Agent-Encapsulated Bayesian Networks
and the Rumor Problem

Mark Bloemeke
Marco Valtorta*

Department of Computer Science and Engineering
University of South Carolina
Columbia, SC 29208, U.S.A.

DRAFT VERSION 1.6f

December 20, 2002

Abstract

We introduce an agent organization for data interpretation and fusion
in which agents use an encapsulated Bayesian network for knowledge rep-
resentation and communicate by exchanging beliefs (marginal posterior
probabilities) on shared variables. We call this organization an Agent En-
capsulated Bayesian Network (AEBN) system. We address the problem
of rumors (i.e., redundant information) in AEBN systems, with the aim
of achieving an automatic way to compensate for rumors. We present two
solutions to the problem. The communication solution requires passing
extended messages that contain joint probabilities, while the model solu-
tion requires the modification of the Bayesian networks in each agent and
the occasional passing of very large messages. We analyze the complexity
of the two solutions and their trade-off using simple parameters.

Keywords: Bayesian Networks, Graphical Probabilistic Models, Multia-
gent Systems, Evidential Updating, Redundant Information, Redundant Influ-
ence, Rumors.

1 Introduction and Motivation

The motivation for this work is the desire to let multiagent systems for dis-
tributed interpretation and data fusion that use probabilistic models (and es-
pecially Bayesian nets) communicate with each other by exchanging beliefs.

Our agent model is called the Agent-Encapsulated Bayesian Network (AEBN)
model and is originally due to Bloemeke [Blo98]. Each agent in an AEBN model
uses as its model of the world a single Bayesian network (which we also call an
AEBN). The agents communicate via message passing. Each message is a dis-
tribution on variables shared between the individual networks.

*Corresponding author, mgv@cse.sc.edu
fTitle up to version 1.5: The Rumor Problem in Probabilistic Multiagent Systems.

The variables of each AEBN are divided into three groups: those about
which other agents have better knowledge (input set), those that are only used
within the agent (local set), and those of which the agent has the best knowledge,
and which other agents may want (output set). The variables in the input set
and the output set are shared, while those in the local set are not. An agent
consumes (or subscribes to) zero or more variables in the input set and produces
(or publishes) zero or more variables in the output set.

The mechanism for integrating the view of the other agents on a shared
variable is to replace the agent’s current belief in that variable with that of
the communicating agent. When an agent receives a message from a publisher,
it modifies the probabilities in its internal model, so that its local distribution
either becomes consistent with the other agent’s view or is inconsistent with it.

When the communication graph (defined precisely in Section 3.2) is not a
tree, great care must be taken to deal with undirected cycles (loops). Such
cycles lead to possible double counting of information, known as the problem of
redundant influences or the problem of redundant information or, simply, the
rumor problem.

The rest of paper is organized as follows. In Section 2, we compare our
approach to other models for probabilistic distributed interpretation, and con-
trast it especially with Xiang’s Multiply Sectioned Bayesian Networks (MSBNs,
Section 2.1) and Julier and Uhlmann’s Covariance Intersection Method (Sec-
tion 2.2). A detailed presentation of our model for probabilistic multiagent
systems, including the definition of communication graph, is given in Section 3.
Section 4 contains an algorithm for finding redundant influences in communi-
cation graphs. Sections 4,5, and 6, contain the two solutions we developed,
which we call the communication and model solutions. They are compared
in Section 7. Section 8 contains a summary and evaluation of our work and
suggestions for future work.

The paper is best read in conjunction with [VKV02].

2 Related Work

Although no one simple definition of an agent exists, most views of agents share
two properties: one, agents are autonomous and possess a local view of the
world; and two, agents pursue a local, possibly selfish, set of goals. Agent
systems are thus built up from a group of individual agents by allowing them
to communicate and gain information from each other.

This information can in turn help individual agents refine their world view
and cause them to re-evaluate their goals. In this way a large reasoning problem
in AI can be broken down into a series of smaller tasks that are performed lo-
cally with their results being shared globally using some kind of communication
structure.

Therefore we can characterize an agent system by defining two things. The
first is an internal method for knowledge representation used by the agent to
maintain its view of the world and to tell it what actions to perform. The second
trait of an agent system is the communication language and methods used to
facilitate the sharing of information between agents within the system.

Three main models exist that attempt to distribute probabilistic calculation
across multiple agents. The first one, proposed by Xiang [Xia96], involves us-

ing Bayesian networks as the local knowledge model and is most closely related
to this work. It will be discussed in Section 2.1. The second approach is an
extension to the well known Kalman filter technique [Kal60, Har90]. Known
as the covariance intersection technique, it provides a way to fuse multiple es-
timates with no prior knowledge of the cross-correlation between those two
estimates [JU97]. It is the subject of Section 2.2. The third approach (Multiple
Entity Bayesian Network, MEBN), proposed by Laskey, Mahoney, and collab-
orators [LMWO1], uses Bayesian network fragments, which are combined upon
demand into a situation-specific Bayesian network, using a knowledge-based
network construction algorithm. These approaches are contrasted in Table 2,
where we emphasize only some features and neglect other features: for exam-
ple, we mention that MEBNSs allow for a distributed representation of Bayesian
networks, but we do not mention that they support object orientation.

2.1 Agent Trees

The most closely related approach to using Bayesian networks in an agent
framework is summarized in Xiang’s 1996 work entitled “A Probabilistic Frame-
work for Cooperative Multi-Agent Distributed Interpretation and Optimization
of Communication” [Xia96] and several other papers on Multiply Sectioned
Bayesian Networks (MSBNs). Despite the similarity of this work, as implied
by the title of the article, Xiang starts with a different set of assumptions that
lead him to a much different definition of the agent system. In a recent pa-
per [XL00], Xiang (with Lesser) describes his assumptions (which he calls basic
commitments) and their consequences rigorously and in admirable detail. The
assumption that we do not follow in our work is the second, i.e., that agents ex-
change their beliefs on shared variables in any order whatsoever. We elaborate
on this point and its implication in the remainder of this section.

Xiang uses the agent terminology to simplify his discussion of distributed
Bayesian network propagation. In his work there is no implication of the agents
being individual entities for the purposes of design or construction of the global
agent system. Instead each node of a clique tree, whose formation is not dis-
cussed, is assigned to a processor and is called an agent. Thus as opposed
to having one distinct, locally designed, Bayesian network encapsulated within
each agent, each agent in fact just contains a piece of a larger, globally designed,
Bayesian network.

For Xiang’s method to be valid, the global Bayesian network (i.e., the agent
system with all agent based boundaries removed) must conform to a hypertree
structure. This implies that each agent is itself a junction tree and that the
overall structure is a tree, or forest, of junction trees. If this condition is met,
then the global Bayesian network is said to have soundness of sectioning, and
Xiang’s distributed algorithm will work.

