run successfully and finally return
an expression which is the target causal effect in terms of estimable quantities.

Using the result of this paper, it becomes possible to rewrite the identify
algorithm on general Markovian models and prove that the new algorithm
is still sound and complete. This work is not included in this paper, but we
believe that we provide the foundations for the more general result.

In the next section we present the definitions and notation that we use in

1Pearl and Tian used notation P (s|do(t)) and P (s|t̂ ) in [4] and Pt(s) in [2], [3].
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this paper. In section three, we present some important lemmas that will be
used to support the analysis of the identify algorithm. In section four, we
describe the algorithm that answers the identifiability question for a special
causal effect case (Q[S]), and show that the algorithm is sound and complete.
We present the identify algorithm for general causal effect PT (S) in section
five and show that it is also sound and complete. Conclusions are included in
section six.

2 Definitions and Notations

Markovian models are popular graphical models for encoding distributional
and causal relationships. A Markovian model consists of a DAG G over a set
of variables V = {V1, . . . , Vn}, called a causal graph and a probability distribu-
tion over V , which has some constraints on it that will be specified precisely
below. We use V (G) to indicate that V is the variable set of graph G. If it is
clear in the context, we also use V directly. The interpretation of such kind of
model consists of two parts. The probability distribution must satisfy two con-
straints. The first one is that each variable in the graph is independent of all its
non-descendants given its direct parents. The second one is that the directed
edges in G represent causal influences between the corresponding variables. A
Markovian model for which only the first constraint holds is called a Bayesian
network. This explains why Markovian models are also called causal Bayesian
networks. As far as the second condition is concerned, some authors prefer to
consider equation 3 (below) as definitional; others take equation 3 as following
from more general considerations about causal links, and in particular the ac-
count of causality that requires that, when a variable is set, the parents of that
variable be disconnected from it. See [11] and [4].

In this paper, capital letters, like V , are used for variable sets; lower-case
letters, like v, stand for the instances of variable set V . Capital letters like X ,
Y and Vi are also used for single variables, and their values can be x, y and
vi. Normally, we use F (V ) to denote a function on variable set V . An instance
of this function is denoted as F (V )(V = v), or F (V )(v), or just F (v). Because
each variable is in one-to-one correspondence to one node in the causal graph,
we sometimes use node or node set instead of variable and variable set.

We use Pa(Vi) to denote parent node set of variable Vi in graph G and
pa(Vi) as an instance of Pa(Vi). Ch(Vi) is Vi’s children node set; ch(Vi) is an
instance of Ch(Vi).

Based on the probabilistic interpretation, we get that the joint probability
function P (v) = P (v1, . . . , vn) can be factorized as

P (v) =
∏

Vi∈V

P (vi|pa(Vi)) (1)

The causal interpretation of Markovian model enables us to predict the in-
tervention effects. Here, intervention means some kind of modification of fac-
tors in product (1). The simplest kind of intervention is fixing a subset T ⊆ V
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of variables to some constants t, denoted by do(T = t) or just do(t), and then
the post-intervention distribution

PT (V )(T = t, V = v) = Pt(v) (2)

is given by:

Pt(v) = P (v|do(t)) =

{ ∏

Vi∈V \T P (vi|pa(Vi)) v consistent with t

0 v inconsistent with t
(3)

We note explicitly that the post-intervention distribution PT (V )(T = t, V =
v) = Pt(v) is a probability distribution.

When all the variables in V are observable, since all P (vi|pa(Vi)) can be esti-
mated from nonexperimental data, all causal effects are computable. But when
some variables in V are unobservable, the situation is much more complex.

Let N(G) and U(G) (or simply N and U when the graph is clear from the
context) stand for the sets of observable and unobservable variables in graph G
respectively, that is V = N ∪ U . The observed probability distribution P (n) =
P (N = n), is a mixture of products:

P (n) =
∑

Uk∈U

∏

Vi∈V

P (vi|pa(Vi)) =
∑

Uk∈U

∏

Vi∈N

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj))

(4)
The post-intervention distribution Pt(n) = PT=t(N = n) 2 is defined as:

Pt(n) =







∑

Uk∈U

∏

Vi∈N\T P (vi|pa(Vi))
∏

Vj∈U P (vj |pa(Vj))

n consistent with t
0 n inconsistent with t

(5)

Sometimes what we want to know is not the post-intervention distribution
for the whole N , but the post-intervention distribution Pt(s) of an observable
variable subset S ⊆ N . For those two observable variable sets S and T , Pt(s) =
PT=t(S = s) is given by:

Pt(s) =







∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T P (vi|pa(Vi))
∏

Vj∈U P (vj |pa(Vj))

s consistent with t
0 s inconsistent with t

(6)
The identifiability question is defined as whether the causal effect PT (S),

that is all Pt(s) given by (6), can be determined uniquely from the distribution
P (N = n) given by (4), and thus independently of the unknown quantities
P (vi|pa(Vi))s, where Vi ∈ U or Vj ∈ U for some Vj ∈ Pa(Vi).

We give a formal definition of identifiability below, which follows [3].

2In this paper, we only consider the situation in which T ⊆ N .
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A Markovian model consists of four elements

M =< N,U,GN∪U , P (vi|pa(Vi)) >

where, (i) N is a set of observable variables; (ii) U is a set of unobservable
variables; (iii) G is a directed acyclic graph with nodes corresponding to the
elements of V = N ∪ U ; and (iv) P (vi|pa(Vi)), is the conditional probability of
variable Vi ∈ V given its parents Pa(Vi)in G.

Definition 1 The causal effect of a set of variables T on a disjoint set of vari-
ables S is said to be identifiable from a graph G if all the quantities Pt(s) can
be computed uniquely from any positive probability of the observed variables

— that is , if PM1
t (s) = PM2

t (s) for every pair of models M1 and M2 with
PM1(n) = PM2(n) > 0 and G(M1) = G(M2).

This definition means that, given the causal graph G, the quantity Pt(s)
can be determined from the observed distribution P (n) alone; the probability
tables that include unobservable variables are irrelevant.

Next, we define Q[S] function and c-components in causal graphs. These
definitions follow [2].

Normally, when we talk about S and T , we think they are both observable
variable subsets of N and mutually disjoint. So, any configuration of S is con-
sistent with any configuration of T , and equation 6 can be replaced by

Pt(s) =
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (7)

From now on, we will use this definition instead of equation 6.
We are sometimes interested in the causal effect on a set of observable vari-

ables S due to all other observable variables. In this case, keeping the conven-
tion that N stands for the set of all observable variables and T stands for the
set of variables whose effect we want to compute, T = N\S, and equation 7
simplifies to

Pn\s(s) =
∑

Uk∈U

∏

Vi∈S

P (vi|pa(Vi))
∏

Vj∈U

P (vj |pa(Vj)) (8)

In formula 8, the subscript n\s indicates a configuration of the variable or
variables in the set N\S. For convenience and for uniformity with [2], we
define

Q[S] = PN\S(S) (9)

and interpret this equation as stating that the causal effect of N\S on S is Q[S].
Note that Q[S] is identifiable if Q[S]M1(s) = Q[S]M2(s) for every pair of

models M1 and M2 with Q[N ]M1(n) = Q[N ]M2(n) > 0 and G(M1) = G(M2).
We define the c-component relation on the unobserved variable set U of graph

G as follows. For any U1 ∈ U and U2 ∈ U , they are related under the c-
component relation if and only if one of conditions below is satisfied:
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(i) there is an edge between U1 and U2,

(ii) U1 and U2 are both parents of the same observable node,

(iii) both U1 and U2 are in the c-component relation with respect to another
node U3 ∈ U .

Observe that the c-component relation in U is reflexive, symmetric and tran-
sitive, so it defines a partition of U . Based on this relation, we can therefore
divide U into disjoint and mutually exclusive c-component related parts.

A c-component (short for “confounded component,” [3]) of variable set V
on graph G consists of all the unobservable variables belonging to the same
c-component related part of U and all observable variables that have an un-
observable parent which is a member of that c-component. According to the
definition of c-component relation, it is clear that an observable node can only
appear in one c-component. If an observable node has no unobservable parent,
then itself is a c-component on V . Therefore, the c-components form a partition
on all of the variables.

For any pair of variables V1 and V2 in causal graph G, if there is an unob-
servable node Ui which is a parent for both of them, then path V1 ← Ui → V2

is called a bidirected link3. If for nodes V1, . . . , Vn, there are bidirected links be-
tween all Vi, Vi+1, 1 6 i < n, then we say there is a bidirected path from V1 to
Vn.

We now introduce a way of reducing the size of causal graphs that pre-
serves the answer to an identifiability question. It is more convenient to work
with the reduced graphs than with the original, larger ones. Studying defin-
ition (4) and (5), we can see if there is an unobservable variable in graph G
that has no child, then it can be summed out in both (4) and (5) and removed.
Formally, if we have a model M =< N,U,GN∪U , P (vi|pa(Vi)) >, U ′ ∈ U and
U ′ has no child in GN∪U , then the identification problem in M is equal to the
identification problem in M ′ =< N,U\{U ′}, G′, P ′(vi|pai) >, where G′ is the
subgraph of GN∪U obtained by removing node U ′ and all links attached with
it. P ′(vi|pa(Vi)) is obtained by removing all P (u′|pa(U ′)) in the set of condi-
tional probability tables P (vi|pa(Vi)). The overall distribution (of all remaining
variables) and the causal distribution (of only the observable variables) in these
two models are still the same.

By repeating the transformation given above, any causal model can be trans-
formed to a model in which each unobservable variable is an ancestor of one or
more observable variables without changing the identifiability property. (This
is analogous to barren node removal in Bayesian networks.) From now on in
this paper, we assume that all models we study satisfy this property.

If in a Markovian model each unobserved variable is a root node with ex-
actly two observed children, we call it a semi-Markovian model. Verma [12]
defines a projection by which every Markovian model on graph G can be trans-
ferred to a semi-Markovian model on graph PJ(G,V ). Tian and Pearl [2] show

3We use this term because the three-node structure can be replaced by the two observable nodes
with a special bidirected edge between them.
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that G and PJ(G,V ) have the same topological relations over V and the same
partition of V into c-components. They conclude that if PT (S) is identified in
PJ(G,V ), then it is identified in G with the same expression. This is a very
important statement. From now on in this paper we will just deal with semi-
Markovian models.

In semi-Markovian models, equation 7 can be rewritten as:

Pt(s) =
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T

P (vi|pa(Vi))
∏

Vj∈U

P (vj) (10)

And equation 8 can be rewritten as:

Pt(s) = Q[s] = Pn\s(s) =
∑

Uk∈U

∏

Vi∈S

P (vi|pa(Vi))
∏

Vj∈U

P (vj) (11)

As in Tian and Pearl [3], for the sake of convenience, we represent a semi-
Markovian model with a causal graph G without showing the elements of U
explicitly, but represent the confounding effects of U variables using bidirected
edges. We explicitly represent U nodes only when it is necessary.

So, from know on, unless otherwise noted, all the nodes we mention are
observable nodes in graph G. We still use N to denote the set of observable
nodes.

We conclude this section by giving several simple graphical definitions that
will be needed later. For a given variable set C ⊆ N , let GC denote the sub-
graph of G composed only of variables in C and all the bidirected links be-
tween variable pairs in C. We define An(C) be the union of C and the set of
observable ancestors of the variables in C in graph G and De(C) be the union
of C and the set of observable descendents of the variables in C in graph G.

An observable variable set S ⊆ N in graph G is called an ancestral set if it
contains all its own observed ancestors (i.e., S = An(S)).

3 Theorems and Lemmas

Because our definition of Q[S] is equal to the definition of Q[S] in [2], Lemma
1 in [2] is still correct, and therefore we have:

Theorem 1 Let W ⊆ C ⊆ N . If W is an ancestral set in GC , then

∑

Vi∈C\W

Q[C] = Q[W ] (12)

We recall that subgraph GC includes all variables in C and the subset of
the unobservable variables in G for which their children are all in in C. The
lemma says that in such a subgraph, if W is a set of observable variables whose
ancestor set includes no other observable variables in the subgraph, then Q[W ]
can be calculated directly from Q[C] by marginalizing variables in C\W . In
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particular, note that if Q[C] is identifiable, then Q[W ] is also identifiable. We
will exploit this observation later on.

