A Prototypical System for Soft Evidential Update
CSCE Technical Report TR 2002-005

Young-Gyun Kim
Marco Valtorta*
Department of Computer Science and Engineering
University of South Carolina
Columbia, SC 29208, U.S.A.

Jiti Vomlel
Department of Computer Science
University of Aalborg
Aalborg, Denmark
DRAFT VERSION 1.1

May 28, 2003

Abstract

Autonomous agents that communicate using probabilistic information
and use Bayesian networks for knowledge representation need an update
mechanism that goes beyond conditioning on the basis of evidence. In a
related paper [VKV02], we describe this mechanism, which we call soft
evidential update, its properties, and algorithms to realize it. Here, we
describe an implementation of the most promising such algorithm, the big
cligue algorithm, together with examples of its use.

Keywords and phrases: Bayesian networks, Multiagent systems, Evidential
updating, Iterative Proportional Fitting Procedure (IPFP), Soft evidence.

1 Introduction and Motivation

The problem of updating a probability distribution represented by a Bayesian
net upon the presentation of soft evidence is called the problem of soft evidential
update. In this paper, we describe BC-Hugin', a program that implements soft
evidential update (for Bayesian networks). A companion article by the authors

*Corresponding author, mgv@cse.sc.edu

1We thank Christian Riekher, managing director of Hugin Ltd. for allowing us to use this
name for our research prototype. Actual use of Hugin in BC-Hugin is minimal, as explained
in Section 4.5.



([VKVO02]) contains theoretical and methodological preliminaries and should be
read in conjunction with this paper?.

The motivation for this work is our desire to let agents that use proba-
bilistic models (and especially Bayesian nets) communicate with each other by
exchanging beliefs.

While this is not the focus of this paper, we need to describe briefly our
agent model, which is called the Agent-Encapsulated Bayesian Network (AEBN)
model, originally due to Bloemeke [Blo98]. Each agent in an AEBN model
uses as its model of the world a single Bayesian network (which we also call
an AEBN). The agents communicate via message passing. Each message is a
distribution on variables shared between the individual networks.

The variables of each AEBN are divided into three groups: those about
which other agents have better knowledge (input set), those that are only used
within the agent (local set), and those of which the agent has the best knowledge,
and which other agents may want (output set). The variables in the input set
and the output set are shared, while those in the local set are not. An agent
consumes (or subscribes to) zero or more variables in the input set and produces
(or publishes) zero or more variables in the output set.

The mechanism for integrating the view of the other agents on a shared
variable is to replace the agent’s current belief in that variable with that of
the communicating agent. When an agent receives a message from a publisher,
it modifies the probabilities in its internal model, so that its local distribution
either becomes consistent with the other agent’s view or is inconsistent with it.

Therefore, except for a zero-probability situation®, after updating using all
evidence, we still require that all appropriate marginals of the updated distribu-
tion be equal to the evidence entered. The deservedly celebrated junction tree
algorithm for probability update [LS88, SS90, Jen95, LJ97] was not designed to
satisfy this requirement, and in fact it does not, as we will show in Section 3.1.

When a publisher makes a new observation, it sends a message to its sub-
scribers. In turn, the subscribers adjust their internal view of the world and
send their published values to their subscribers. Assuming that the graph of
agent communication (which we simply call agent graph as in [Blo98)]) is a DAG,
equilibrium is reached, and a kind of global consistency is assured, because the
belief in each shared variable is the same in every agent.

The restriction that one of the agents has oracular knowledge of a variable
may seem excessive. However, it is permissible to have multiple views of a
common variable. For example, in a multiagent system for interpretation, two
agents may issue a report that corresponds to the same (unknown) physical
quantity. Nothing prevents another agent from integrating the reports of these
agents and effectively obtain a new (and possibly more accurate) view of the
same underlying quantity. As another example, it is possible for a subscriber
agent to model known reporting errors or biases of the publisher, as we will
show in Section 2.2.

2Some introductory material is adapted from [VKV02].
3BC-Hugin identifies zero probability situations at run time in a way similar to Hugin.