Local design is severely affected by the requirement of soundness of section-
ing. The most obvious restriction is that any agent that shares more than one
variable must be certain that its sharing of variables will not cause the agent
graph to become multiply connected. In other words if a situation arises where
two individual agents, who share an ancestor, want to access the same variable,
then either only one may be allowed access, or the two agents must be merged,
most likely along with some of their ancestor and descendant, into a single new
agent.

w

Name Granularity | Topological | Constraints on | Purpose Scalability Referenc
Restric- Independence
tions Relation
Bayesian Individual | DAG (of | Local Markov | Efficient Poor [Jen01]
Network Variable variables) condition represen-
(BN) (d-separation) | tation of
multivariate
probability
distribution
Multiply Bayesian Tree (of | D-separation, | Efficient Good: dis- | [XLOO]
Sectioned Network BNs) on composi- | distribution | tributed
Bayesian (BN) tion of BNs of computa- | computa-
Network tion among | tion, if tree
(MSBN) processors decompo-
sition is
possible
Multiple- Bayesian DAG (of | D-separation Distributed Medium: [LMWO01
Entity Network BNFrags) on composi- | represen- representa-
Bayesian Fragments tion of BNs; | tation of | tion decom-
Net- (BNFrags) encapsulation | Bayesian posed, com-
works(MEBN networks putation
centralized
Agent- Bayesian DAG (of | Shared vari- | Construction | Very Good: | This
Encapsulated| Network BNs) ables not | of inter- | distributed paper
Bayesian (BN) affected by | pretation compu-
Net- variables in | models by | tation,
works(AEBN descendant collaborating | distributed
BNs given | agents representa-
parent BNs; tion
encapsulation
Covariance | Sensor Undirected | Non-Bayesian | Distributed Excellent [JU97]
Intersection graph Approach sensing and
data fusion
Decentralized| Sensor Undirected | None: Non- | Distributed Poor: rumor | [Ute98]
Sensing graph (of | probabilistic sensing and | problem is
Networks sensors) approach data fusion unsolvable
(DSN) in DSNs

Table 1: Agent encapsulated Bayesian networks and related representation for-

malisms

Given the definition of the junction forest, the majority of Xiang’s work fo-
cuses on co-ordinating message passing and synthesizing correct belief from the
messages which are themselves the joint probabilities on the variables shared
between two agents. In the synchronous form of Xiang’s work, four local proce-
dures are introduced: DistributeEvidence, UnifyBelief, UpdateBelief, and Dis-
tributeBelief. These procedures either start the messages or receive the messages
and update the local junction tree based on the information contained in the
message. They are triggered either at the beginning to initialize the system or
locally whenever a new observation is made. Given these four functions (in fact
there are several more used for optimizing the system with respect to initializa-
tion and allowing multiple entries of evidence asynchronously), Xiang provides
algorithms that co-ordinate the passing of the messages and minimize off-line
time (the time when an agent is updating locally and can’t receive any more
messages) of each agent.

Xiang’s work has the advantage of allowing what we calls subscribers to
influence the final belief in a variable, as opposed to the approach presented
in this paper, where we assume that only one agent, the publisher, has correct
knowledge of value of each shared variable. In addition to the above restriction
that each agent system form hypertree with its implications on design, it is
also highly likely that Xiang’s work requires greater communication cost, since
it must always communicate the joints of the shared variables, instead of the
single beliefs in each variable, and this must be done multiple times for a single
update.

Conversely, the work presented in this paper has several limitations with
respect to Xiang’s work. The major one is the assumption of additional inde-
pendence relations not implied by the definition of a Bayesian network. This
means that the beliefs in variable values calculated locally in each of the agents
are not the same as those that would be calculated if all the agents were merged
into a large single Bayesian network. These additional independencies follow
from the assumption that certain agents are the sole arbiters of some variables
beliefs. That is, an agent has oracular knowledge of some variables values and no
other agent has any influence on them, except through contributions of its own
belief on other shared variables. With this assumption of oracular knowledge
the additional independence relationships are assumed between the variables
being shared by one agent and the internal variables in the receiving agent.

The final difference between the two approaches (based on AEBNs and MS-
BNs) is that Xiang need not concern himself with the rumor problem, because
redundant influences only affects message propagation when multiple (directed)
paths exist between two agents in the communication graph (formally defined
in Section 3.2, and therefore they do not occur in tree structured graphs.

To summarize, the two approaches are based on essentially different assump-
tions. It seems to us that MSBNs were introduced as a method for parallel
distributed inference within a single Bayesian network. This original purpose
shows in the basic commitments that define MSBNs and negatively affects their
suitability as a model for collaboration in multiagent systems. On the other
hand, AEBNs seek to merge several distinct Bayesian networks and allow the
sharing of information between them.

2.2 Covariance Intersection

In the area of data fusion and control theory there exists a well known method
for maintaining a probability distribution describing the location of an object, or
likelihood of an event, as a multi-variate Gaussian [Kal60, Har90]. This method,
the Kalman filter, maintains two distributions, one representing the previous
knowledge of the object and the other representing the current knowledge of
the object, and at each step in time fuses these together to form a new belief in
the object.

This fusion is accomplished using a simple linear combination of the two
original distributions’ mean vectors and co-variance matrices. An additional
cross-covariance matrix is used to correct the linear approximation in the pres-
ence of correlation between the two original variances. In this way an estimate
of the distribution of interest can be generated that is less corrupted by error
than either of the two original estimates.

From a graphical models point of view, the Kalman filter may best be de-
scribed as a special kind of continuous Gaussian Bayesian network, whose struc-
ture is described in Figure 1. The directed acyclic graph (DAG) in Figure 1 also
describes the Hidden Markov Model (HMM) as a special kind of Bayesian net-
work. The difference is in the fact that the HMM uses discrete probability
throughout, as in (non-Gaussian) Bayesian networks.

q1 L R '(qr)
01 02 (OT)

Figure 1: The Kalman filter as a Bayesian network

Therefore the Kalman filter can be viewed as a special case of the Bayesian
network within the fairly limited domain of data fusion. It does not, however,
have the general expressive meaning of a Bayesian network or the ability to
capture any non-parametric, or even just non-Gaussian, relation between the
variables that the space is defined on.

As Maybeck states, some of the restrictions (linear model with white, i.e.,
uncorrelated, Gaussian noise) “can be relaxed, yielding a qualified optimal filter.
For instance, if the Gaussian assumption is removed, the Kalman filter can be
shown to be the best (minimum error variance) filter out of the class of linear
unbiased filters” [May79, p.7].

There is one expansion to the Kalman filter that provides an interesting
solution to the rumor problem. When there exist multiple estimates of the
target distribution, which can be represented in a DAG structure similar to
that used to represent the independencies in a Bayesian network, they can be

fused using a method known as covariance intersection. This method takes
advantage of the fact that for linearly fused Gaussian distributions the resulting
covariance matrix always falls within the convex hull of the points of intersection
of covariances of the original two distributions. This restriction on the final form
of the distribution holds regardless of the cross-correlation between the two
matrices [JU97], and therefore a method exists to create correct distributions
from two arbitrarily correlated initial distributions.

This means that multiple beliefs in the distribution’s true state can be fused
in any order without any worry about the resulting distribution containing re-
dundant information. The covariance intersection is unique in having the prop-
erty that it works regardless of the correlation between beliefs. It can therefore
be used in fusing estimates about a quantity in decentralized data fusion systems
even when both the cross-covariance (degree of dependence) between estimates
and the topology of the communication graph are not known. This, however,
occurs not because the rumors are accounted for but rather due to the previ-
ously mentioned property of linear combinations of Gaussian distributions. In
other words the rumor problem goes away not by dealing with it and removing
the influences, but rather as a result of the fact that the combination algorithm
always returns an estimate that is superior to either of the initial, un-fused,
beliefs.