Another very important theorem is given in [2]. We only use the first two
parts of it, which are:

Theorem 2 Let H ⊆ N , and let H ′
1, . . . ,H

′
l be c-components in the subgraph GH .

Let Hi = H ′
i ∩N, 1 6 i 6 l. Then we have

(i) Q[H] can be decomposed as

Q[H] =

l
∏

i=1

Q[Hi] (13)

(ii) Each Q[Hi] is computable from Q[H]. Let k be the number of variables in H ,
and let a topological order of variables in H be V1 < . . . < Vk in GH . Let H(i) =
{V1, . . . , Vi} be the set of variables in H ordered before Vi (including Vi), i = 1, . . . , k,
and H(0) = φ. Then each Q[Hj ],j = 1, . . . , l, is given by

Q[Hj ] =
∏

{i|Vi∈Hj}

Q[H(i)]

Q[H(i−1)]
(14)

where each Q[H(i)], i = 0, 1, . . . , k, is given by

Q[H(i)] =
∑

H\H(i)

Q[H] (15)

Theorem 2 means that if Q[H] is identifiable, then each Q[Hi], 1 6 i 6 l, is
also identifiable. In the special case for which H = N , Q(H) = Q(N) = P (N),
which is obviously identifiable, and therefore theorem 2 implies that Q[N ′

i∩N ]
is always identifiable for each c-component N ′

i of a given causal graph G.

Lemma 1 Let S, T ⊂ N be two disjoint sets of observable variables. If PT (S) is not
identifiable in G, then PT (S) is not identifiable in the graph resulting from adding
a directed or bidirected edge to G. Equivalently, if PT (S) is identifiable in G, then
PT (S) is still identifiable in the graph resulting from removing a directed or bidirected
edge from G.

Intuitively, this lemma says that unidentifiability does not change by adding
links. This property is mentioned in [4]. A formal proof of this lemma for semi-
Markovian model can be found in [3].

Lemma 2 Let S, T ⊂ N be two disjoint sets of observable variables. If S1 and T1

are subsets of S, T , and PT1
(S1) is not identifiable in a subgraph of G, which does not

include nodes S\S1 ∪ T\T1, then PT (S) is not identifiable in the graph G.

Proof: Assume that PT1
(S1)is not identifiable in a subgraph of G, which we

will name G′, and which does not include nodes S\S1 ∪ T\T1. We can add all
nodes in G but not in G′ into G′ as isolated nodes. Then we have (trivially) that
PT (S) is not identifiable in this new graph. According to lemma 1, PT (S) is not
identifiable in graph G either. �
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Lemma 3 Let A ⊂ B ⊂ N . Q[A] is computable from Q[B] if and only if Q[A]GB
is

computable from Q[B]GB

Recall that Q[A] = PV \A(A). The only if part of this lemma follows from
lemma 2. A formal proof of the if part can be found in [3].

4 Identify Algorithm for Q[S]

Let S be a subset of observable variables (i.e., S ⊂ N ). Recall that Q[S] =
PN\S(S). Based the theorems in the previous section, Tian and Pearl [3] gave
an algorithm to solve the identifibility problem of Q[S] and showed that this
algorithm is sound. We present their algorithm here and show that it is also
complete. We begin with a lemma.

Lemma 4 Assume that N is partitioned into c-components N1, . . . , Nk in G, and S is
partitioned into c-components S1, . . . , Sl in graph GS . Because each Sj , j = 1, . . . , l,
is a c-component in GS , which is a subgraph of G, it must be included in exactly one
Nj , Nj ∈ {N1, . . . , Nk}.Q[S] is identifiable if and only if each Q[Sj ] is identifiable in
graph GNj

.

Proof:
First note that, because of theorem 2 (part i), in any model on graph G, we

have

Q[S] =

l
∏

j=1

Q[Sj ] (16)

Only if part:
From lemma 3, it follows that, if each Q[Sj ] is identifiable in graph GNj

,
then each Q[Sj ] is identifiable from Q[Nj ] on graph G. When we have Q[N ],
according to theorem 2 (part ii), we can compute all the Q[Nj ]s. So, each Q[Sj ]
is identifiable from Q[N ]. Based on equation 16, Q[S] is identifiable.

If part:
If one Q[Sj ] is unidentifiable in Q[Nj ] in graph GNi

, then from lemma 2, we
have Q[S] is unidentifiable. �

Let us now consider how to compute Q[Sj ] from Q[Nj ]. This discussion
will lead to an algorithm, expressed below as function identify.

Let F = An(Sj)GNj
.

If F = Sj , that is, if Sj is an ancestral set in GNj
, then by theorem 1, Q[Sj ] is

computable as: Q[Sj ] =
∑

Nj\Sj
Q[Nj ].

If F = Nj , we will prove (theorem 3, below) that Q[Sj ] is not identifiable in
GNj

.
If Sj ⊂ F ⊂ Nj , by theorem 1, we know Q[F ] =

∑

Nj\F Q[Nj ].

Assume that in the graph GF , Sj is contained in a c-component H . Note
that Sj must belong to one c-component. By theorem 1, Q[H] is computable
from Q[F ] and is given by Q[H] =

∑

H\Sj
Q[F ]. We obtain that the problem of
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whether Q[Sj ] is computable from Q[Ni] is reduced to whether Q[Sj ] is com-
putable from Q[H].

Based on lemma 3, we know that Q[Sj ] is computable from Q[Nj ] if and
only if Q[Sj ] is computable from Q[Nj ] in GNj

.
Using lemma 3 again, we know that Q[Sj ] is computable from Q[Nj ] in GNj

if and only if Q[Sj ] is identifiable form Q[H] in graph GH .
We now restate Tian and Pearl’s algorithm [3] to obtain Q[C] from Q[T ].
Function Identify (C,T ,Q)
INPUT: C ⊆ T ⊆ N , Q = Q[T ], GT and GC are both composed of one single

c-component.
OUTPUT: Expression for Q[C] in terms of Q or FAIL.
Let A = An(C)GT

i) If A = C, output Q[C] =
∑

T\C Q[T ].

ii) If A = T , output FAIL.
iii) If C ⊂ A ⊂ T

1. Assume that in GA, C is contained in a c-component T1.

2. Compute Q[T1] from Q[A] =
∑

T\A Q[T ] with theorem 2

3. Output Identify(C,T1,Q[T1]).

From the discussions above, we know that cases i) and iii) are correct. Case
ii) is handled by the theorem below.

Theorem 3 In a semi-Markovian graph G, if

1. G itself is a c-component, and

2. S ⊂ N in G, and GS has only one c-component, and

3. All variables in N\S are ancestors of S,

then Q[S] is unidentifiable in G.

The proof of this theorem is in appendix A.
Based on the analysis above we have

Theorem 4 The identify algorithm for computing Q[S] in causal graph G is sound
and complete.

From theorem 4 above, the corollaries below follow.

Corollary 1 Let S ⊂ N in graph G, e be an outgoing link from one S node, and graph
G′ be the same as graph G except that it does not have link e. Then Q[S] is identifiable
in graph G if and only if Q[S] is identifiable in graph G′.
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Proof: Since e is a link exiting an S node, graph G and G′ have the same c-
component partition. Any c-component in G is also a c-component in G′, and
vice versa. Graph GS and G′

S also have the same c-component partition. Any
c-component in GS is also a c-component in G′

S , and vice versa. From Algo-
rithm Identify(C,T,Q), Algorithm Computing Q[S], and theorem 4, we know
that Q[S] is identifiable in graph G if and only if Q[S] is identifiable in graph
G′. �

From corollary 1, we have the following, which will be used in the next
section:

Corollary 2 Let S ⊂ N in graph G and graph G′ be obtained by removing all outgo-
ing links from S nodes in graph G. Then Q[S] is identifiable in graph G if and only if
Q[S] is identifiable in graph G′.

5 Identify Algorithm for PT (S)

Lemma 5 Assume S ⊂ N and T ⊂ N are disjunct node sets in graph G, < X1,X2 >
is a directed link in G, X1 ∈ S, and X2 ∈ S. Assume that graph G′ is obtained by
removing link < X1,X2 > from graph G. If PT (S) is unidentifiable in graph G′, then
PT (S\{X1}) is unidentifiable in G.

The proof of this lemma is in Appendix B.
A direct ancestor set of S in G is a variable set D such that S ⊆ D ⊆ N , and

if node X ∈ D, then X ∈ S or there is a directed path from X to a node in S,
and all the nodes on that path are in D.

Lemma 6 Assume D is a direct ancestor set of node set S on graph G.
∑

D\S Q[D]

is identifiable if and only if Q[D] is identifiable.

Proof:
If part:
By definition, if Q[D] is identifiable,

∑

D\S Q[D] is identifiable.

If Q[D] is unidentifiable, then we know from corollary 2 that Q[D] is uniden-
tifiable in graph G′, where G′ is obtained by removing from G all outgoing
links from nodes in D.

Since D is a directed ancestor set of S, we can find an order of nodes in
D\S, say X1, . . . ,Xk, for which Xi, 1 6 i 6 k, is a parent of at least one node in
S∪{X1, . . . ,Xi−1} in graph G. Assume that for Xi, 1 6 i 6 k, the link outgoing
from Xi that is removed from G to get G′ is ei,that graph Gi is obtained by
adding link ei to graph Gi−1, and that G0 = G′.

Note that Q[D] = PN\D(D) is unidentifiable in G′. From lemma 5, PN\D(D\{X1})
is unidentifiable in graph G1. Using this lemma again, we have PN\D(D\{X1,X2})
is unidentifiable in graph G2, and repeating, we have PN\D(S) is unidentifiable
in graph Gk. Since Gk is a subgraph of G, according to lemma 1, PN\D(S) is
unidentifiable in G too. and PN\D(S) =

∑

D\S PN\D(D) =
∑

D\S Q[D].�

10



Based on the lemmas above, we can get a general algorithm to solve the
identifibility problem on semi-Markovian models.

Let variable set N in causal graph G be partitioned into c-components N1, . . . , Nk,
and S and T be disjoint observable variable sets in G. According to theorem 2,
we have

P (N) = Q[N ] =

k
∏

i=1

Q[Ni] (17)

where each Q[Ni], 1 6 i 6 k is computable from Q[N ].
What we want to compute is:

Pt(s) =
∑

N\(T∪S)

Pt(n\t) =
∑

N\(T∪S)

Q[N\T ] (18)

Let D = An(S)GN\T
. Since D is an ancestral set in graph GN\T , theo-

rem 1 allows us to conclude that
∑

N\(T∪D) Q[N\T ] = Q[D]. Therefore, we

can rewrite Pt(s) from equation (18) as:

Pt(s) =
∑

N\(T∪S)

Q[N\T ] =
∑

D\S

∑

N\(T∪D)

Q[N\T ] =
∑

D\S

Q[D] (19)

Since D is a directed ancestor set of S, according to lemma 6,
∑

D\S Q[D] is

identifiable if and only if Q[D] is identifiable. Now the identifiability problem
of PT (S) is transferred to the identifiability problem of Q[D], which can be
solved by the algorithm in the last section.

Summarizing the discussion following lemma 6, we present the identify
algorithm [3].

Algorithm Identify
INPUT: two disjoint observable variable sets S, T ⊂ N . OUTPUT: the expression

for PT (S) or FAIL.

1. Find all c-components of G:N1, . . . , Nk.

2. Compute all Q[Ni],1 6 i 6 k, by theorem 2.

3. Let D = An(S)GN\T

4. Let c-components in graph GD be D1, . . . ,Dl.

5. For each Dj ,1 6 j 6 l, where Dj ⊆ Ni, 1 6 i 6 k, we compute Q[Dk] by
calling the function identify(Dj ,Ni,Q[Ni]). If the function returns FAIL, then
stop and output FAIL.