When the agent graph is not a tree, great care must be taken to deal with
undirected cycles (loops). Such cycles lead to possible double counting of infor-
mation, which is often known as the rumor problem. We do not address this
important problem in this paper, but cf. [Blo98]. It is also possible to consider
directed cycles (and in particular, the tight cycles resulting from bi-directional
communication in agent graphs), by appropriately sequencing messages between
agents. We do not address this extension further in this paper, but the reader
must be made aware of the very interesting and important work by Xiang on
Multiply Sectioned Bayesian networks for related results [Xia96, XL00].

The rest of paper is organized as follows. In Section 2, we explain the notion
of soft evidence with an example that also illustrates the AEBN model (in 2.2).
Section 3.1 is devoted to a discussion of why the junction tree method does not
support soft evidential update. We then present a modification of the junction
tree algorithm, the big clique algorithm, that supports soft evidential update.
In Section 4, we describe the big clique algorithm and its implementation. In
Section 5, we test the implementation on a suite of problems, verify that it
works correctly, and discuss the results obtained. Section 6 contains a summary
and evaluation of our work and suggestions for future work.

2 Soft Evidence

2.1 Evidence

Evidence is a collection of findings on variables. A finding may be hard or
soft. A hard finding specifies the value of a variable. A soft finding specifies
the probability distribution of a variable. Hard evidence is a collection of hard
findings. Soft evidence is a collection of soft findings.

The correct processing of soft evidential update requires the introduction of
special observation variables. The definition of soft evidence could be general-
ized in three ways. Firstly, we may extend the definition of finding to allow con-
ditional distributions. Secondly, we may allow joint (and possibly, conditional)
distributions on a collection of variables. Thirdly, we may allow distributions on
arbitrary events (equivalently, arbitrary logic formulae). These three extensions
can also be handled by the introduction of observation variables as shown in
[VKV02].

2.2 An Example

We extend the cow pregnancy network of [Jen95] to a three-agent system. One
of the agents represents a farmer who needs to evaluate the probability that one
of his or her cows is pregnant. The other agents represent a Urine Test (UT)
expert and a Scanning Test (ST) expert, respectively.

The farmer subscribes to variable UT, which is published by the UT expert,
and to variable ST, which is published by the ST expert, as indicated in Figure 1.
While we require that the distribution of a variable remain the same across



agents, nothing prevents the farmer from having a model of the experts and
therefore somehow discounting their advice, as indicated in Figure 2, where a
simple model of the reliability and sensitivity of the two experts is encoded
in the link between the primed variables (UT' and ST"), which represent the
farmer’s view of the results of the Urine and Scanning tests, respectively, and the
unprimed variables (UT and ST'), which are the test results as communicated
by the experts. The farmer possesses a more complicated model of the two
experts in the situation described in Figure 3, where it is assumed that the
farmer knows that the experts’ advice is affected by some environmental factor
E.

UT Expert ST Expert

Farmer

Figure 1: The agent graph of a three-agent system.

3 Soft Evidence Problem

3.1 Why Do the Classical Propagation Methods Fail?

We show, by a simple example, that the junction tree algorithm does not treat
soft evidence properly.

The skeleton of the argument is as follows. In the junction tree algorithm,
messages are passed across separators from clique to clique. Exactly two mes-
sages are passed between two cliques (say, C; and C}), one in each direction, as
shown in Figure 4. The first message is passed during the DistributeEvidence
phase of the method (say, from C; to C;), the second during the CollectEvidence
phase (say, from C; to C;). suppose that clique C; contains a node (say, V;)
for which we have a soft finding (say, P(V;)), When Cj; sends its message to Cj,
P(Cj;) in modified (by calibration). After the probability of C; has been fully
updated (say, to Q(C;)), C; sends its message to C;, and the probability of C;



ST Expert

Figure 2: Agent graph of Figure 1 with simple models of the experts.

is modified by calibration. In general, letting Q(C;) be the modified probability,
we have that } ¢\ 1y} Q(Cs) # P(V;), which implies that the soft finding P(V;)
is not treated as evidence.