3 Probabilistic Multiagent Systems

This Section introduces a method to link multiple, individually designed, Bayesian
networks together to form an agent system. The underlying premise is that each
agent will use for its knowledge model of the world a single Bayesian network.
The networks in a system will communicate with each other through the passing
of messages, which in turn will be distributions on variables shared between the
individual networks.

3.1 Agent Encapsulated Bayesian Networks

An Agent Encapsulated Bayesian Network (AEBN) is an agent that relies on a
Bayesian network for its internal representation of the world. How this represen-
tation is used in decision support or goal based planning is unimportant so long
as the world view is updated based only on local observations and observations
derived from probabilistic messages. In this way the internal Bayesian network
is functioning in a normative manner that is familiar to makers of Bayesian
network based expert systems.

In an AEBN system the agents communicate through the transmission of
probabilities along shared variables. This allows the division of the Bayesian
network of each agent into three sets of variables: those about which other
agents have better knowledge (I); those which are used only within the agent
(L); and those that this agent has the best knowledge of and which other agents
may want (O). This effectively produces two classes of variables in the agent:
its local variables, L, and its shared variables, I and O.

The mechanism for integrating the view of the other agents on a shared
variable is to simply replace the agent’s current belief in the variable with that of
the communicating agent. For this reason all communication in the graph occurs

(a) (b)
() ®
(©) (d)

Figure 2: Four agents in a tracking scenario.

through the passing of messages that essentially contain the “correct” views on
some shared variables. When an agent receives one of these messages, it modifies
its internal model so that its local distribution either becomes consistent with
the other agents’ view or becomes inconsistent by entering a zero probability
configuration.

This method of sharing belief can be characterized as a producer-consumer
relationship in which one agent has complete knowledge of the correct state, or
distribution, of a variable and shares that with one or more agents who wish to
integrate that belief into their local models. The agent who has this knowledge
of a variable is called the publisher and the agents receiving these messages are
known as subscribers. When a new observation is made by a publisher, the agent
sends a message indicating the observation to its subscribers. The subscribers in
turn adjust their internal view of the world and send their published variables
on to their subscribers. It is in this way that the agent system returns to
equilibrium (assuming no directed loops in the communication).

At first this restriction that one of the agents has an oracular knowledge
of the value of one or more variables may seem to be an excessively restrictive
assumption. It seems to imply that there can be no mediated belief, among
multiple agents, over a common variable. However, this is not the case. It is
entirely permissible for multiple agents to have their own view of a common
variable so long as each such view bears its own label.

For example consider a situation in which four distinct agents are working
together in an attempt to locate a target in a two dimensional space. Local
design of the four agents might yield the four Bayesian Networks, of three nodes
each, seen in Figure 2 whose variables are defined in Figure 3.

Within this collection of Bayesian Networks there exist four separate beliefs
in the location of the target. Each of the separate beliefs represents a local,
sometimes shared, belief, with the final belief being computed by fusing those

Agent A(figure 2.a) :

X; - A distance sensor along the X-axis.
Y — A distance sensor along the Y-axis.
S1 — A discrete distribution along a 2-dimensional space generated by fusing

X, and Y7, that indicates the likely location of the target.
Agent B(figure 2.b):

S1 — The location of the object as reported by Agent A.
R}gl — Some local estimate of the reliability of Agent A.
Ry — The report generated by Agent B based on Agent A’s belief

in the location of the target and Agent B’s belief in the
reliability of Agent A.
Agent C(figure 2.c¢):

Sh — The location of the object as reported by Agent A.
R% - Some local estimate of the reliability of Agent A.
R, — The report generated by Agent C based on Agent A’s belief

in the location of the target and Agent C’s belief in the
reliability of Agent A.
Agent D(figure 2.d):

Ry — Agent B’s belief in the location of the target
Ry — Agent C’s belief in the location of the target.
L — Agent D’s fused belief in the location of the target (Note: causal

reasoning is shown in the assumption that the true location influences
the reports received instead of the reverse approach of building the
belief in the location from the reports).

Figure 3: Definition of the variables for Bayesian networks of Figure 2

local beliefs. In this way multiple, individually labeled, beliefs in the same event
(a target’s location) occur in the agent system without violating the producer-
consumer view of knowledge. Thus the assumption of oracular knowledge is
more readily stated as each agent having absolute confidence that the message
received is the un-shakeable belief of the producing agent. Thus each agent is
not so much omniscient as obstinate.

In arelated paper [VKV02], we describe how to update an agent’s probability
distribution upon receipt of messages from other agents. (The messages include
what is called soft evidence in [VKV02].) In particular, we will assume that
observation variables have been introduced as needed. Therefore, each agent
that receives messages from other agents obtains soft evidence for one or more
observation variables.

Using the oracular view of agents stated above, an alternate view of the
Bayesian network within each agent is now presented. Since each agent functions
as a means to publish a set of variables (the output variables O) given another
set of variables (the inputs I) each agent’s Bayesian Network functions like
a conditional probability table of O given I (i.e., P(O|I)). This “table” is
computed using a local propagation algorithm on the agent’s internal Bayesian
network given its local observations on its local variables L.

This view of using conditional probability to update a Bayesian network’s
distribution arises naturally from the producer/consumer definition of shared
variables and the assumption of d-separation of the observation variables. To

update an agent’s distribution P(V) with new evidence Q(FE1, Es,..., E,) for
some set of variables {Ej, Es, ..., E,} = I one calculates the joint probability
P(V), dividing by the marginal probability P(W), and multiplying it by the
new distribution of {E1, Ea,..., Ey},

Q(Er, Ea,y..., Eyn) = Q(E1) - Q(Ez) - ... Q(En), (1)
thus obtaining:

P(V\I)

Q(Ey,. .., Ep).
(2)

In the case in which the input variables are not d-separated in the receiving
agent, Equation 1 does not hold. (See [VKV02, Section 5] for a detailed discus-
sion of this point.) Lemma 1 in [VKV02] allows the replacement of Equation 2
by

Q (V) = POAIIEry -) QB o,) = s QB)
®)

where ()7 is the I;-projection of probability distribution P on the set of all
distributions defined on I and having Q(E;), i = 1,...,n, as their marginals.
In practice, P(V) could be updated to Q*(V') using the big clique algorithm
of [VKV02].

Thus a mechanism similar to that which is already used for updating prob-
abilities in a Bayesian network adjusts the world view of the agent, P(V), into
a conditional probability table P(O|I). It then combines that table with the
external view of the inputs, Q(I), to allow the calculation of the new values for
the output variables Q(O).

Given this view of the purpose of each agent in the overall system, the
natural view is that an agent system is a simple expansion of the Bayesian
network formalism to a DAG in which one conditions on sets of variables (the
input variables) rather than individual variables. This is not strictly the case
for two reasons.