6. Output PT (S) =
∑

D\S

∏l
j=1 Q[Dj ]

Our discussion above shows:

Theorem 5 The identify algorithm for computing PT (S) is sound and complete.

11



6 Conclusion

We prove that the identification algorithm given by J.Tian and J.Pearl, which
can be used on semi-Markovian graphs, a special case of causal Bayesian net-
works, is complete. This complements the proof of soundness in [3] and is a
stepping stone towards the solution of the longstanding problem of finding a
sound and complete algorithm for the general identifiability question in gen-
eral Bayesian networks. We conjecture that a straightforward extension of the
same algorithm is sound and complete for general causal Bayesian networks.
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Appendix A

Recall that GS is the subgraph of G that includes all nodes in the observable
node set S and all bidirected links between two S nodes.

Theorem 3 In a semi-Markovian graph G, if

1. G itself is a c-component.

2. S ⊂ N in G, and GS has only one c-component.

3. All variables in N\S are ancestors of S.

then Q[S] is unidentifiable in G.
See Fig. 1 for an example of a graph that has the three properties in the

premise of Theorem 3. Tian and Pearl [3] have proved that this theorem is true
when T just includes one node. Here we show that this theorem is true in the
general case.

General Unidentifiable Subgraph

For a given G that satifies the properties given in theorem 3 , assume G′ is a
subgraph of G that satisfies the three properties below

1. G′ is a c-component.

2. Let the observable node set in G′ be N ′, and let S′ = N ′ ∩ S. Then, S′ is
not empty and GS′ is a c-component.

3. N ′\S′ is not empty and all nodes in N ′\S′ are ancestors of S′ in G′.

Then we say that G′ is an unidentifiable subgraph of G. From lemma 1 and
lemma 2, if Q[S′] is unidentifiable in G′, Q[S] is unidentifiable in G. See Fig. 2
for an example.

Assume Gm is an unidentifiable subgraph of G and no subgraph of Gm ob-
tained by removing edges from Gm is an unidentifiable subgraph of G. We say
Gm is a general unidentifiable subgraph. See Fig. 3 for an example. For any semi-
Markovian graph G we study here, we can find at least one general uniden-
tifiable subgraph, and we may therefore focus on general unidentifiable sub-
graphs.

From now on, in this appendix, we assume the graph G we studying is a
general unidentifiable subgraph.

Any general unidentifiable subgraph has the four properties below:
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21 0

10 S

STT

Figure 1: A graph that satisfies the properties of Theorem 3

21 0

1S

STT

Figure 2: An unidentifiable subgraph of Fig. 1

2 S 0T
1

S 0T 2

T 2

A

B C

1T T S 0

Figure 3: Three general unidentifiable subgraphs of Fig. 1
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Graph Property 1 If we take each bidirected link as an edge, then GN by itself is a
free tree.

Recall that a free tree (sometimes called an unrooted tree) is a connected
undirected graph with no cycles. Note that GN can be obtained by removing
all links between observable nodes from G. This property says that graph G is
connected by bidirected links. If |N | = m, then we have just m − 1 bidirected
links in G.

Graph Property 2 If we take each bidirected link as an edge in GS , then GS by itself
is a free tree.

This property says that subgraph GS is also connected by bidirected links.
If |S| = n, then we have just n− 1 bidirected links in GS .

Graph Property 3 For each Ti ∈ T = N(G)\S, there is a unique directed path from
it to an S node.

This property is true because if there are two paths, we can break one of them
and Ti is still an ancestor of S, so G is not a general unidentifiable subgraph.

This property also tells us there are just |T | directed links in G, and each Ti

has just one directed link out from it.

Graph Property 4 There are no directed links out of S nodes.

Extension of S Node

From graph property 4, we know that no node in S has outgoing links. But
there are three kind of links that can enter an S node Sj . The first type includes
directed links from T nodes to Sj , the second type includes bidirected links
between T nodes and Sj , and the third type includes bidirected links between
Sj and other S nodes.

Lemma 7 Assume that e is a first type or second type link into node Sj ∈ S. Add an
extra S node S′

j to graph G, make e point to S′
j instead of Sj and add a bidirected link

between Sj and S′
j . Call the new graph G′. If Q[S ∪{S′

j}] is unidentifiable in G′ then
Q[S] is unidentifiable in G.

Proof:
Note that in G′, S′

j has only two links into it. One is the e we are dealing
with and the other is the bidirected link between Sj and S′

j .
A) If e is a first type link, then we conclude that for Sj in G′, in addition the

bidirected link between Sj and S′
j , Sj has at least one other bidirected link get

into it. (See Fig. 4).
In G′, we call the observable parent of S′

j T0, the unobservable node on
the bidirected link between S′

j and Sj U0, and the another unobservable node,
which is a parent of Sj , U1. U1 has two observable children: one is Sj , and the
other we call Si. (See Fig. 4).
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Figure 4: S node extension: Case A

If Q[S ∪ {S′
j}] is unidentifiable in G′ then we have two models M1 and M2

on G′ that

PM1(N(G) ∪ {S′
j}) = PM2(N(G) ∪ {S′

j}) (20)

but for some (t, s, s′j),

PM1
t (s, s′j) 6= PM2

t (s, s′j), (21)

where t is an instance of variable set T (G) = N(G)\S(G), s is an instance of
variable set S, s′j is a value for variable S′

j . We assume in s, Si = si and Sj = sj .
Now, we create two models M ′

1 and M ′
2 on graph G based on models M1

and M2.
For any node X in G, which is not in {Sj , U1, Si}, k = 1, 2, we define

PM ′
k(x|pa(X)) = PMk(x|pa(X)) (22)

The state space of Sj in M ′
k is given by S(S′

j) × S(Sj), where S(S′
j) and

S(Sj) are the state spaces of S′
j and Sj in Mk.

Note that the parent set of Sj in G is the parent set of Sj in G′ minus U0 plus
T0.

The state space of U1 in M ′
k is defined as S(U0) × S(U1), where S(U0) and

S(U1) are the state spaces of U0 and U1 in Mk.
The state space of node Si in M ′

k is the same as the state space of Si in Mk.
Now we define:

PM ′
k(u′

1) = PM ′
k((u0, u1)) = PMk(u0)× PMk(u1) (23)

Here u′
1 is an instance of U1 in M ′

k, u0 and u1 are instances for U0 and U1 in Mk.
We define

PM ′
k((sj , s

′
j)|t0, (u0, u1), pa′(Sj)) =

PMk(s′j |t0, u0)× PMk(sj |u0, u1, pa′(Sj)),
(24)

where pa′(Sj) is an instance of the parent set of Sj in G except for U1 and T0.
Note that pa′(Sj) is also an instance of parent set of Sj in G′ except U0 and U1.
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We also define

PM ′
k(si|pa′(Si), (u0, u1)) = PM ′

k(si|pa′(Si), u1), (25)

where pa′(Si) is an instance of the parent set of Si on G except U1.
From these definitions, it follows that

PM ′
1(n′, (sj , s

′
j)) = PM1(n′, sj , s

′
j) = PM2(n′, sj , s

′
j) = PM ′

1(n′, (sj , s
′
j)), (26)

where, n′ is an instance of N\{Sj} in G.
But for any (t, s′, (sj , s

′
j)),

P
M ′

1
t (s′, (sj , s

′
j)) = PM1

t (s′, sj , s
′
j) 6= PM2

t (s′, sj , s
′
j)P

M ′
2

t (s′, (sj , s
′
j)), (27)

where, s′ = s\{sj}. Therefore, Q[S] is unidentifiable in G.
B) If e is alink of the second type, note that in G′, Sj may just has only one

unobservable parent, the one on the bidirected link between Sj and S′
j . This

happens when S just has one node.
Call U1 the unobservable node on the bidirected link between S′

j and Sj ,
and call U0 the unobservable node that is parent of S′

j and of the T node T0.
Just as in case A, we can construct new models of G based on models for

G′. We define models for G by letting the state space of U1 be the product of
U0 and U1 in models for G′, and by letting the state space of Sj be the product
of the state spaces of S′

j and Sj in models for G′.

j

U1 ...

S T 0 

S 

...1U0U

S’ jj0 T

Figure 5: S node extension: Case B

From this point on, the proof of the lemma for case B is analogous to that
for case A.�

From the lemma above, and noting that this kind of extension will not affect
the four graph properties of general unidentifiable subgraphs, the graph G we
are studying satisfies also the property below:
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Graph Property 5 Any S node connected with a T node through a directed link or a
bidirected link has just two incoming links. One link is connected to a T node, and the
other link is a bidirected link connected to another S node.

In Fig. 6, we present the process of S node extension on graph B of Fig. 3.

2

2

1

S

S0S2T1T

S

0S

T

C

D

B

A

3S

2S

1S0S2T1

2T1T

2T1 0ST

Figure 6: S node extension example

From now on, we assume the graph G we study satisfies all these five graph
properties.

Math Properties

Next, we need some math knowledge.

Math Property 1 Assume we have a number a, 0.5 < a < 1, then for any c, 1− a <
c < a , we can always find a number b, 0 < b < 1, to make that ab+(1−a)(1−b) = c.

Proof: from ab+(1−a)(1− b) = c, we can get b = (c+a−1)/(2a−1). Since
c + a− 1 > 0 and c + a < 2a, we have 0 < b < 1.�

Math Property 2 For given 0.5 < m < 1, n > 0, if we have 0.5 < m + n < 1,
then we can find a, b, c, such that 0.5 < a < 1, 0 < b < 1, 0 < c < 1, c 6= 1 − b,
ab + (1− a)(1− b) = m, and ac + (1− a)(1− c) = n.

Proof: Assign a value in (1− n/2, 1) to a. Note that 0.5 < m and m + n < 1,
and therefore 0.5 < a < 1 and a > m. From math property 1, we can find b
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such that ab + (1 − a)(1 − b) = m. Since 1 − a < n/2 < n < 1 − n < a, using
math property 1 again, we can find c such that ac + (1− a)(1− c) = n.

If we have c = 1− b, then

m + n = ab + (1− a)(1− b) + ac + (1− a)(1− c) =
ab + (1− a)(1− b) + a(1− b) + (1− a)b =
a + 1− a = 1

(28)

But this is impossible because m + n < 1.�

Math Property 3 If we have a, b, and c such that 0.5 < b < a < 1, and ca + (1 −
c)(1 − a) = b, then 0.5 < c < 1. If we have a, b, and c such that 0 < a < b < 0.5,
and ca + (1− c)(1− a) = b, then 0.5 < c < 1.

Proof: For the first part, from ca + (1− c)(1− a) = b, we have c = (b + a−
1)/(2a − 1). From this, b + a − 1 > 0, and 2a − 1 > 0, we obtain c > 0. Also,
b+a−1 < 2a−1, so c < 1, and since (2a−1)/2 = a−1/2 < a−1/2+ b−1/2 =
b + a− 1, we obtain c > 0.5.

For the second part, from ca+(1−c)(1−a) = b, we have c = (1−b−a)/(1−
2a). From this, 1− b− a > 0, and 1− 2a > 0, we obtain c > 0. Also, 1− b− a <
1− 2a, so c < 1, and since (1− 2a)/2 = 1/2− a < 1/2− a + 1/2− b = 1− b− a,
we obtain c > 0.5.�

Math Property 4 If we have two numbers a, b, with 0 < a < 0.5 and 0.5 < b < 1,
then ab + (1− a)(1− b) < 0.5.