We now present the promised example that establishes our claim that the
junction tree algorithm does not handle soft evidence properly. Consider the
wet grass example, shown in Figure 5 ( [Jen95, page 23]), and suppose that
our hard evidence is that Holmes’ lawn is certainly dry (i.e., H = n), while we
have soft evidence that Watson’s lawn, in the form P(W) = (0.7,0.3). If this
soft evidence is absorbed in clique W R and the hard evidence is absorbed in
clique HRS, propagation will consist of two messages through the separator R,
as shown in Figure 6. After the messages are passed, P is updated to @), and
QW) = (.4439,.5561) # (.7,.3) = P(W).

We have shown that even if soft findings are absorbed correctly into cliques,
the propagation method itself would not respect the evidence characteristics of
the findings.

The reason is that it is not possible to enter new evidence that contradicts
the evidence already entered, and therefore zero entries are treated in a special
way by the junction tree algorithm: zeroes in probability tables remain zeroes
after each message (Cf. [Jen95, Lemma 4.1].)

Jeffrey’s rule, also known as the rule of probability kinematics, provides a
way to update a probability distribution from soft (uncertain, non-categorical,
non-propositional) evidence.



ST Expert

Figure 3: Agent graph of Figure 1 with complex models of the experts.

Jeffrey’s rule can be written as:
Q(A) =) P(A|B:) - Q(B))

where Q(B) is soft evidence, and P(A|B) is the conditional probability of A
given B before evidence. Jeffrey’s rule applies in situations in which P(A|B) is
invariant w.r.t. P(B) but leads to errors when this condition does not hold.
The reader is referred to [Pea88, Pea90] and [VKV02] for a discussion of the
rule and its deficiencies.

An alternative method of updating in the presence of uncertain evidence is
the virtual evidence method [Pea88, Pea90, Kyb87, Nea90]. The virtual evidence

Figure 4: The soft finding P(V;) is not treated as evidence.
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Figure 5: The wet grass Bayesian network structure.

absorb soft evidence absorb hard evidence
Tm e
Calibrate
Calibrate

3 W’R R _

Figure 6: The junction tree algorithm and the wet grass network.

method takes the position that likelihood ratios are stabler than probability dis-
tributions [Pea88, Section2.3.3]. Pearl [Pea88, Pea90] observes that the virtual
evidence method can be viewed as formally equivalent to the likelihood ratio
version of Jeffrey’s rule. Suppose that we obtain evidence on a variable B, with
values b;. Letting Q(b;) be the evidence and P(b;) be the prior probability
of B, the ratio Q(B)/P(B) may be used in the virtual evidence method, re-
sulting in an updated distribution whose marginal over B is the soft evidence
Q(B). As Pearl [Pea88, p.71] explains, “beliefs updated by Jeffrey’s rule cannot
be distinguished from those updated by Bayes conditionalization on some [our
emphasis] virtual evidence.” Please see [VKV02, Section 3.2] for further discus-
sion of the difference between the virtual evidence method and soft evidential
update and the end of Section 5.2 for an example contrasting the two. From
a methodological viewpoint, it is important to note that, unlike mechanical
applications of maximum-entropy methods, the soft evidential update method



preserves the independence structure captured in a Bayesian network and there-
fore avoids paradoxical results noted by several authors (e.g., [GH97]). We refer
to [VKV02] and [Vom99, Theorem 3.3] for a precise discussion of this point.

4 Big Clique Algorithm

Here, we suggest a soft evidence absorption algorithm. This algorithm combines
two methods: junction tree propagation and Iterative Proportional Fitting Pro-
cedure (IPFP).

4.1 Algorithm
The big cliqgue algorithm modifies the junction tree algorithm as follows:

1. Build a junction tree that includes all variables for which soft evidence
is given in one clique, the big cligue C;. (These variables may appear in
other cliques as well.)