First, the oracular assumption imposes the additional constraint that, in the
agent system, unlike a Bayesian network, all parents are not affected by their
descendants. More precisely, the only variables that may affect the variables in
an agent are (1) those in the agent itself and (2) those in a preceding agent.
The notion of “preceding agent” will be made more formal in Section 3.2.

Second, when input variables are not independent in the receiving agent,
then the calibration equation 2 must be replaced by the formally identical, but
substantially and computationally more complex equation 3.

3.2 Communication Graphs

In order to represent the message passing and updating implications of AEBN’s,
we define a graphical representation of the agent system, called a communication
graph. This graph is a DAG whose nodes are the agents and where edges are
drawn from a publisher of a shared variable to each of the variable’s subscribers.
These edges are in turn labeled with the variable that they share. It should be

10

Sensor

Sl Sl

Observer; Observers

R1 R2

Supervisor

Figure 4: Redundantly Observed Sensor Example (R.0.S.E.) Communication
Graph

noted that in the communication graph it is possible for more than one edge to
exist between two nodes, though each of those edges will be uniquely labeled.

We can now formalize the constraint stated at the end of Section 3.1 that,
in the agent system, all variables that are parents are not affected by their
descendants. Let A; and A; be two distinct agents, let V;, V; be the sets of
variables in agent A; and A;, respectively, and let W; C V;, W; C Vj, Then,
if there is no directed path in the communication graph from W; to W;, any
changes (whether by observation or by intervention) in the state of the variables
in W; does not affect the state of the variables in W;. This is a very strong
condition on the distribution of the variables in different agents of the agent
system. This is not a symmetric relation, and therefore cannot be represented
by any independence relation, since every independence relation is symmetric.
There is an analogy to be made with causal Bayesian networks [Pea00]. In a
causal Bayesian network, when a variable is set (by external intervention), the
parents of that variable are disconnected from it; more precisely, the result of the
intervention is to create a new Bayesian network in which we remove the edges
whose heads are the variable that is set?. The analogy, however, is not complete.
In a causal Bayesian network, when a variable is set by intervention, some of the
parent variables may be affected through backdoor paths, as explained in [Pea00,
section 3.3]. On the other hand, there is no possibility at all for a variable in a
non-descendant agent to be affected.

Using our example of an agent system from figures 2 and 3, a communication
graph is constructed by first identifying the shared variables (S1,R;, and Rs),

I'We could say that shared variables are independent of any variables in a descendant agent,
but we prefer to avoid the word “independent” here, because independence is symmetric.

2Let e =< a,b > be an edge in a directed graph. The edge is directed from a to b. The
head of e is b. The tail of e is a. (Think of arrowheads!)

11

then directing labeled edges from the producing agents to the consuming agents.
In our case edges are directed from Agent A to Agent B labeled with S;, Agent
A to Agent C labeled with Sy, Agent B to Agent D labeled with R, and Agent
C to Agent D labeled with R,. This leads to the communication graph seen
in Figure 4. Henceforth this example will be referred to as the Redundantly
Observed Sensor Example (R.O.S.E.) with Agent A being known as Sensory,
Agent B as Observer;, Agent C as Observery, and Agent D as Supervisor.

It is within the communication graph that the nature of the rumor problem
can be clearly understood. In this graph the problem centers on the fact that
the Supervisor’s view of the world, held in its Bayesian network, is doubly influ-
enced by the initial sensor reading. This can be illustrated clearly by using the
alternate view of agents as conditional probability tables, proposed in Section
3, to look at what the Supervisor would compute. The Supervisor computes its
belief in L, the location of the target, as

P(L) = P(LIN)P(I) (4)
I

which expands to

P(L) = Z P(L|R1, Rz)m(Observer;)m(Observerz) (5)
Ri1,R2

where m(Observer;) and m(Observer,) are passed in as messages from Observer;
and Observers. Expanding m(Observer;) yields

m(Observer;) = ZP(R1|Sl)m(Sensor) (6)
S1

with m(Observers) being calculated as

m(Observery) = ZP(RﬂSﬂm(Sensor) (7)
S1

Finally, expansion of m(Sensor) yields
m(Sensor) = P(S;) (8)

Substitution of equations 6 and 7 into equation 5 leaves us with the inter-
mediate equation

P(L)= Z P(L|R1,R2)ZP(R1|Sl)m(Sensor)ZP(R2|Sl)m(Sensor) 9)

Ri1,R2 S1 S1

Substituting equation 8 into 9 yields

P(L) = Z P(L|R1,R2)ZP(R1|51)P(51)ZP(R2|51)P(51) (10)

R1,R2 S1 S1

Finally, pulling the sums out leaves the following equation for P(L)

P(L) = Z P(L|R1, R2) P(R1|S1) P(R2|S1)P(S1)P(S1) (11)
R1,R2,51

12

as opposed to

P(L) = Z P(L|R1, R2) P(R1|S1)P(R2|S1)P(51) (12)
R1,R2,51

where Equation 12 is the desirable outcome of message passing in the agent
system and Equation 11 is the actual outcome. Further, this problem can be
made arbitrarily worse simply by adding additional paths between the Sensor
and the Supervisor.

The principal objective of this paper is to allow the handling of rumor prob-
lem in an automatic way. This will be done using algorithms that function using
the communication graph to identify redundant influences (Section 4) and then
using either purely communication based solutions (Section 5) or automatic
local model modification (Section 6) to eliminate them.

4 Redundant Influences

This Section describes how to identify redundant influences. As we saw at
the end of Section 3.2, redundant influences arise in the graph any time the
combination of messages at some node causes the belief in some shared variable
to be over included. In order to rectify this situation, we first have to identify
the routes through which the influences arrive.

More precisely, we say that there is a redundant influence between nodes V;
and Vj relative to some communication graph G if there exist multiple node-
disjoint paths between V; and V; in G. (We will routinely drop G when we use
this definition.)

It cannot be assumed that redundant influences, which are external to agent,
are known when the internal model of the agent is designed. Redundant influ-
ences in agent communication graphs are therefore orthogonal to dependences
in the Bayesian network that is contained within and agent and it is appropriate
to support (as much as possible) the processing of redundant influences sepa-
rately from the construction of individual agents. These notions are illustrated
in Figure 5.

We define the order of the redundant influence between V; and V; as the
number of node-disjoint paths between V; and Vj. This definition is justified by
the following considerations.

We characterize thoroughly the routes through which redundant influences
arrive at a node in the communication graph.

Assume that we have a graph such that between V; and Vj; there are only n
node disjoint paths {V; = Vi, = ... > Vi, = V;,...,.Vi=>V,, = ... =2V, =
V;}, where k is the length of path 1 minus the endpoints and [is the length of
path n minus the endpoints. Yet we have more than n redundant influences.
Clearly since redundant influences must occur along some series of paths, there
must be some cycles that are not node disjoint between V; and V; causing the
additional redundancies. Each of these additional cycles must take on one of
four forms (assume 1 < ¢,p < n):

1. It starts at one vertex along node disjoint path ¢ and ends at a different
vertex along path p.

2. It starts at one vertex along path ¢ and ends at Vj.

13

Dependence Independence

Inside the
subscriber
agent

V and W are d-connected V and W are d-separated

Outside the
subscriber
agent

Redundant information flow Non-redundant information flow

Figure 5: Rumors and dependence in an agent’s model are orthogonal concepts.