Proof: we have
0.5− (ab + (1− a)(1− b)) =
0.5− (ab + 1− a− b + ab) =
b− 2ab− 0.5 + a =
b(1− 2a)− 0.5(1− 2a) =
(1− 2a)(b− 0.5) > 0

(29)

�

Math Property 5 If we have a number a such that 0.5 < a < 1, and two numbers
b, c ∈ (0, 1) then ab + (1− a)(1− b) = ac + (1− a)(1− c) if and only if b = c

Proof: we have.

ab + (1− a)(1− b) = ac + (1− a)(1− c)⇐⇒
ab− ac + (1− a)(1− b)− (1− a)(1− c) = 0⇐⇒
a(b− c) + (1− a)(b− c) = 0⇐⇒
b− c = 0⇐⇒
b = c

(30)

�

Math Property 6 Assume that we have positive numbers c, d, 0.5 < c < 1 and
c + d < 1. Then, for any number n ∈ [0.5, c) we can always find a number a,
0 < a < 1, such that: a× c + (1− a)× d = n
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Proof: from a × c + (1 − a) × d = n, we get a = (n − d)/(c − d). From
c + d < 1 and c > 0.5, we obtain d < 0.5, and therefore c > d, and c − d > 0.
We also have n − d > 0 and n − d < c − d when n ∈ [0.5, c). Therefore
0 < a = (n− d)/(c− d) < 1. �

EG Graph and EGS graph

To prove that all graphs that satisfy the 5 graph properties are unidentifiable,
we first show that a class of special graphs, which we call EG graphs, are
unidentifiable. Then we extend the result to show that all graphs that satisfy
the five graph properties are also unidentifiable.

Let G be a graph that satisfies the five graph properties. We define how to
construct EG from G first.

Based on graph property 5, the node set S of G can be divided into three
disjunct sets: S = Sd∪Sm∪Si. Here Sd contains exactly the S nodes that have
a T node as parent. Si contains exactly the S nodes that have bidirected links
with T nodes. Sm = S\{Sd ∪ Si} contains exactly the S nodes that have no
directed link or bidirected link from any T node.

Note that |Si| > 0, because G is a c-component.
Assume that in graph G, Si = {Si

1, S
i
2, . . . , S

i
n1
}, and these nodes are con-

nected with T nodes T1, T2, . . . , Tn1
with bidirected links. Graph EG(G) is

obtained by adding n1 − 1 bidirected links between (T1, Tj), j = 2, . . . , n1 on
G. See Fig. 7 for an example.

3S

2S

1S0S2T1T

Figure 7: EG graph for extension result of Fig. 6

So, for any graph G that satisfies the five graph properties given above, we
can generate an EG graph EG(G). Any graph that can be constructed in the
way just described from a graph G that satisfies the 5 properties is called a EG
graph. If in graph G, |Si| = 1, then EG(G) = G, and we call any graph that
satisies this property an EGS graph. We have EGS ⊂ EG.

Note that for any EG graph G, when we take bidirected links as edges, GT

is a free tree and a c-component. For observable nodes T1, T2 ∈ T in graph G,
there is a unique bidirected path from T1 to T2 that includes only nodes in T .

Also note that for any EG graph with |Si| = n1, if we remove n1 − 1 Si

nodes and the bidirected links attached with them, we get an EGS graph. We
will exploit this property in our model construction later.
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2S

1S0S2T1T

Figure 8: EGS graph obtained by removing node S3 in Fig. 7

Unidentifiability of EG Graphs

Model Construction

Assume that, in graph G, |Si| = n1, |Sm| = n2, |Sd| = n3, and |T | = n4.
Based on the graph property 1 and the construction of EG graphs, the number
of unobservable nodes (equivalently, bidirected links) in graph EG(G) is m =
n1 + n2 + n3 + n4 − 1 + n1 − 1.

To show that any EG graph is unidentifiable, we create two models M1

and M2 and show that they have different causal effects on Pt(s) but the same
probabilities on the observable variables.

We define a function cf(v), where v is an instance of vector v = (v1, . . . , vk),
as

cf(v) =

k
∑

i=1

vi (31)

Our construction for M1 and M2 is as below:
For the models we create, we assume all the variables are binary, with state

space (0, 1), and for each unobservable node Uj , PMi(uj = 0) = 1/2, i ∈ {1, 2},
and j ∈ {1, . . . ,m}.

We assign a value 0 < νx < 1 to each observable node X ∈ T ∪ Sm, and

{

PMi(X = x|pa(X)) = νx if cf((pa(X), x)) mod 2 = 0
PMi(X = x|pa(X)) = 1− νx if cf((pa(X), x)) mod 2 = 1,

(32)

where (pa(X), x) is a vector obtained by adding x at the end of vector pa(X).

X

VV V1 2 3

Figure 9: A node with three parents

Example 1 In Fig. 9, node X has three parents, and the CPT of X is as follows:
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X V1 V2 V3 PMk(x|v1, v2, v3)
0 0 0 0 νx

0 0 0 1 1− νx

0 0 1 0 1− νx

0 0 1 1 νx

0 1 0 0 1− νx

0 1 0 1 νx

0 1 1 0 νx

0 1 1 1 1− νx

1 0 0 0 1− νx

1 0 0 1 νx

1 0 1 0 νx

1 0 1 1 1− νx

1 1 0 0 νx

1 1 0 1 1− νx

1 1 1 0 1− νx

1 1 1 1 νx

(33)

We also assign a value 0 < νx < 1 to each node X ∈ Sd. Note that X has
just two parents. Assume Tx ∈ T is a parent of X , and Ux is the other parent.
We define:

X Tx Ux PMk(x|tx, ux)
0 0 0 νx

0 0 1 1− νx

0 1 0 1/2
0 1 1 1/2

(34)

Note that PMk(X = 1|tx, ux) = 1− PMk(X = 0|tx, ux).
We assign two values 0 < ν1

x < 1 and 0 < ν2
x < 1, ν1

x 6= 1 − ν2
x with each

node X ∈ Si. Note that X has two unobservable parents. Assume U1 is the
parent on the bidirected link between X and a T node, and U2 is the other
parent, which is on the bidirected link between X and an S node. We define:

X U1 U2 PMk(x|u1, u2)
0 0 0 ν1

x

0 0 1 1− ν1
x

0 1 0 ν2
x

0 1 1 1− ν2
x

(35)

Note that PMk(X = 1|u1, u2) = 1− PMk(X = 0|u1, u2).

Construction Properties

Here are some properties of this construction.
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First, for each node X ∈ T∪Sm and for any unobservible node U ′ ∈ Pa(X),
∑

U ′

PMi(X = x|pa(X)) = 1 (36)

Second, for each node X ∈ Sd and for Ux ∈ Pa(X),
∑

Ux

PMi(X = x|tx, ux) = 1 (37)

Third, for each node X ∈ Si and for U2 ∈ Pa(X),
∑

U2

PMi(X = x|u1, u2) = 1 (38)

This means that if we marginalize over the U2 node, which is the U node on
the S side, we obtain 1.

Recall that n1 + n2 + n3 + n4 is the number of observable variables, and
therefore | U |= 2n1 + n2 + n3 + n4 − 2 in any EG graph.

Lemma 8 Under the construction above, if we can find parameter values for which

PMk(T = 0, S = 0) =
∑

U

∏

v∈T∪S∪U

P (v|pa(v)) = (1/2)n1+n2+n3+n4 , (39)

then for any (s, t), we have PMk(T = t, S = s) = (1/2)n1+n2+n3+n4 , and PM1(N) =
PM2(N) is always satisfied.

Proof: Since P (u) = 1/2 for all unobservable variables, we just need to show
that when t = 0,s = 0,

∑

U

∏

V ∈T∪S

P (v|pa(v)) = 1/2× 2n1−1 (40)

holds for any (t, s) pair if it holds for t = 0, s = 0.
(a) For a particular set of values (s, t) = (s1, . . . , sn1+n2+n3

, t1, . . . , ti, . . . , tn4
),

if Ti is a parent of a S node, and ti = 1, then equation (40) is satisfied.
Assume the S node which is child of Ti is Si,notes when ti = 1,PMk(ti|pa(Si)) =

1/2, which is a constant and can be put out. In the remain part, we can always
have a Ui, which only appears as one observable node Xj ’s parent, we can re-
peatly remove P (Xj |Pa(Xj)) and finally get 1,and n1 − 1 extra U nodes we
added when we construct EG graph, so 40 is satisfied.

(b) If for a particular set of values (s, t) = (s1, . . . , sn1+n2+n3
, t1, . . . , tn4

),
equation (40) is satisfied, then for the set of values

(s1, . . . , si−1, 1− si, si+1, . . . , sn1+n2+n3
, t1, . . . , tn4

) (41)

Equation (39) is also satisfied, because
∑

U

∏

V ∈T∪S P (v|pa(v))((S, T ) = (s1, . . . , sn1+n2+n3
, t1, . . . , tn4

))+
∑

U

∏

V ∈T∪S P (v|pa(v))((S, T ) =
(s1, . . . , si−1, 1− si, si+1, . . . , sn1+n2+n3

, t1, . . . , tn4
)) = 2n1−1

(42)
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First for the node Si, we know P (Si = 0|pa(Si) + P (Si = 1|pa(Si) = 1 for
any given pa(Si). so this P (si|pa(Si) can be removed. Then we can always
select Ui, which only appears as one observable node Xj ’s parent, repeatedly
remove P (Xj |Pa(Xj)) from (42), and finally obtain 2n1−1.

(c)If for a particular ser of values (s, t) = (s1, . . . , sn1+n2+n3
, t1, . . . , tn4

),
equation (39) is satisfied, then for the set of values (s1, . . . , sn1+n2+n3

, t1, . . . , ti−1, 1−
ti, ti+1, . . . , tn4

) eq. (39) is also satisfied, when Ti is not a parent of any S node.
We prove this by showing

∑

U

∏

V ∈T∪S P (v|pa(v))((S, T ) = (s1, . . . , sn1+n2+n3
, t1, . . . , tn4

)) =
∑

U

∏

V ∈T∪S P (v|pa(v))
((S, T ) = (s1, . . . , sn1+n2+n3

, t1, . . . , ti−1, 1− ti, ti+1, . . . , tn4
))

(43)

Since Ti is an ancestor of S, there must be a directed path from Ti to an S node,
and Ti must have a child in T . Assume Tj is the observable child of Ti. From
the construction of EG, we know that we can find an unique bidirected path
from Ti to Tj and that all the observable nodes on that path are T nodes. We
name the unobservable variable set on that path Ui,j .

For the instantiation of PMk(s1, . . . , sn1+n2+n3
, t1, . . . , tn4

, ui,j , u/ui,j), ui,j

is an instance of variable set Ui,j , u\ui,j is an instance of U\Ui,j , and based on
our construction we know that it equals PMk(s1, . . . , sn1+n2+n3

, t1, . . . , ti−1, 1−
ti, ti+1, . . . , tn4

, u′
i,j , u/ui,j), where u′

i,j is given by reversing all the values in
ui,j .

This is because: for node Ti,

PMk(Ti = ti|pa′(Ti), ui) = PMk(Ti = 1− ti|pa′(Ti), 1− ui) (44)

where ui is an instance of unobservable node Ui ∈ Ui,j , and pa′(Ti) is an in-
stance of Pa′(Ti) = Pa(ti)\{Ui}, and for any node X which has two unobserv-
able parents U0 ∈ Ui,j , U1 ∈ Ui,j ,

PMk(X = x|pa′(X), u0, u1) = PMk(X = x|pa′(X), 1− u0, 1− u1), (45)

where u0,u1 are instances of U0,U1, and pa′(X) is an instance of Pa′(X) =
Pa(X)\{U0, U1}.

For node Tj ,

PMk(Tj = tj |pa′(Tj), ti, uj) = PMk(Tj = tj |pa′(Tj), 1− ti, 1− uj), (46)

where uj is an instance of unobservable node Uj ∈ Ui,j , pa′(Tj) is an instance
of Pa′(Tj) = Pa(ti)\{Ti, Uj}

This equation gives us a one-one map between PMk(s, t, u) and

PMk(s, t1, . . . , ti−1, 1− ti, ti+1, . . . , tn4
, u), (47)

so equation (43) is satisfied. �

Before we determine the values attached with the observable nodes in Mk,
k = 1, 2, we give a lemma/
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Lemma 9 Let Mk be one of the models we create on an EG graph G. Let between
(T1, T2) and (T2, T3),T1, T2, T3 ∈ T be bidirected links. Let M ′

k, be defined on a graph
equal to G but with bidirected link (T1, T3) instead of (T1, T2). If in both Mk and
M ′

k, the variables attached all nodes are the same, and in model Mk, equation 40 is

satisfied, then equation 40 is also satisified in M ′
k, and we have PMk(N) = PM ′

k(N)

and QMk [S] = QM ′
k [S].