2. Update P(V) to a distribution P*(V') by executing the junction tree al-
gorithm using only hard evidence. P*(V') is a distributed representation
of P(V| hard evidence), in the sense of the remark following Theorem 4.2
in [Jen95]: the product of all clique tables divided by the product of all
separator tables is equal to P(V| hard evidence).

3. Absorb all soft evidence in Cy (with the algorithm described in Sec-
tion 4.4).

4. Call the routine DistributeEvidence from C;. This routine and the cor-

rectness of this step are presented in Section 4.3.

4.2 Construction of the Junction Tree

In order to insure that all variables for which soft evidence is given (soft evidence
nodes) belong to the big clique, the following steps are executed:

1. moralize the Bayesian network graph;
2. add edges between each pair of soft evidence nodes;
3. triangulate.

The second step is unique to the big clique algorithm. Moralization and tri-
angulation may be performed in the usual way. In particular, any of the
many heuristic or approximate algorithms for triangulation may be used. (See,
e.g., [Kja90, BGO1]) The implementation described in this paper uses a very
simple heuristic, because performance is not the main concern of this research.



4.3 Propagation of Soft Evidence

First, recall that Step 2 in the modified junction tree algorithm leads to a
distributed representation of the posterior probability of all variables given all
hard findings. Second, observe that the product of the table for the special
clique that has absorbed all soft evidence (as done in Step 3) multiplied by
the tables for the other cliques and divided by the tables of the separators is a
representation of the posterior probability of all variables given the soft evidence
and the hard evidence. (Hard evidence had already been absorbed in Step 2).

We now need to restore consistency between the special clique and the other
cliques. To do so, we propagate from the clique that has absorbed soft evidence
using the Hugin DistributeEvidence algorithm, which is described in [Jen95].
This algorithm has three important properties: (1) it updates the probability
tables of the other cliques while it maintains the invariant that the product of
the clique tables divided by the separator tables is equal to the joint probability
table for all variables in the Bayesian network; (2) it insures local consistency
and (Theorem 4.5 in [Jen95]) global consistency; (3) it does not disturb hard
findings, because it does not remove zeros. (It may introduce new zeros in
special cases.)

Finally, observe that the table for the clique that contains all variables for
which we have soft findings is unchanged by a DistributeEvidence call that starts
at that clique. Therefore, the result of propagation is to obtain a globally
consistent distributed representation of the posterior in which all findings, hard
and soft, hold.

We remark that the big clique algorithm could be simplified by removing
the DistributeEvidence part from the second step. In other words, it is suf-
ficient to carry out one CollectEvidence operation to the special clique (using
only hard evidence) and one DistributeEvidence from the special clique (after
absorbing soft evidence in the special clique). From this point on, we redefine
the big clique algorithm to be this simplified version. Figures 7 and 8 illustrate
the CollectEvidence and Distribute Evidence operations. Figure 9 illustrates the
operation of the whole big clique algorithm on the lawn example. In this spe-
cial case, the junction tree is the same as that constructed by the junction tree
algorithm (cf. Figure 6), but the order of operations is different. In particular,
note how the absorption of soft evidence is delayed.

4.4 Absorption of Soft Evidence

We define absorption in the special big clique C; as the process by which the
joint probability P(C}), is updated to conform to soft evidence on variables
A C Cy, where A ={A;,As,..., A}

Let Q(C1) be the joint probability after absorption. Then Vi } ¢\ 4, Q(C1) =
P(A;), where P(A4;) is the soft evidence on A;,i = 1,..., k. Absorption of soft
evidence in clique C} is carried out by using the Iterative Proportional Fitting
Procedure (IPFP) and consists of cycles of k steps, one per finding. Each step
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Figure 7: The big clique calls CollectEvidence.

Figure 8: The big clique calls DistributeFEvidence.

corresponds to one soft finding. The appropriate formulae are:

Q(C1) = P(C)
Qi-1(C1) - P(4;)
Qi (@) Qi-1(4;) :

where j = ((i — 1) mod k) + 1.