3. It starts at V; and ends along a node disjoint path gq.
4. Tt starts and ends along node disjoint path q.

In all four cases the same essential argument applies that the redundant influ-
ences occur in some subgraph that does not include either V; or V}. In the first
case, there exist a subgraph rooted at V; and ending at some node Vj, along
which we have (at least) two node-disjoint paths starting at V; and ending at V,
which are amplifying the influence, but these influences do not carry through to
V;j. They are compensated for locally in the subgraph rooted at V; and ending
at Vj,.

In the second case we once again have a subgraph anchored at V;, and ending
at V; which would amplify the influence of V; on V. Once again these influences
do not carry through from V; and they as they are compensated for locally in

14

the subgraph rooted at V;, and ending at V;.

The third and fourth cases are handled by a similar argument in that the
paths belong to a subgraph, either from V; to V;, or from V;, to V;,, which is a
proper sub-graph of the one rooted at V; and terminating at Vj, and therefore
are compensated for.

A consequence of these considerations is that only node disjoint paths need
to be identified and labeled to compensate for redundant influences. The fol-
lowing algorithm can be used to detect and label node disjoint paths in a com-
munication graph. Once this algorithm has been run a new graph, known as
the redundancy graph, is constructed. This graph will be used, along with the
original communication graph, in both solutions to the rumor problem.

The following algorithm extends the communication graph into a redundancy
graph. The redundancy graph has the same nodes and edges as the communi-
cation graph, but its labels are extended if and only if there are redundant
influences. Start by creating a copy of the communication graph that will serve
as the redundancy graph, and whose labels will be extended as described below.
For each pair of vertices vy and v; in the redundancy graph take each variable
s; that is produced by v, and:

1. Create a copy of the graph for use in the flow problem.

2. Modify the graph by replacing each node v that has multiple incoming
edges with a new edge < vy, vy >, where v; and vy are new nodes. (Every
edge < z,v > is replaced by a new edge < z,v; >, and every edge < v,y >
is replaced by a new edge < vp,y >.)3.

3. Designate v as the source for the flow problem and v; as the sink for the
flow problem.

4. Set the maximum flow of each edge to 1.

5. Set the maximum flow to 0 for all edges flowing out of v, that are labeled
with a variable other than s; in the communication graph.

6. Run the flow problem.

7. If the flow into the sink is greater than 1, then redundant influences exist
between the two vertices and the next step should be applied. Otherwise
go to the next vy, v, s; combination and run this algorithm again.

8. For each edge in the flow problem solution that has flow greater than zero
(and therefore by definition is on a node disjoint path), add the shared
variable s; to the label of the corresponding edge in the redundancy graph.

The above algorithm is correct if and only if the flow problem indicates a
positive flow for all edges, and only the edges, along node disjoint paths from
vs to vg. This is known to be the case [K0z92, Chap. 16], and therefore the
above algorithm will expand the label of all node disjoint paths, between v, and
vy, which by definition are also the redundant influences, by the shared variable
that causes redundant influence through that edge.

The time complexity of the flow problem is O(nm log("%)) where n = |V|
and m = |E|. Since we can perform both initialization and set up of the graph

3Without this step, the algorithm would find edge-disjoint paths.

15

information in O(n+m), O(nm log(%z)) dominates the loop body. Since the loop
body is executed for each pair of nodes, the total time for the above algorithm
is O(n3mlog(%)). This time is within O(n®) because m in the worse case
is n?. Given that this is a distributed system, algorithms exist to find the
maximum flow in O(n?log® n) time using O(n?(log® n + /m)) communication
complexity [Mot95] assuming that each node in the communication graph has
its own processor and knowledge of the whole graph (which can be accumulated
in no worse than O(m) time).

It is important to note that this is the only step in an AEBN system that
requires global knowledge of the network structure. After the edges have been la-
beled no further knowledge outside of the immediate neighborhood is necessary.
Further, once the redundancy graph has been built, all remaining algorithms
can be run asynchronously. The only restriction is that each agent can update
its local distribution from only one message at a time, and thus some lag time
may arise in propagation.

Sensor

Sl Sl

Observer; Observers

Supervisor

Figure 6: The R.O.S.E. Redundancy Graph

Considering the R.0.S.E. example of Figure 4, the algorithm in the previous
section produces the redundancy graph of Figure 6. In this graph only two
edges have expanded labels. This arises because only in the case of the cycle
(i-e., vs = Sensor, v; = Supervisor) will the flow problem return a maximum
flow greater than 1. In this case all four of the edges between the Sensor node
and the Supervisor node will have a flow of 1 and therefore will have S; added
to their label.

5 Communication Solution

This Section proposes a method for compensating for redundant influences.
Figure 6 illustrates the R.O.S.E. model after the above algorithm has been run

16

to detect redundant influences. In this model communication has been expanded
to pass joint probabilities (i.e., P(Ry,S51), P(R2,S51)) along the appropriately
labeled links. This requires that the algorithm that is used in each table to
compute the probability of the output parameters P(O) be flexible enough to
allow the calculation of joints involving a fixed input and the output variables.

The calculation of joints is not trivial, especially in the presence of soft ev-
idence. The factor tree algorithm of [Blo98, BV98] was designed especially to
support the computation of one or several joint probabilities and of all single-
variable marginals, and it may be extended to handle soft evidence. We recom-
mend use of one of the two soft evidential update algorithms in [VKV02], which
modify the junction tree method. These algorithms are designed primarily to
compute all single variable marginals, but they can be used to compute one or
several joint probabilities using techniques such as value or variable propagation,
described in [Jen95, Section 5.1].

Given the labeling, the correct (i.e., not redundantly influenced) probabilities
can be retrieved at each node without any modification, so long as the message
that travels each node is the joint of its labels. Since no local Bayesian Network
model modification is necessary, this is known as the communication solution.
The algorithm for the retrieval of these correct probabilities follows.

For any of the m nodes, n; (1 <14 < m) in the communication graph, there
are k;, 0 < k; < m — 1, incoming edges, e), 0 < j < k;. Each of these
edges carries a message my; ;) that is a joint probability table across the shared
variables that make up the edge’s label in the redundancy graph (¥(m; ;)) is a
function to retrieve this label). Start by defining R; to be the set of all variables
that arrive in an incoming message to the agent represented by n; but that are
not used by the local Bayesian Network (i.e., not members of I). More formally
'R,z' is

Rz’ == U lIJ(m(w)) — Ii.
0<j<k;

For each variable p; € R; perform the following steps:

1. Set ¢; to the number of sets W(m; ;),0 < j < k;, that have p; as an
element.

2. If ¢ is larger than one:

(a) Select one of the messages m; ;) that contains p; and marginalize it
to retrieve P(p;).

(b) Condition all other messages containing p; with P(p;), i.e

M (i,5)
P(p)

At this point there are k; tables each of the form P([(; ;, R;|X;), 0 < j <
ki, where I(; ;) is the variable that the incoming edge e(; ;) represents in the
communication graph (i.e., pre-redundant influence marking), R; is a sub-set
of R; such that no variable appears in more than one R;, 0 < | < k;, and
X; C R;UI. Since this means that each variable exists in one and only one
message as a conditioned upon variable (i.e., left side of the |), all messages can
be safely combined together, and the un-contaminated joint across R; can be
retrieved and marginalized onto the needed input probabilities.