Proof: first, note that we just need to consider the situation in which P (N =
0). From cases a, b, and c in the proof of lemma 8, we know we just need to
consider

∑

u P (s = 0, t = 0) in these two different models. We assume that
in the first graph the unobservable node in bidirected link (T1, T2) is U12, the
unobservable node in bidirected link (T2, T3) is U23. In the second graph the
unobservable node in bidirected link (T1, T3) is U ′

13, the unobservable node in
bidirected link (T2, T3) is U ′

23.
For any instantiation u′ of U\{U12, U23}, we have

PM (S = 0, T = 0, u′, U12 = 0, U23 = 0) = PM ′

(S = 0, T = 0, u′, U13 = 0, U23 = 0)

PM (S = 0, T = 0, u′, U12 = 0, U23 = 1) = PM ′

(S = 0, T = 0, u′, U13 = 0, U23 = 1)

PM (S = 0, T = 0, u′, U12 = 1, U23 = 0) = PM ′

(S = 0, T = 0, u′, U13 = 1, U23 = 1)

PM (S = 0, T = 0, u′, U12 = 1, U23 = 1) = PM ′

(S = 0, T = 0, u′, U13 = 1, U23 = 0)
(48)

So,
∑

u PM (S = 0, T = 0) =
∑

u PM ′

(S = 0, T = 0). �

Unidentifiability of EGS Graph

Note that any EGS graph is also a EG graph and we follow the same model
construction we defined above.

Graph GSd∪Sm
is a subgraph of a EGS graph. (It is the same when we

take it as a subgraph of the graph G, which generates the EGS graph.). It just
includes observable nodes in Sd ∪ Sm plus all bidirected links between them.
Note that when we treat bidirected links as edges, GSd∪Sm

is a free tree.
Fig. 10 shows the GSd∪Sm

graph of EGS in Fig. 8

S 0 S 1

Figure 10: GSd∪Sm
for EGS graph Fig. 7

Lemma 10 In graph GSd∪Sm
,
∑

U

∏

X∈Sd∪Sm
PMk(X = 0|pa(X)) can take any

value in (0.5, 1).

Proof: From the graph properties, we know that for any EGS graph G,
GSd∪Sm

is a free tree when we take the bidirected links as edges. We prove this
lemma by induction.

First, when there is just one node in Sd ∪ Sm, GSd∪Sm
just has that one

node, and there are no unobservable nodes. And as we defined before, that
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observable node is binary.
∑

U

∏

X∈Sd∪Sm
PMk(X = 0|pa(X)) = P (X = 0) =

νx, which can be any value in (0.5, 1).
The inductive assumption is that when there are k nodes in GSd∪Sm

,

a =
∑

U

∏

X∈Sd∪Sm

PM ′
k(X = 0|pa(X)) (49)

can be any value in (0, 1).
Any particular GSd∪Sm

has k + 1 nodes can be obtained by adding an ob-
servable node Si in another GSd∪Sm

with k nodes. We can assume that the
added Si is a leaf in the free tree and assume the unobservable parent of Si in
GSd∪Sm

is Ui.
Based on our construction property, in the new graph with Si and Ui, and

in the old graph plus Ui,
∑

Ui={0,1}

∑

U

∏

X∈Sd∪Sm
P (X = 0|pa(X)) = 1

So, in the new graph, for Sd = 0, Sm = 0 and Si = 0,

∑

Ui

∑

U

∏

X∈Sd∪Sm∪{Si}
P (X = 0|pa(X)) =

∑

Ui=0

∑

U

∏

X∈Sd∪Sm∪{Si}
P (X = 0|pa(X))+

∑

Ui=1

∑

U

∏

X∈Sd∪Sm∪{Si}
P (X = 0|pa(X)) =

νSi
× a +

∑

Ui=1

∑

U

∏

X∈Sd∪Sm
P (X = 0|pa(X))(1− a) =

νSi
× a + (

∑

Ui=0,1

∑

U

∏

X∈Sd∪Sm
P (X = 0|pa(X))−

∑

Ui=0

∑

U

∏

X∈Sd∪Sm
P (X = 0|pa(X)))(1− a) =

νSi
× a + (1− νSi

)× (1− a)

(50)

For any value b ∈ (0.5, 1), we can set a = (1+b)/2, and therefore a ∈ (0.5, 1).
Based on math property 1, we can now choose νSi

∈ (0, 1) in such a way that
50 is b. �

Example 2 Consider the graph GSd∪Sm
shown in Fig. 10. To make

∑

U

∏

X∈Sd∪Sm

PMk(X = 0|pa(X)) (51)

equal to 0.8, we can select, for example, νS0
= 0.9 and νS1

= 7/8 = 0.875. To make it
equal to 0.9, we can select, for example, νS0

= 0.95 and νS1
= 0.9444444. To make it

equal to 0.95, we can select, for example, νS0
= 0.975 and νS1

= 0.97368421.

Next, we study graph GSd∪Sm∪{Si
1}

. This is the subgraph of an EGS graph

obtained by adding node Si
1 and the bidirected link between it and a S node to

graph GSd∪Sm .
We know that the Si

1 node has two U parents in the EGS graph, U2 on the
bidirected link to a S node and U1 on the bidirected link to a T node.

We name Gini the graph obtained by adding node U1 and the directed link
from U1 to Si

1 to GSd∪Sm∪{Si
1}

.
Then we have the lemma below:
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0U1U 2S

1S0S

Figure 11: Gini graph gotten from Fig. 8

Lemma 11 For any value 0.5 < a < 1 and 0.5 < b < a, in any Gini graph G, we
can force

∑

U

∏

X∈Sd∪Sm∪{Si
1}

PMk(X = 0|pa(X)) = a (52)

and
∑

U1=0

∑

U\{U1}

∏

X∈Sd∪Sm∪{Si
1}

PMk(X = 0|pa(X)) = b (53)

Proof:
Assume in the graph GSd∪Sm , which is a subgraph for the given Gint graph,

∑

U

∏

X∈Sd∪Sm

P (X = 0|Pa(X)) = c (54)

then in the Gini graph, just like in quantity (50), we have

∑

U1=0

∑

U\{U1}

∏

X∈Sd∪Sm∪{Si
1}

P (X = 0|pa(X)) =

ν1
Si

1
c + (1− ν1

Si
1
)(1− c)

(55)

and

∑

U1=1

∑

U\{U1}

∏

X∈Sd∪Sm∪{Si
1}

P (X = 0|pa(X)) =

ν2
Si

1
c + (1− ν2

Si
1
)(1− c)

(56)

We want to find ν1
Si

1
and ν2

Si
1
, so that quantity (55) is b, quantity (56) is a− b,

and ν1
Si

1
6= ν2

Si
1
. From lemma 10 we know that c can be any value in (0.5, 1),

and based on math property 2 we know that the desired result can always be
achieved. �

Example 3 Consider the Gini graph in Fig. 11, and b = 0.7, a = 0.8. to satisfy
equations (52) and (53), we can set ν1

S2
= 0.722222, ν2

S2
= 0.055555556, νS0

= 0.975
and νS1

= 0.97368421.
For b = 0.6, a = 0.9, we can set ν1

S2
= 0.642857, ν2

S2
= 0.2142857, νS0

= 0.925
and νS1

= 0.9117647.

For a Gini graph, we denote

∑

U

∏

X∈Sd∪Sm∪{Si
1}

PMk(X = 0|pa(X)) (57)
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as N0 and
∑

U1=0

∑

U\{U1}

∏

X∈Sd∪Sm∪{Si
1}

PMk(X = 0|pa(X)) (58)

as M0. Our discussion above shows that we can set values on S nodes to make
N0,M0 be any values for which 0.5 < M0 < N0 < 1.

Next, we focus on the EGS graphs, which form a subset of the EG graphs.
Note that in EGS graph G, GT and GS are both c-components, and these

two c-components are bidirectly connected by one and only one bidirected link,
which goes through Si

1. The 5 graphical properties are still satisfied in G.
We define on any EG graph G

M(G) =
∑

U

∏

X∈N(G)

PMk(x|pa(X))(s = 0, t = 0) (59)

and
N(G) =

∑

U

∏

X∈S(G)

PMk(x|pa(X))(s = 0, t = 0) (60)

Lemma 12 For any EGS graph G, and any 0.5 < n < 1, there is a model with
N(G) = n and in which M(G) is any value in [0.5, n).

Proof: We prove this lemma by induction. First consider there is just one

1U

1

2S

1S0ST

Figure 12: An EGS graph with just one T node

T node T1 in G(see Fig. 12). Assume the unobservable parent of T1 is U1. For
given 0.5 < n < 1 and any 0.5 6 m < n, let m′ = (m + n)/2. Then from lemma
11, we can force in the Gini graph obtained from G that N0 = n and M0 = m′.
Note that N(G) = N0 = n and

M(G) =
∑

U

∏

X∈S∪T PMk(X = 0|pa(X)) =
∑

U1=0

∑

U\{U1}

∏

X∈S∪T PMk(X = 0|pa(X))+
∑

U1=1

∑

U\{U1}

∏

X∈S∪T PMk(X = 0|pa(X)) =

νT1
×

∑

U1=0

∑

U\{U1}

∏

X∈S PMk(X = 0|pa(X))+

(1− νT1
)×

∑

U1=1

∑

U\{U1}

∏

X∈S PMk(X = 0|pa(X)) =

νT1
×M0 + (1− νT1

)× (
∑

U

∏

X∈S PMk(X = 0|pa(X))−
∑

U1=0

∑

U\{U1}

∏

X∈S PMk(X = 0|pa(X))) =

νT1
×M0 + (1− νT1

)× (N0 −M0)

(61)

Based on math property 2, we know there must be a νT1
for which M(G) = 1/2.

And for any positive number in [0.5, n), we can always find a value for νT1
to
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make M(G) equal that number. The proof continues with the inductive step
after an example.

Example 4 For Fig. 12, if we want to set N(G) = 0.8, and M(G) = 0.6, we can
set: ν1

S2
= 0.722222, ν2

S2
= 0.05555556, νS0

= 0.975 , νS1
= 0.9736841, and

νT1
= 0.83333.
If we want N(G) = 0.8, and M(G) = 0.5, we can set: ν1

S2
= 0.625, ν2

S2
= 0.125,

νS0
= 0.95 , νS1

= 0.9444444, and νT1
= 0.75.

If we want N(G) = 0.7, and M(G) = 0.5, we can set: ν1
S2

= 0.6111111, ν2
S2

=
0.055555556, νS0

= 0.975 , νS1
= 0.97368421, and νT1

= 0.8.

Assume that this lemma is true for each graph EGS with |T | = k. Now
consider an EGS graph G with |T | = k + 1.

From graph property 1, when we take Gn as a free tree, in EGS graph G,
we can find a T node X , which is a leaf of the free tree.

A), This T node X has no observable parent. Since it is a leaf of the free tree,
we know there is only one bidirected link into it. Clearly, that bidirected link
connects it with another T node.

From lemma 9, we can change the bidirected link until it is between X and
its child. When X is T0, Fig. 14 gives an example of this situation. Note when
we remove X and the bidirected link attached with it, we will get a EGS graph
with |T | = k.

B), This T node X has only one observable parent, as node T2 in Fig. 8.
Note that X has one observable parent and one unobservable parent. Because
we just consider the case that all observables are 0, so, for X’s only child V ,
P (v|Pa(v) ∩N = 0, pa(v) ∩ U), where Pa(v) ∩N is the observable parents set
of V and Pa(v) ∩ U is the unobservable parents set of V , is unchanged before
and after we add X and the bidirected link attached with it into the original
which by itself is an EGS graph with |T | = k.