For a simple example, suppose we have the clique {A, B} with joint proba-
bility as given in Table 1 (all variables are binary). Suppose that soft evidence
on variable B is available in the form of P(B) = (.7, .3). We compute the
updated joint probability Q(B) in two steps.

The result of the multiplication by P(B) is in Table 2. The result of the
division by Q(g)(B) = (.59, .41) is in Table 3. Note that - 4 g\ (5} @(4,B) =
P(B) = (0.7, 0.3), as claimed.

10
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Figure 9: Operation of the big clique algorithm on the lawn example.

One step of IPFP is sufficient when there is only one soft finding. In general,
however, several cycles may be necessary for IPFP to converge. See [Csi75,
Hab74, Vom99] for the proof of convergence in the general discrete case and for
bounds on the number of cycles in special cases.

More generally, if all pairs of distinct observation variables are independent
in the original distribution then they are independent in the updated distribu-
tion as well, and the soft evidential update method requires only one cycle to
converge, i.e. only n steps are sufficient. (See [VKV02] for details.)

In AEBN systems, soft observations are messages from publishing agents and
may be dependent when the AEBN graph is not a tree. The correct modeling
of dependence in the receiving agent requires knowledge of the AEBN agent
graph. A full treatment of this aspect is beyond the scope of this paper, but we
mention Bloemeke’s work on this topic [Blo98].

11



A
By n
Ty | .56 .03
n | .14 .27
y | .56 .03
n | .14 .27

Table 1: Table for P(A, B).

A
B y n
y | 392 .021
n | .042 .081

Table 2: Table for P(A, B,e).

4.5 Implementation: BC-Hugin

In order to support the big clique algorithm, we implemented in Java BC-Hugin,
which is an extension of the Hugin system. (See Figure 10 for the BC-Hugin
introductory screen.) As mentioned earlier, the big clique algorithm requires
new methods, such as creating a big clique and soft evidence absorption, that
are not supported by the junction tree propagation that is already implemented
by the Hugin API. Also the Hugin API does not allow us to control basic

methods that are necessary for the new methods.

File Select 5/E nodes Show CT

BC-Hugin

Soft Evidence Reasoning Too

[02,0.8)

Show Value

by
Marco Valtorta, Young Kim
Liniv. of South Carolina

Version 0.81 (Jan., 2001)

=] E3

Figure 10: Opening window for BC-Hugin.

12




A
B y n

v | 664 036
n | .102 .198

Table 3: Table for P(A, B, e) after normalization.

Therefore, we implemented BC-Hugin from scratch. The creation of a junc-
tion tree and the propagation method was implemented by following Jensen’s
algorithms [Jen95]. BC-Hugin reads net files or hkb files that were created
by Hugin. The Hugin API (version 5.1) is used to read and load these files*.
An example of a file open menu window is presented in Figure 11. BC-Hugin
propagates the evidence (hard or soft) that is entered, thereby computing the
marginal posterior probability of every variable.

Eﬂj Open
Look in: Clrun i I@ @ |@ E_:E_: H:
[y Mood.hig ni

B. ﬂ.nud..nét

E] g.net

E] golf.net

B arass.net

D headache.net
[ mytesthkh

1]

File name: |ﬂnnd.net | Open

Files of type: | All Files {*.%) - | Cancel

Figure 11: File open window for BC-Hugin.

4Since this version of the APT is written in C4+, a Java bridge was developed to allow use
of these functions. Newer versions of the Hugin API are available in Java.
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4.5.1 Example: Flood

This example is adapted from Jensen [Jen95]. Figure 12 shows the given flood
model, and we set the rain node as the only soft evidence node. Figure 13 shows
the junction tree created by BC-Hugin. Clique 1 on the top of the tree is the big
clique that includes all soft evidence nodes. The value window (in Figure 14)
is designed to provide visual results for each propagation. A hard finding is
represented by a radio button while a text-box represents a soft finding.

Figure 12: Flood example.