M(s,5) €

17

Returning to the R.O.S.E. example, consider the problem of correcting the
redundant influence on the Supervisor node. The two incoming messages corre-
spond to m4,1) = P(R1,S1) and m4 2y = P(Ry, S1) which lead to the erroneous
probability calculation of equation 11. To remove the influence R, is first cal-
culated,

R4 == {Sl}

Letting p; take on each value in R4 gives us p; = S;. Step one yields ¢; = 2, so
step 2 executes parts a and b. Choosing m4,1) for step 2.a, P(S) is retrieved,

P(S1) =) P(S1,Ry),
Ry

which leads us to condition all the remaining messages with R; (i.e., m (4 2))

such that Ma.2)

P(S1)

leaving us with the two messages m4,1) and m4,2) being P(R1, S1) and P(Rz|S1),
which can be clearly combined into

m(4,2) <~ P(R2|Sl) =

P(Ry,R3,51) = m4,1) X M)
= P(RI;SI) X P(R2|Sl)

This can in turn be marginalized to:

P(R1,Ry) =) P(Ri,Rs,51),
S1

from which the desired probability P(L) can be computed as

P(L)= Y (P(L|Ry,Rs)-y P(Ry | S1)P(Ry | $1)P(S1)) = Y P(L| Ry, Ry)P(Ry, Ry)

R1 ,R2 51 Rl ,R2

Alternatively, P(R1, R2,S51) can be marginalized to

P(R)) = Y P(Ri,R»,5)
S1,R2

P(R2) = Z P(Rl,Rz,Sl)
S1,R1

and these can be used for an approximate answer.

6 Model Solution

An alternative method for the removal of the redundant influences exists. This
solution involves automatic construction of a secondary local Bayesian Network
of three layers. These layers are generated based on the labels of the com-
munication graph, and the conditional probability tables for those layers are
generated through the passing of messages. These conditional probability ta-
bles will themselves occasionally require re-calculation whenever changes occur

18

Figure 7: Another sensor model communication graph (a) and redundancy
graph (b).

in the local observations of agents above it in the communication graph. How-
ever, when the changes occur only among the shared variables, the messages
need only contain the probability tables on the single variable that labeled the
edge in the original communication graph. This causes a significant communi-
cation cost saving over the passing of joints which grow exponentially with the
size of the label.

The theory behind the construction of the multi-layer network is simple.
The top layer represents the current values of the input variables I; to agent
i. The middle layer is a conditional probability table for the redundantly ex-
pressed variables given the input variables. This layer calculates the value of
the redundantly expressed variables given the input parameters. Finally the
bottom layer contains the reverse of the middle tables, the probability of the
input variables given the redundant variables. These tables are calculated in a
naive fashion from messages passed along the edges, and the local propagation
algorithm takes care of removing the redundancies. Once the propagation in
this model is completed, the resulting belief in the inputs I; can be fed into the
correct location in the agent’s actual Bayesian Network.

For use as an example, let us consider the slightly more complex sensor model
of Figure 7. This model has two sensors .4 and £ each of which produce a single
variable A and E respectively. These sensor readings are in turn absorbed by
two intermediate supervisors B and C who produce reports B and C. These
reports are fed into the supervisor node D that has a fused belief in the location
of the target.

Given the communication graph and a redundancy graph on m agents N =
{n1,...,nm}, and a set of shared variables S between these agents, the following
three functions are defined:

A : SN
T N—>S,,S,g$
I NxS—)S,,S,gS

19

where A(s;) is the agent that produces the shared variable s;, Y(n;) is the set
of input variables to agent n;, I'(n;, s;) is the set of labels along the marked
paths that lead from A(s;) to n; in the redundancy graph, and (n;) is the set
of redundant influences on the agent n;.

Looking at the agent and redundancy graphs of Figure 7, consider the fol-
lowing examples of the functions:

A(C) c

() = {BC}
T(A) = ¢
I'(D,A) = {A,B,C}
D) = {4}
B) = ¢

Given A, T, T', and 2 construction of the model involves adding four types of
variables (Note: in this notation variables in the communication graph are rep-
resented as lower case letters and variables being placed into the new Bayesian
Network, that correspond to variables from the communication graph, are la-
beled with the same lower case letter subscripted with a letter that indicates
which level of the new network they exist in). These layers are added in four
steps:

1. Add a node v, v € S, to the top layer for each v € Y(n;).
2. Add a node vy, v € S, to the middle layer for each v € Q(n;).

3. Add a node v, v € S, to the middle layer for each v € Y(A(w)) for all

4. Add a node vy, v € S, to the bottom layer for each v € T(n;).

This fulfills our view of the system as presented at the start of the Section
with only nodes from step 3 not being mentioned in the initial description of
the system. It turns out that the parents of the input variables are also needed
in the middle level so that the correct estimation of the bottom layer can occur.
This necessity is most easily shown with an example. If we assume that this
is not, so then in the modified R.O.S.E. model of Figure 7 this would imply
that the probability of shared variable C' can be inferred from a prior on A and
a conditional of C' given A. This directly contradicts the implications of the
communication graph that indicates that both the priors of A and E, as well
as the conditional of C' given A and E are necessary. In other words failure
to include nodes from step 3 implies that the knowledge of one input variable
always causes the output parameters to be independent of the remaining input
variables. This restriction is not necessary or wanted.

As for why only knowledge of A(A4,,) and E(E,,) are all that is necessary
to calculate the correct belief in B(Bjp) and C(Cy), consider if this were not the
case. This would imply that some other variable has an influence on either B or

20

C'. By definition of the agent system this variable must be an ancestor of either
A or E, and although no such nodes exist in this graph if it did it would still
not influence B or C. This stems from the fact that the oracular assumption
coupled with the nature of message passing causes the separation of a variable
from its ancestors through its parents.

@) @ QNG
OR) E
&) @

(a) (b)

Figure 8: Nodes in model built for Communication Graph of Figure 7, (a), with
edges (b).

Returning to the modified R.O.S.E. model of Figure 7, six total variables
are added to the model in the following way.

1. B; and C} are added to the top of the model, the input variables to agent
D.

2. A, is added to the middle, as this is a redundant influence on agent D.

3. E,, is added to the middle, as this is an input variable of an input variable
through agent C.

4. By and C} are added to the bottom, as these are the input variables to
agent D.

When completed the three layer network, without edges, is visible in Figure 8.a.
Once the nodes have been placed in the network, the edges are added in the
following three steps.

1. Add an edge from v; to w,, for any existing w s.t. w € I'(A(v),z) and

2. Add an edge from v; to w,, for each w € T(A(v)).
3. Add an edge from v, to wy for each v € T(A(w)).

Using this algorithm, six edges are added to the R.O.S.E. example graph in
Figure 8.b.