C), This X node has more than one observable parent, as node T2 in Fig. 13.

0
T

1T 2S

1S0S2T

Figure 13: Bidirected link free tree leaf X has more than one parent

Consider the tree of directed links between observable nodes, and reverse
the direction of these links. On this tree, we can find at least two leaves, which
are X’s observable ancestors. In our example, they are nodes T0 and T1. Based
on the definition of EGS node, we know at least one of them has no bidirected
link to any S nodes. We take that node as the new X we select, and from lemma
9 we know that if there are more than one bidirected links into this new X , we
can always find an equivalent EGS graph with just one bidirected link into this
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new X . Fig. 14 shows the equivalent graph of Fig. 13. Note that we are back in

0
T

1T 2S

1S0S2T

Figure 14: Graph Equivalent to that of Fig. 13

the situation of case A).
In both case A) and case B), consider the graph G′ obtained by removing

X and the bidirected link attached with it from G. This subgraph G′ is still an
EGS graph with |T | = k. Based on the inductive assumption, for any given
0.5 < n < 1, any 0.5 6 m < n, and m′ = (m + n)/2, we can always have
N(G′) = n and M(G′) = m′.

Note that we have N(G) = N(G′). Assuming that the observable parent of
X is U1, we have

M(G) =
∑

U

∏

X∈S∪T PMk(X = 0|pa(X)) =
∑

U1=0

∑

U\{U1}

∏

X∈S∪T PMk(X = 0|pa(X))+
∑

U1=1

∑

U\{U1}

∏

X∈S∪T PMk(X = 0|pa(X)) =

νx ×M(G′) + (1− νx)(
∑

U

∏

X∈S∪T\{X} PMk(X = 0|pa(X))−
∑

U1=0

∑

U\{U1}

∏

X∈S∪T\{X} PMk(X = 0|pa(X))) =

νx ×M(G′) + (1− νx)(N(G′)−M(G′)) =
νx ×m′ + (1− νx)(n−m′).

(62)

Note that in the above equation we have

∑

U

∏

X∈S∪T\{X}

PMk(X = 0|pa(X)) = N(G′), (63)

because if we just insert node U1 and the link from it to a T node T1 in G′,
from equation (36), we have that U1 and P (T1 = 0|pa(T1)) can be removed
from the above equation. Since GT is a c-component, this kind of removing
can continue until all T nodes and U nodes on bidirected links between the T
nodes are removed, and we finally get N(G′).

Based on math property 6, we can always find a solution νx to make M(G) ∈
[1/2,m′). So M(G) can be m, which is in [0.5,m′). �

With lemma 8 and lemma 12, we have already proved that any EGS graph
G is unidentifiable. We can generate two models M1 and M2 following our
construction process, and select different N values for them, but force in both
models the M value to be 1/2, which means equation 39 holds.
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Example 5 For Fig. 8,if we want to set N(G) = 0.8, and M(G) = 0.6, we can set:
ν1

S2
= 0.72222222, ν2

S2
= 0.055555556, νS0

= 0.975 , νS1
= 0.97368421, νT1

= 0.9
and νT2

= 0.91666667.
If we want to set N(G) = 0.8, and M(G) = 0.5, we can set: ν1

S2
= 0.72222222, ν2

S2
=

0.055555556, νS0
= 0.975 , νS1

= 0.97368421, νT1
= 0.75 and νT2

= 0.8333333.
If we want to set N(G) = 0.9, and M(G) = 0.5, we can set: ν1

S2
= 0.75, ν2

S2
=

0.125, νS0
= 0.95 , νS1

= 0.94444444, νT1
= 0.6666667 and νT2

= 0.8.

Example 6 For Fig. 13, if we want to set N(G) = 0.8, and M(G) = 0.6, we can
set: ν1

S2
= 0.7222222, ν2

S2
= 0.05555556, νS0

= 0.975 , νS1
= 0.97368421,νT0

=
0.94444444, νT1

= 0.9285714 and νT2
= 0.9375.

If we want to set N(G) = 0.8, and M(G) = 0.5, we can set: ν1
S2

= 0.625, ν2
S2

=
0.125, νS0

= 0.95 , νS1
= 0.94444444, νT0

= 0.91666667, νT1
= 0.875 and νT2

=
0.9.

If we want to set N(G) = 0.9, and M(G) = 0.5, we can set: ν1
S2

= 0.75, ν2
S2

=
0.125, νS0

= 0.95 , νS1
= 0.9444444,νT0

= 0.8666667, νT1
= 0.7142857 and

νT2
= 0.818181818.

Example 7 All setting for Fig. 13 can also be used on Fig. 14.

Unidentifiability of EG Graph

In a general EG graph G, assume |Si| > 1, For each node X ∈ {Si
2, . . . , S

i
n1−1},

there is a bidirected link between X and a T node and a bidirected link between
X and a S node. Note that when we remove X and the two bidirected links
attached with it, the result is still a EG graph. As we mentioned before, by
repeatingly removing all nodes in {Si

2, . . . , S
i
n1−1}, we finally obtain an EGS

graph.
In the example of Fig. 15, if we remove node S3 , U1 and U2, we obtain an

EGS graph.

21U U3S

2S

1S0S2T1T

Figure 15: EG graph with two named U nodes

Lemma 13 In any EG graph G with |Si| = n1, we can find a, b such that 0.5 < b <
a < 1, and make M(G) = b× 2n1−1, N(G) = a× 2n1−1.

Proof: We will prove this lemma by induction.
When |Si| = 1, G is an EGS graph, and the result follows from lemma 12.
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Assume for all EG graphs with |Si| = k this lemma is still true, and con-
sider an EG graph with |Si| = k + 1. Note that if we remove an Si node X
and the bidirected links attached to it from G, we obtain an EG graph G′ with
|Si| = k.

From the inductive assumption, we know that we can have 0.5 < b < a < 1,
M(G′) = b×2k−1, and N(G′) = a×2k−1. Assume the U node on the bidirected
link connecting X with a T node is U1 and the U node on the bidirected link
connected X with a S node is U2, and remember that the CPT we create for X
is

X U1 U2 PMk(x|u1, u2)
0 0 0 ν1

x

0 0 1 1− ν1
x

0 1 0 ν2
x

0 1 1 1− ν2
x

(64)

In the graph G,

M(G) =
∑

U

∏

X∈S∪T PMk(X = 0|pa(X)) =
∑

U1=0,U2=0

∑

U\{U1,U2}

∏

X∈S∪T PMk(X = 0|pa(X))+
∑

U1=1,U2=0

∑

U\{U1,U2}

∏

X∈S∪T PMk(X = 0|pa(X))+
∑

U1=0,U2=1

∑

U\{U1,U2}

∏

X∈S∪T PMk(X = 0|pa(X))+
∑

U1=1,U2=1

∑

U\{U1,U2}

∏

X∈S∪T PMk(X = 0|pa(X)) =

ν1
x ×

∑

U1=0,U2=0

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X))+

(1− ν1
x)×

∑

U1=1,U2=0

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X))+

ν2
x ×

∑

U1=0,U2=1

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X))+

(1− ν2
x)×

∑

U1=1,U2=1

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X))

(65)

We have
∑

U1=0,U2=0

∑

U\{U1,U2}

∏

X∈S∪T\{X}

PMk(X = 0|pa(X)) = M(G′) (66)

and

∑

U1=1,U2=0

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X)) =
∑

U2=0

∑

U\{U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X))−
∑

U1=0,U2=0

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X)) =

N(G′)−M(G′),

(67)

where,

∑

U2=0

∑

U\{U2}

∏

X∈S∪T\{X}

PMk(X = 0|pa(X)) = N(G′) (68)

This is true because when we marginalize away U1, based on equation (36),
the CPT of a T node which is a child of U1 can be removed from the left side of
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the above equation. Because GT is a c-component, we can repeat this kind of
removing and finally get N(G′).

We also have

∑

U1=0,U2=1

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X)) =
∑

U1=0

∑

U\{U1}

∏

X∈S∪T\{X} PMk(X = 0|pa(X))−
∑

U1=0,U2=0

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X)) =

1−M(G′)

(69)

We have

∑

U1=0

∑

U\{U1}

∏

X∈S∪T\{X}

PMk(X = 0|pa(X)) = 2k−1 (70)

This is true because when we marginalize away U2, based on equations (36),
(37) and (38), the CPT of the S node which is a child of U2 can be removed
from the left side of the above equation first. Since G is a c-component, we can
repeat this kind of removal and finally remove all N(G) nodes. Note that in
G′, the number of unobservable nodes minus the number of observable nodes
equals k − 1 and all the unobservable nodes are binary. So, we finally obtain
equation (70).

We also have
∑

U1=1,U2=1

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X)) =
∑

U1=1

∑

U\{U1}

∏

X∈S∪T\{X} PMk(X = 0|pa(X))−
∑

U1=1,U2=0

∑

U\{U1,U2}

∏

X∈S∪T\{X} PMk(X = 0|pa(X)) =

2k−1 − (N(G′)−M(G′))

(71)

This is because, by the argument just given,

∑

U1=1

∑

U\{U1}

∏

X∈S∪T\{X}

PMk(X = 0|pa(X)) = 2k−1. (72)

We finally obtain

M(G) = ν1
xM(G′) + ν2

x(N(G′)−M(G′))+
(1− ν1

x)(2k−1 −M(G′)) + (1− ν2
x)(2k−1 −N(G′) + M(G′)) =

ν1
x × 2k−1b + ν2

x × 2k−1(a− b)+
(1− ν1

x)× 2k−1(1− b) + (1− ν2
x)× 2k−1(1− a + b) =

2k−1(ν1
xb + ν2

x(a− b) + (1− ν1
x)(1− b) + (1− ν2

x)(1− a + b))

(73)

Note that here, for any given 0 < α < min(0.5 − a + b, (b − 0.5)/2). Since
b − α > 0.5, 1 − b < 0.5 < b − α < b, based on math property 1, we can find
a 0 < ν1

x < 1 to make ν1
xb + (1 − ν1

x)(1 − b) = b − α. Because we also have
a − b < 0.5 − α < 0.5 < 1 − (a − b), still based on math property 1, we can
also find a ν2

x to make ν2
x(a − b) + (1 − ν2

x)(1 − a + b) = 0.5 − α. From math
property 3 we have that ν1

x > 0.5 and ν2
x > 0.5 here. So, ν1

x 6= 1− ν2
x. When we

use these ν1
x and ν2

x in the equation above, we have M(G) = 2k−1(b+1/2−2α).
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For 0.5 < b − 2α < 1, let b′ = (b + 1/2 − 2α)/2. We have 0.5 < b′ < 1 and
M(G) = 2kb′.