1. By —» Am and Ct - Am
2. Ct - B,
3. A, — By, Ay, — Cb, and E,, — Cb.

21

All that remains for this method is a way to build the conditional probability
tables necessary for the model. To construct these tables, each edge that is
labeled as carrying a redundant influence must carry a message that is the joint
probability of not only its label but also the the input variables of the agent at
the head of the edge. For example the message passed along the edge C' — D in
Figure 7.b carries a probability table that not only has A, C but also E. Thus to
set the probability tables requires a communication cost larger than the regular
communication solution cost. However, as stated earlier, once these messages
have been passed, there is no need to pass a joint probability table with more
than the original labels (see Figure 7.a) of the edges, unless a change occurs
that causes some of the dependencies encapsulated within the joint to change.
This is the case whenever an agent makes observations about its internal nodes
and must update the rest of the agent system to reflect this.

Given that messages of the type described above are being passed, one of
four methods is used to assign the conditional probability tables to each of the
nodes in the model.

1. The top level nodes v, take their probability tables from the messages that
are received as input. Setting the tables to a uniform distribution for the
purposes of place holding is all that is necessary.

2. The middle level nodes’ tables are built by the following algorithm.

(a) For some node v, build a set M of all messages (joint probability
tables) that contain the variables v or w where w; € II(v,y,).

(b) For each message m; € M marginalize away all variables that are not
members of T, where

T.,={v}ju (J {w}

w EM(vym,)

—~~
o
~—

Derive P(v) by marginalizing one of the messages onto it.

(d) Divide the remainder of the messages by P(v).

—
(¢

) If any of the other variables in the w appears in the labels of more
than one message,

i. Calculate P(w) by marginalizing one of the original messages
onto it.
ii. Adjust all but one of the messages containing w by P(w).
(f) Combine all the messages in M to get the conditional table for
P(v,W), where W = {w; : w;, € H(vy)}.
(g) Derive P(W) by marginalizing away v,, from one of the messages.
(h) Set P(un|II(Var) to the combined table divided by P(W).
3. By the nature of the construction there should exist one, and only one,
message m,, which contains the joint probability table across the variables

whose conditional probability table is required for a bottom node v. To
derive the necessary table, simply

(a) Marginalize v out of the message m,, to get the joint probability
P(W) where W = {w; : w;,, € I(v)}.

22

(b) Divide the message m,, by P(W) to get the conditional table P(uvp|II(uvp)).

Returning to our example of building the model in Figure 8, two messages en-
ter the agent D. The first is m; = P(A, B) while the second is my = P(A,C, E).
Step 1 tells us to set the probability tables of each of the top nodes to a uniform
distribution so

1
P(B=b,) = B Vbi; € By

1
P(Ct:Cti) = @ VCtiGCt.

The middle nodes are set using the above algorithm. Consider the case of
setting the table for P(A4,,|B:, C¢). Both messages contain some of the same
variables as the desired table so we get M = {m, m2}. Removing the variables
that are not in the desired table causes

mo = Z meo
FE
> P(4,C,E)
E

P(A,C)

3
I

3
Il

Choosing m; to calculate P(A) gives

P(4) = > my
B
P(A) =) P(AB)
B
which is used to condition message m- to give us
— ma
M2 = pa)
S P(A,C)
P(A)
P(A,C)
P(Cl|A) = PlA)

These two messages m; and msy are now combined to yield

m = Mmi1 XM
m = P(A,B) x P(C|A)
P(A,B,C) = P(A,B)x P(C|A)

which in turn has A marginalized away to give

P(B,C) = Y P(A,B,0).
A

23

Finally the actual table is computed as

s _ PABC)
=~ TP(B,0)

Pame) - TR0
PlnlBuC) = ToeBl)

The table for P(E,,|C:) is computed in a similar manner. The only tables
remaining to be computed are the tables for the bottom layer. Consider the

computation of the table P(By|A,,) this is simply computed using message 1 as
follows:

P(Bildm) = B
PBIA) = w)
PBIA) = g

7 Comparison of Model and Communication Ap-
proaches

This Section will compare the cost of the communication solution (Section 5)
and the model solution (Section 6) and calculate a metric by which one can
be chosen over the other. The analysis begins with the definition of several
communication and redundancy graph dependent terms.

1. n — the number of agents in the communication graph.
2. m — the number of edges in the communication graph.

3. s4, 1 <14 < m — the number of variables along an edge in the redundancy
marked version of the communication graph.

4. s,, — the largest label in the communication graph i.e.,

Sm = 1I§niagxm{si}'

5. b — the number of states in the largest shared variable.
6. d; — the maximum in-degree of any agent in the communication graph.

Given these constant parameters, a comparison of the relative communica-
tion costs can be undertaken. In this comparison no attention will be paid to the
cost of the additional local computation involved to correct the redundancies,
since the local cost of correction for either the communication or model based
approach has negligible impact on the total agent system propagation time for

24

two reasons. Firstly, it is most often the case that communication is slower
than local computation, with the speed difference usually in the order of several
thousand times.

Secondly, both methods, communication and model based, use about the
same amount, of local computation in the correction of the redundant informa-
tion. Obviously, the communication solution requires the formulation of a joint
probability table with b°™ entries and that requires O(b®™) operations to build.
Furthermore, it can be shown (cf. [BV98]) that the propagation algorithm for
the model solution will also require, and be dominated by, a probability table
of b°™ entries that will be used to set the probabilities of the incoming shared
variables. This leads to the fact that the entire propagation cost of this local
model is also O(b°™).

The comparison of the two costs begins with the analysis of the communica-
tion solution in Section 7.1. This will be followed by the analysis of the model
cost solution in Section 7.2 and a comparison of the two in Section 7.3.

7.1 Cost of Communication Solution

The communication solutions cost is easily evaluated. It requires one proba-
bilistic message to be sent along each edge in the graph. Each of these messages
contains a table which has a single floating point number for each entry, with the
number of entries in the table being equivalent to the size of the cross-product of
the variables on the edge label. Thus using the transmission of a single floating
point number as our base unit of communication cost we have

i b (13)

as the upper bound on the total cost of communication. This is clearly bounded
above by

m

> b (14)

i=1
since s,, dominates s; for 1 < i < m.

Now since the term being summed is constant with respect to the index, the
total computation cost for the model solution is

mb*™. (15)

7.2 Cost of Model Solution

The cost of the model solution is a little tougher to formulate. Using again as
our basis for calculation the transmission of a single floating point number the
normal communication cost of the algorithm is

mb, (16)

which corresponds to each edge carrying a single table on the one variable that
labels it in the communication graph.

However, from time to time, the conditional probability tables of the local
propagation models must be updated using a much larger communication load.

25

This enlarged propagation occurs whenever the distribution of one of the agents
is modified by a local observation. In the worst case this process will require all
of the tables in all of the models of the network to be re-calculated. The average
case is of course much better in that only local models that contain the shared
variable whose producing agent has been modified will need to be updated.