N(G) =
∑

U

∏

X∈S PMk(X = 0|pa(X)) =
∑

U1=0,U2=0

∑

U\{U1,U2}

∏

X∈S PMk(X = 0|pa(X))+
∑

U1=0,U2=1

∑

U\{U1,U2}

∏

X∈S PMk(X = 0|pa(X))+
∑

U1=1,U2=0

∑

U\{U1,U2}

∏

X∈S PMk(X = 0|pa(X))+
∑

U1=1,U2=1

∑

U\{U1,U2}

∏

X∈S PMk(X = 0|pa(X)) =

ν1
x ×

∑

U1=0,U2=0

∑

U\{U1,U2}

∏

X∈S\{X} PMk(X = 0|pa(X))+

(1− ν1
x)×

∑

U1=1,U2=0

∑

U\{U1,U2}

∏

X∈S\{X} PMk(X = 0|pa(X))+

ν2
x ×

∑

U1=0,U2=1

∑

U\{U1,U2}

∏

X∈S\{X} PMk(X = 0|pa(X))+

(1− ν2
x)

∑

U1=1,U2=1

∑

U\{U1,U2}

∏

X∈S\{X} PMk(X = 0|pa(X)) =

ν1
xN(G′) + (1− ν1

x)(2k −N(G′)) + ν2
xN(G′) + (1− ν2

x)(2k −N(G′)) =
2k−1((ν1

x + ν2
x)a + (2− ν1

x − ν2
x)(2− a))

(74)

Here we have

∑

U1=0,U2=1

∑

U\{U1,U2}

∏

X∈S\{X} PMk(X = 0|pa(X)) =
∑

U1=0

∑

U\{U1}

∏

X∈S\{X} PMk(X = 0|pa(X))−
∑

U1=0,U2=0

∑

U\{U1,U2}

∏

X∈S\{X} PMk(X = 0|pa(X)) =

= 2k −N(G)

(75)

and
∑

U1=1,U2=1

∑

U\{U1,U2}

∏

X∈S\{X} PMk(X = 0|pa(X)) =
∑

U1=1

∑

U\{U1}

∏

X∈S\{X} PMk(X = 0|pa(X))−
∑

U1=1,U2=0

∑

U\{U1,U2}

∏

X∈S\{X} PMk(X = 0|pa(X)) =

= 2k −N(G)

(76)

If we let (ν1
x + ν2

x)/2 = x, we have 0.5 < x < 1, and

N(G) = 2k(xa + (1− x)(2− a)) (77)

Note that 0.5 < a < 1, 0.25 < a/2 < 0.5. If we let a′ = xa + (1 − x)(2 − a),
we have

a′ = xa + (1− x)(2− a) > xa + (1− x)a = a > 0.5 (78)

and

a′ = xa + (1− x)(2− a) = 2(x× a/2 + (1− x)(1− a/2)) (79)

From math property 4 we have

x× a/2 + (1− x)(1− a/2) < 0.5 (80)

So, finally we have

0.5 < a′ = 2(x× a/2 + (1− x)(1− a/2)) < 2× 0.5 = 1 (81)
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Note that

a′ − b′ =
(ν1

x + ν2
x)/2× a + (2− ν1

x − ν2
x)/2× (2− a)−

(ν1
xb + (1− ν1

x)(1− b) + ν2
x(a− b) + (1− ν2

x)(1− a + b))/2 =
= 1/2(ν1

xa + ν2
xa + (1− ν1

x)(2− a) + (1− ν2
x)(2− a)−

(ν1
xb + ν2

x(a− b) + (1− ν1
x)(1− b) + (1− ν2

x)(1− a + b)) =
= 1/2(ν1

x(a− b) + ν2
xb + (1− ν1

x)(1− a + b) + (1− ν2
x)(1− b))

> 0

(82)

So we have 0.5 < b′ < a′ < 1. �

Example 8 For Fig. 15, if we set ν1
S2

= 0.75, ν2
S2

= 0.125, νS0
= 0.95 , νS1

=
0.9444444, νT1

= 0.9 , νT2
= 0.875.ν1

S3
= 0.9 and ν2

S3
= 0.55, we have N(G) =

0.955, and M(G) = 0.53.

We now provide a lemma that, when combined with lemma 8, shows that
any EG graph is unidentifiable.

Lemma 14 For any EG graph G, if Si = n1 we can create two models such that in
both of them M(G) = 1/2× 2n1−1, but the N(G) are not equal.

Proof: When in G, |Si| = 1, from lemma 12, this lemma have be proved.
When in G |Si| = k + 1, assume node X ∈ Si, and graph G′ is obtained by

removing X and the bidirected links attached to it from G. G′ is still an EG
graph, and from lemma 13 we know we can have a model satisfying 0.5 < b <
a < 1, M(G′) = b × 2k−1, N(G′) = a × 2k−1. Here we show we can get two
pairs (ν1

x, ν2
x) such that make in both of them M(G) = 1/2× 2k but N(G) is not

equal. From the proof of lemma 13, we know

M(G) = 2k−1(ν1
xb + ν2

x(a− b) + (1− ν1
x)(1− b) + (1− ν2

x)(1− a + b)) (83)

and

N(G) = 2k−1((ν1
x + ν2

x)a + (2− ν1
x − ν2

x)(2− a)) (84)

For any given 0 < α < min(0.5−a+b, b−0.5), b−α > 0.5,1−b < 0.5 < 0.5+
α < b, based on math property 1, we can find a ν1

x to make ν1
xb+(1−ν1

x)(1−b) =
0.5 + α. Because we also have a− b < 0.5−α < 0.5 < 1− (a− b), still based on
math property 1, we can find a ν2

x to make ν2
x(a−b)+(1−ν2

x)(1−a+b) = 0.5−α,
then we have M(G) = 1/2 × 2k. From math property 3 we have property
ν1

x > 0.5 and ν2
x > 0.5 here. So, ν1

x >6= 1− ν2
x.

For different values of α satisifying 0 < α < min(0.5 − a + b, b − 0.5), we
can select more than one pair of (ν1

x, ν2
x) for which M(G) = 1/2 × 2k. Assume

that (c, d) and (c′, d′) are two of those pairs. We have c 6= c′ and c + d 6= c′ + d′.
First we know for (c, d) and (c′, d′), we have

cb + d(a− b) + (1− c)(1− b) + (1− d)(1− a + b) = 1 (85)
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and

c′b + d′(a− b) + (1− c′)(1− b) + (1− d′)(1− a + b) = 1 (86)

If c + d = c′ + d′, let c′ = c + γ, γ 6= 0, then d′ = d− γ, and place them into
equation (86):

(c + γ)b + (d− γ)(a− b) + (1− (c + γ))(1− b) + (1− (d− γ))(1− a + b) = 1⇐⇒
cb + d(a− b) + (1− c)(1− b) + (1− d)(1− a + b)+
γb− γ(a− b)− γ(1− b) + γ(1− a + b) = 1⇐⇒
γ(4b− 2a) = 0⇐⇒
2b = a (Wrong)

(87)
So, we have c + d 6= c′ + d′,
Note:

N(G) = 2k−1((ν1
x + ν2

x)a + (2− ν1
x − ν2

x)(2− a)) =
2k+1((ν1

x + ν2
x)/2× a/2 + (1− (ν1

x + ν2
x)/2)(1− a/2))

(88)

From math property 5, we know with (c, d) and (c′, d′), we will get different
N(G) values. �

Example 9 For this example, the EGS graph is obtained by removing node S2 from
the EG graph of Fig. 15. We can set ν1

S3
= 0.75, ν2

S3
= 0.125, νS0

= 0.95 , νS1
=

0.9444444, νT2
= 0.9 and νT1

= 0.875.
With these values, if we select ν1

S2
= 0.9, ν2

S2
= 0.7, we can obtain model 1 with

M1(G) = 1/2, and N1(G) = 0.94.
If we select ν1

S2
= 0.8, ν2

S2
= 0.65, we can obtain model 2 with M2(G) = 1/2,

and N2(G) = 0.955.

Unidentifiability of G

So far we have proved with our construction that we can create two models
M1 and M2 to show any EG graph G′ is unidentifiable. We need to show that
any graph G that satisfies the five graph properties is unidentifiable. We start
by showing the following lemma:

Lemma 15 Assume EG graph G0 is obtained by adding bidirected links {e1, . . . , ek}
to graph G, which satisfies the 5 graph properties. Graphs {G1, . . . , Gk} are defined
as: Gi, 1 6 i 6 k, is obtained by removing ei from Gi−1, and Gk = G. Then, each
Gi, 1 6 i 6 k, is unidentifiable.

Proof: We want to show that for any Gi, 1 6 i 6 k, we can find two models
M1 and M2 on Gi, which satisfy:

∑

U(Gi)

∏

N∪U(Gi)

PM1

(x|pa(X))(s, t) =
∑

U(Gi)

∏

N∪U(Gi)

PM2

(x|pa(X))(s, t) (89)
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but for one (s′, t′)

∑

U(Gi)

∏

T∪U(Gi)

PM1

(x|pa(X))(s′, t′) 6=
∑

U(Gi)

∏

T∪U(Gi)

PM2

(x|pa(X))(s′, t′) (90)

Note that all the Gi models have the same Si,Sd,Sm and T sets, and the
same Gs graph.

For G0, which is an EG graph, we know that we can have two model M1

and M2, such that:
All nodes are binary and, especially, all observable nodes are binary.
For any unobservable node Uj ∈ U(G0) we have

PM1

(Uj = uj) = PM2

(Uj = uj) = α (91)

here, α means a constant, which, for G0, is 1/2.
For any node X ∈ T ∪Sm, for any unobservable node U ′ ∈ Pa(X), we have

∑

U ′

PM1(X = x|pa(X)) =
∑

U ′

PM2(X = x|pa(X)) = α (92)

For any node X ∈ Sd, for Ux ∈ Pa(X), we have

∑

Ux

PM1(X = x|tx, ux) =
∑

Ux

PM2(X = x|tx, ux = 1) = α (93)

For any node X ∈ Si, we have for U2 ∈ Pa(X), one of U2’s child is an S
node, and

∑

U2

PM1(X = x|u1, u2) =
∑

U2

PM2(X = x|u1, u2) = α (94)

In all the equations above, α is a constant, although it may be different for
different X and marginalized U nodes. In G0, all the αs are equal to 1, and we
have that equations (89) and (90) are satisfied.

Assume that on graph Gi, all the equations from (89) to (94) above are satis-
fied. We will now remove each of the edges added to the G graph to obtain the
EG graph. Assume that the bidirected < T1, T2 > is the extra link we remove
from Gi to get graph Gi+1. U0 is the unobservable node on that link in Gi. T1

is connected with S node S1 through a bidirected link. T2 is connected with S
node Sk through another bidirected link.

We know GS is a c-component and a bidirected link free tree. So, there
is a unique bidirected path in GS from S1 to Sk. By adding to this path the
bidirected link from T1 to S1 and T2 to Sk, we have a unique bidirected path
from T1 to T2, and all observable nodes in this path are S nodes. We name
them S1, . . . , Sk in order, and the unobservable nodes on this path are named
U1, . . . , Uk+1, where U1 is on the bidirected link between T1 and S1, U2 is on the
bidirected link between S1 and S2, . . ., Uk+1 is on the bidirected link between
Sk to T2.
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We construct two models M ′
1 and M ′

2 on graph Gi+1. The construction is
based on models M1 and M2 on graph Gi.

In model M ′
k, k = 1, 2, for all the unobservable variables that are not in

{U1, . . . , Uk+1}, we define their state space to be the same as the state space in
Mk. For each X that belongs to this class,

PM ′
k(X = x) = PMk(X = x), k = 1, 2. (95)

We rename all the unobservable variables that are in {U1, . . . , Uk+1} as {U ′
1, . . . , U

′
k+1}

in M ′
k. We define their state space in M ′

k as the product of their state space in
Mk and the state space of U0 in Mk, which is (0, 1). For each X that belongs to
this class,

PM ′
k(X = (x, u0)) = PMk(X = x)× PMk(U0 = u0) = PMk(X = x)/2. (96)

The state space of all the observable variables is unchanged, i.e., it is the
same as in Mk. Therefore, all the observable variables are still binary variables.