Once again the cost of this communication is the cost of the transmission of
an enlarged probability table. In this case the table is defined not only on the
variables that label the edge in the redundancy graph but also on the parents
of the node that originate the edge. Allowing [/; to be a variable that labels the
edge e;(v;",v]) in the communication graph, letting II(v) be the set of parents
of v, and defining the function Z(n;,s;) (E: N xS = S;, S; € S) as the label,
from the redundancy graph, of the edge that is labeled by s; and enters n; in
the communication graph, the cost is

Zb\E(v;,li)UH(U?H_ (17)

i=1

Since the set produced by the union of the label and the grand-parent set is
no smaller than the sum of the elements in each individual set, i.e.,

[Z2(v; 1) UII(w")| < [E(v;,)] + [T(v)")] < sm +ds,

formula 17 can be re-written as
D pemt (18)
i=1

which since s, and d; are constant with respect to the summation is
mbsmtdi, (19)

To get the true cost of the model solution for the general case, it is assumed
that some probability, p, exists which indicates the chance of an update being
caused by an internal change in a table, and therefore requiring the larger com-
munication cost, versus a propagation. Since there are only two possibilities
(i-e., full update and regular propagation), the probability of the regular propa-
gation occurring is 1 — p. Taking a weighted sum of the two costs (formulas 16
and 19) yields a total cost of

(1 - p) [md] + p [mb***] (20)

7.3 Comparison

Setting the two costs (formulas 15 and 20) equal yields
(1 = p) [mb] + p [mb*=T4] = mb*. (21)

Dividing equation 21 by m and expanding the first term on the left hand
side gives
b —pb — pb*m i = pom, (22)

Solving equation 22 for p yields

b — b

A v — (23)

26

Thus a purely graph dependent function is available that gives us the break
even value for p. If the frequency of large conditional probability table updates
is greater than the above formula for p, then the communication solution is
time superior. Otherwise the model solution is better with respect to time.
This result is perhaps not surprising in that consideration of the asymptotically
dominant terms yields

bsm 1

P= i@ T o
which shows us that, as the graph parameters increase, the value of p, the
probability of an update, for which the two solutions break even decreases expo-
nentially with respect to the indegree. This is to be expected from the formula
20 since the full update communication cost is so much greater than the regular
propagation communication costs for large values of the graph parameters.

8 Conclusions and Future Work

We addressed the rumor problem in probabilistic agent systems that use Bayesian
networks to represent their view of the world, focusing on the Agent Encapsu-
lated Bayesian Network (AEBN) model. We reviewed related work on prob-
abilistic multiagent systems for interpretation and fusion of information. We
introduced the notion of communication graph, within which the rumor prob-
lem may be clearly appreciated.

We presented an algorithm to identify redundant influence in communication
graphs and two algorithms to compensating these influences, the communica-
tion solution and the model solution. The trade-off between the solutions was
investigated, leading to a simple formula (equation 7.3) that relates the proba-
bility of update based on local variables with simple graph parameters. These
algorithms allow the designer of an agent encapsulated Bayesian network to
design it locally and delay the consideration of rumors to a later stage, thus
simplifying the design task. Moreover, rumors are compensated in such a way
that agents do not need to be merged, again simplifying the design task.

Further work should also include the careful software implementation of the
algorithms presented in this paper.

Acknowledgments

This work has been supported in part by the U.S. Office of Naval Research
through project “Dynamic Decision Support for Command Control, and Com-
munication in the Context of Tactical Defense” (BA97-006 and Grant Number
N00014-97-1-0806) and by the U.S. Department of Defense through the DARPA
Autonomous Negotiating Teams (ANTS) project (AO Number H359 and Con-
tract Number F30602-99-2-0513). Useful discussion with the original members
of the DAG team at the University of South Carolina, and especially John Rose,
Young-Gyun Kim, Miguel Barrientos, Clif Presser, and Wayne Smith, is grate-
fully acknowledged. M.V. thanks Jif{ Vomlel for conversations on the topic of
this paper, and especially on the issue of dependence among input variables.
M.V. thanks in a special way Finn V. Jensen and his Decision Support Systems
Group in the department of Computer Science at the University of Aalborg for

27

providing a quiet and productive research environment during sabbatical visits
in 1999-2000.

References

[Blo98]

[BVOS]

[Har90]

[Jen95]

[Jen01]

[JU97]

[Kal60]

[Koz92]

[LMWO1]

[May79]

[Mot95]

[Pea00]

Mark Bloemeke. Agent Encapsulated Bayesian Networks. PhD thesis,
Department of Computer Science, University of South Carolina, 1998.

Mark Bloemeke and Marco Valtorta. A hybrid algorithm to compute
marginal and joint beliefs in Bayesian networks and its complexity. In
Proceedings of the Fourteenth Annual Conference on Uncertainty in
Artificial Intelligence (UAI-98), pages 208-214, Madison, WI, July
1998.

A.C. Harvey. Forecasting, structural time series models and the
Kalman Filter. Cambridge University Press, New York, NY, 1990.

Finn V. Jensen. An Introduction to Bayesian Networks. Springer-
Verlag, New York, NY, 1995.

Finn V. Jensen. Bayesian Networks and Decision Graphs. Springer,
New York, NY, 2001.

S.J. Julier and J.K. Uhlmann. A non-divergent estimation algo-
rithm in the presence of unknown correlations. In The Ameri-
can Control Conference, pages 27-31, San Francisco, California,
1997. Morgan Kaufmann Publishers. Also available on line at
http://ait.nrl.navy.mil/people/uhlmann/CovInt. html.

R.E. Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of Basic Engineering, pages 35-46, 1960.

Dexter C. Kozen. The Design and Analysis of Algorithms. Springer-
Verlag, New York, 1992.

Kathryn Blackmond Laskey, Suzanne M. Mahoney, and Ed Wright.
Hypothesis management in situation-specific network construction.
In Proceedings of the Seventeenth Annual Conference on Uncertainty
in Artificial Intelligence (UAI-01), pages 301-309, Seattle, WA, Au-
gust 2001.

Peter S. Maybeck. Stochastic Models, Estimation, and Control, Vol-
ume 1. Academic Press, New York, NY, 1979. The first chapter is
available at www.cs.unc.edu/~welch/Kalman /index.html.

L. Motyckova. Maximum flow problem in distributed environment.
In SOFSEM ’95: Theory and Practice of Informatics, pages 425-430,
Berlin, 1995. Springer-Verlag.

Judea Pearl. Causality: Modeling, Reasoning, and Inference. Cam-
bridge University Press, Cambridge, 2000.

28

[Ute98]

[VKV02]

[Xia96]

[XL00]

Simukai W. Utete. Local information processing for decision making
in decentralised sensing networks. In Proceedings of the FEleventh
International Conference on Industrial and Engineering Applications
of Artificial Intelligence and Expert Systems (IEA/AIE-98), pages
667676, Benicassim, Castellon, Spain, 1998.

Marco Valtorta, Young-Gyun Kim, and Jifi Vomlel. Soft evidential
update for probabilistic multiagent systems. International Journal of
Approzimate Reasoning, 29(1):71-106, January 2002.

Y. Xiang. A probabilistic framework for cooperative multi-agent dis-
tributed interpretation and optimization of communication. Artificial
Intelligence, 86:295-342, 1996.

Y. Xiang and V. Lesser. Justifying multiply sectioned Bayesian net-
works. In Proceedings of the Fourth International Conference on
Multi-Agent Systems (ICMAS-2000), pages 349-356, Boston, MA,
July 2000.

29