For each observable variable X not in {T1, T2, S1, . . . , Sk}, we map an in-
stance pa(X) in model M ′

k to an instance pa′(X) in model Mk like this: if Y
is an observable node in Pa(x), or Y is an unobservable node but is not in
{U ′

1, . . . , U
′
k+1}, and Y = y is in pa(X), then Y = y is also in pa′(X). If Y is an

unobservable node in Pa(X) and Y is in {U ′
1, . . . , U

′
k+1}, we denote the value

of Y in pa(X) as Y = (uY , uY
0 ), and we have Y = uY in pa′(X). We define

PM ′
k(x|pa(X)) = PMk(x|pa′(X)). (97)

For X = T1, we define

PM ′
k(x|pa′(X), U ′

1 = (u1, u0)) = PMk(x|pa′(X), U1 = u1, U0 = u0). (98)

Here, pa′(X) is an instance of Pa(T1), except for U0 and U1.
For X = T2, we define

PM ′
k(x|pa′(X), U ′

k+1 = (uk+1, u0)) = PMk(x|pa′(X), Uk+1 = uk+1, U0 = u0).
(99)

Here, pa′(X) is an instance of Pa(T2), except for U0 and Uk+1.
For observable variable Si in {S1, . . . , Sk}, we define

PM ′
k(si|pa(Si)) = PM ′

k(si|pa′(Si), U
′
i = (ui, u

i
0), U

′
i+1 = (ui+1, u

i+1
0 ))

=

{

PMk(si|pa′(Si), Ui = ui, Ui+1 = ui+1) ui
0 = ui+1

0

1/2 ui
0 6= ui+1

0

(100)
Here, pa′(Si) is an instance of Pa(Si) except for Ui and Ui+1.
Note that with this construction equations (91), (92), (93), and (94) still hold,

and for any node Si in S1, . . . , Sk, we have, for fixed u0,

∑

U ′
i
=(Ui,u0)

PMi(si|pa(Si)) = α (101)
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∑

U ′
i+1=(Ui+1,u0)

PMi(si|pa(Si)) = α (102)

From the two equations above and equations (91), (92), (93) and (94), we
have in both M ′

k, k = 1, 2

P (s, t) =
∑

U

∏

U∪N P (x|pa(X))(s, t) =
∑

U ′

∑

{U ′
1,...,U ′

k+1}

∏

U ′∪N P (x|pa(X))
∏

{U ′
1,...,U ′

k+1}
P (u)(s, t) =

∑

U ′

∑

U1

∑

U1
0

∑

{U ′
2,...,U ′

k+1}

∏

U ′∪N P (x|pa(X))
∏

{U1,U1
0 ,U ′

2,...,U ′
k+1}

P (u)(s, t) =
∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪N P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t) =

∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪N P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t, u1

0 6= u2
0)+

∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪N P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t, u1

0 = u2
0) =

∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪N P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t, u1

0 6= u2
0)+

∑

U ′

∑

U1,U2,U3

∑

U1
0 ,U2

0 ,U3
0

∑

{U ′
4,...,U ′

k+1}

∏

U ′∪N P (x|pa(X))
∏

{U1,U2,U3,U1
0 ,U2

0 ,U3
0 ,U ′

4,...,U ′
k+1}

P (u)(s, t, u1
0 = u2

0 6= u3
0)+

∑

U ′

∑

U1,U2,U3

∑

U1
0 ,U2

0 ,U3
0

∑

{U ′
4,...,U ′

k+1}

∏

U ′∪N P (x|pa(X))
∏

{U1,U2,U3,U1
0 ,U2

0 ,U3
0 ,U ′

4,...,U ′
k+1}

P (u)(s, t, u1
0 = u2

0 = u3
0) =

∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪N P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t, u1

0 6= u2
0)+

. . . +
∑

U ′

∑

U1,...,Uk+1

∑

U1
0 ,...,U

k+1
0

∏

U ′∪N P (x|pa(X))
∏

{U1,...,Uk+1}
P (u)(s, t, u1

0 = . . . = uk+1
0 ),

(103)
where, U ′ = U\{U1, . . . , Uk+1}. Note that, in the last expression of the above
equation, all the terme except the last one are equal to a constant, so they are
equal in M ′

1 and M ′
2. Based on equation (89), we know the last term is also

equal in both models. So, we have PM ′
1(s, t) = PM ′

2(s, t) for any (s, t). That
is equation (89) still holds in models M ′

1 and M ′
2, and in both M ′

k, k = 1, 2, for
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(S = 0, T = 0),

Pt(s) =
∑

U

∏

U∪S P (x|pa(X))(s, t) =
∑

U ′

∑

{U ′
1,...,U ′

k+1}

∏

U ′∪S P (x|pa(X))
∏

{U ′
1,...,U ′

k+1}
P (u)(s, t) =

∑

U ′

∑

U1

∑

U1
0

∑

{U ′
2,...,U ′

k+1}

∏

U ′∪S P (x|pa(X))
∏

{U1,U1
0 ,U ′

2,...,U ′
k+1}

P (u)(s, t) =
∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪S P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t) =

∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪S P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t, u1

0 6= u2
0)+

∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪S P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t, u1

0 = u2
0) =

∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪S P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t, u1

0 6= u2
0)+

∑

U ′

∑

U1,U2,U3

∑

U1
0 ,U2

0 ,U3
0

∑

{U ′
4,...,U ′

k+1}

∏

U ′∪S P (x|pa(X))
∏

{U1,U2,U3,U1
0 ,U2

0 ,U3
0 ,U ′

4,...,U ′
k+1}

P (u)(s, t, u1
0 = u2

0 6= u3
0)+

∑

U ′

∑

U1,U2,U3

∑

U1
0 ,U2

0 ,U3
0

∑

{U ′
4,...,U ′

k+1}

∏

U ′∪S P (x|pa(X))
∏

{U1,U2,U3,U1
0 ,U2

0 ,U3
0 ,U ′

4,...,U ′
k+1}

P (u)(s, t, u1
0 = u2

0 = u3
0) =

∑

U ′

∑

U1,U2

∑

U1
0 ,U2

0

∑

{U ′
3,...,U ′

k+1}
∏

U ′∪S P (x|pa(X))
∏

{U1,U2,U1
0 ,U2

0 ,U ′
3,...,U ′

k+1}
P (u)(s, t, u1

0 6= u2
0)+

. . . +
∑

U ′

∑

U1,...,Uk+1

∑

U1
0 ,...,U

k+1
0

∏

U ′∪S P (x|pa(X))
∏

{U1,...,Uk+1}
P (u)(s, t, u1

0 = . . . = uk+1
0 )

(104)
Note that in the last expression of the above equation, all the terms except

the last one are equal to a constant, so they are equal in M ′
1 and M ′

2. Based on
equation (90), we know that the last term is not equal in M ′

1 and M ′
2. So, we

have P
M ′

1
t (s)(S = 0, T = 0) 6= P

M ′
2

t (s)(S = 0, T = 0), which means equation
(90) still holds for M ′

k, k = 1, 2.
By repeating this construction, we conclude that all graph models {G0, G1, . . . , Gk}

are unidentifiable. �

Example 10 The Hugin files for the models constructed in this appendix for the G
graph of Fig. 6 (D) can be downloaded from
http://www.cse.sc.edu/˜huang6/test/exampleD1TS.net
and http://www.cse.sc.edu/˜huang6/test/exampleD2TS.net .

Appendix B

Lemma 5 Assume S ⊂ N and T ⊂ N are disjunct node sets in graph G, <
X1,X2 > is a directed link in G, X1 ∈ S, and X2 ∈ S. Assume that graph G′ is
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obtained by removing link < X1,X2 > from graph G. If PT (S) is unidentifiable
in graph G′, then PT (S\{X1}) is unidentifiable in G.

Proof:
By definition, in graph G′, Pt(s) is given by:

Pt(s) =
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈N\T

P (vi|pa(Vi))
∏

Vj∈U

P (vj) (105)

In graph G,

Pt(s\{x1}) =
∑

Vl∈(N\S)\T∪{X1}

∑

Uk∈U

∏

Vi∈N\T

P (vi|pa(Vi))
∏

Vj∈U

P (vj) (106)

When PT (S) is unidentifiable in graph G′, we know there are two models
M1 and M2 on G′ such that: PM1(n) = PM2(n), which means:

∑

Uk∈U

∏

Vi∈N

PM1(vi|pa(Vi))
∏

Vj∈U

PM1(vj) =
∑

Uk∈U

∏

Vi∈N

PM2(vi|pa(Vi))
∏

Vj∈U

PM2(vj)

(107)
but for at least one (s, t) ,PM1

t (s) 6= PM2
t (s).

Now based on M1 and M2, we create models M ′
1 and M ′

2 on graph G. First,
we define a probability function F from S(X1) to (0, 1), where S(X1) is the
state space of X1 in model Mi, i = 1, 2. For any a ∈ S(X1), P (F (a) = 0) > 0,
P (F (a) = 1) > 0 and P (F (a) = 0) + P (F (a) = 1) = 1.

For any node X , which is an unobservable node or a node in N\({X2} ∪
CH(X2)), we define, for i = 1, 2

PM ′
i (x|pa(X)) = PMi(x|pa(X)) (108)

The state space of X2 in M ′
i is defined as S(X2)×{0, 1}, where S(X2) is the

state space of X2 in Mi,i = 1, 2.
For x2 ∈ S(X2), i = 1, 2, k = 0, 1, we define

PM ′
i ((x2, k)|pa(X2), x1) = PMi(x2|pa(X2))× P (F (x1) = k), (109)

where Pa(X2) is the parent set of X2 in graph G′. So, Pa(X2) ∪ {X1} is the
parent set of X2 in graph G.

Note that, for a given (pa(X2), x1), we have

∑

x2,k

PM ′
i ((x2, k)|pa(X2), x1) =

∑

x2

PMi(x2|pa(X2))×
∑

k

P (F (x1) = k) = 1.

(110)
For any node X ∈ Ch(X2), we define

PM ′
i (x|pa′(X), (x2, k)) = PMi(x|pa′(X), x2), (111)
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where Pa′(X) = Pa(X)\{X2} is the parent set of X in graph G, except for
node X2. Then for any instance n of N in model M ′

1 and M ′
2, if X1 = x1 and

X2 = (x2, k) in n, we have

PM ′
1(n) =

∑

Uk∈U

∏

Vi∈N PM ′
1(vi|pa(Vi))

∏

Vj∈U PM ′
1(vj) =

∑

Uk∈U

∏

Vi∈N PM1(vi|pa(Vi))
∏

Vj∈U PM1(vj)(n)× P (F (x1) = k) =
∑

Uk∈U

∏

Vi∈N PM2(vi|pa(Vi))
∏

Vj∈U PM2(vj)(n)× P (F (x1) = k) =
∑

Uk∈U

∏

Vi∈N PM ′
2(vi|pa(Vi))

∏

Vj∈U PM ′
2(vj) =

PM ′
2(n).

(112)

We know that for a given (s, t),PM1
t (s) 6= PM2

t (s), and we assume that X1 =
x1 and X2 = x2 in s.

Note that
∑

X1
PMi

t (s\{x1}) 6 1, because after setting the values of the T
nodes, the result model is still a Bayesian network.

Assume that PM1
t (s) = a > PM2

t (s) = b > 0. If we define P (F (x1) = 0) =
0.5, but P (F (x) = 0) = (a − b)/4 for all x ∈ S(X1),x 6= x1, we have that for
(s\{x2}, (x2, 0), t)

P
M ′

1
t (s\{x1})(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) =

∑

Vl∈(N\S)\T∪{X1}

∑

Uk∈U

∏

Vi∈V \T PM ′
1(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) >
∑

X1=x1

∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM ′
1(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) =
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM1(vi|pa(Vi))(S = s, T = t)× P (F (x1) = 0) =

= 0.5a,
(113)

but

P
M ′

2
t (s\{x1})(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) =

∑

Vl∈(N\S)\T∪{X1}

∑

Uk∈U

∏

Vi∈V \T PM ′
2(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) =
∑

X1=x1

∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM ′
2(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t)+
∑

X1 6=x1

∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM ′
2(vi|pa(Vi))

(S\{X1} = (s\{x1, x2}, (x2, 0)), T = t) <
∑

Vl∈(N\S)\T

∑

Uk∈U

∏

Vi∈V \T PM2(vi|pa(Vi))(S = s, T = t)× P (F (x1) = 0)+
∑

Vl∈(N\S)\T∪{X1}

∑

Uk∈U

∏

Vi∈V \T PM2(vi|pa(Vi))

(S\{X1} = s\{x1}, T = t)× P (F (Xi 6= x1) = 0) 6

0.5b +
∑

X1
PM2

t (s\{x1})× (a− b)/4 6

0.5b + (a− b)/4 < 0.5a
(114)

From the models M ′
1 and M ′

2 thus constructed, we know PT (S\{X1} is
unidentifiable in G.�
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