5 Evaluation

Soft evidential updating can be formalized as a constrained optimization task.
The goal is to find a probability distribution such that

1. Tt satisfies all the constraints introduced by different types of soft evidence.

2. It optimizes a chosen criterion among all distributions satisfying these
constraints.

It can be proved that the big clique algorithm computes a distribution that
both satisfies all the constraints introduced by soft evidence and is closest to
the original distribution. See [VKV02] for details and proofs.

The evaluation of BC-Hugin consists of two steps:

1. Testing the hard evidential absorption of BC-Hugin: we use only hard
evidence and compare results with Hugin.

2. Testing the soft evidence absorption: we create results with hard and soft
evidence.

14



Egi Big Clique Tree Hi=]

Figure 13: BC-Hugin clique tree window for flood example. The node Rain is
the soft evidence.

5.1 Testing Hard Evidence Absorption

In this test, we test the hard evidential absorption of BC-Hugin by comparing
results with Hugin. We use the junction tree propagation algorithm for hard
evidential updating. Thus, BC-Hugin with only hard evidence must produce
the same results as Hugin. For the test, we used the input files listed in Table
4, and those files were provided by the Hugin system. For each test file, we
created a full combination of findings for each node, propagated and compared
results. For example, if there are five nodes in a test file and each node has two
states, the total number of combination of findings will be 3° by considering the
absence of a finding as a state. We found that even though BC-Hugin was much
slower than Hugin for large networks (such as the simple poker example), BC-
Hugin produced correct values, sometimes with minor numeric differences. The
biggest numeric differences for each test file are listed in Table 4. The magnitude
of the relative error ((O‘*“), where « is the correct value as computed by Hugin
and a is the “approximation” computed by BC-Hugin) is typically small.

5.2 Testing the Dependency of Soft Evidence

In hard evidence absorption, each item of hard evidence is independent of
the others, and the joint probability of hard evidence is represented by the
multiplication of the probability of each item of evidence. On the other hand,
as explained in Section 4.4, there exists a dependency relationship between items

15



Ega MHode Values [_ (O]
Flood S5
(®) No Fvidence () No Evidence
0: D4415
) yes: 00010 2
3 1 0.068
O no: 0999 bt
E B
(@) No Evidence (8! No Evidence
O yes: 0L & oyes: 04
O no: 0.9 O no: 0.5
A Rain
{8} No Evidence yes: [0.01
O yes: 0.51995
no: |0.99
& no:  0.45005
| _lni@igli;e || Propagate |

Figure 14: BC-Hugin node window for flood example. The node Rain is the
soft evidence.

of soft evidence when the corresponding variables are dependent in the model
of the agent that receives the evidence.

Two examples based on the stud farm model [Jen95, Section 3.2.1] follow.
See Figure 15 for the Bayesian network structure. In both examples, hard
evidence is entered for node “John”, and soft evidence is entered for nodes
“Ann” and “Eric”. The clique tree built by BC-Hugin for this situation is
shown in Figure 16°. The initial marginal probabilities before entering evidence
are displayed by BC-Hugin in the window shown in Figure 17.

Suppose that we enter the hard evidence that “John” is sick. The marginal
posterior probabilities that “Ann” is a carrier and that “Fric” is a carrier in-
crease to 0.6236 and 0.3862, respectively. When there is hard evidence that
“John” is sick, its ancestors “Ann” and “Eric” become d-connected and there-
fore® dependent, because only “John” is instantiated in the chain <“Ann”,
“Dorothy”, “Henry”, “John”, “Irene”, “Eric”>. Therefore, when we enter (0.5,

5This tree is not optimal. As discussed in Section 4.2, no attempt was made to optimize
junction tree construction.

6The absence of d-connectedness (d-separation) implies independence. D-connectedeness
implies dependence, except for pathological probability tables [PV91, Section 4]. The tables
in the stud farm example are not pathological.

16



Test name File name Variables/ Largest error
Number of Instantiations

Family out family out.net 5/ 243 4.9471855E-6

Wet Grass wet grass.net 4 /81 4.708767E-6

Visiting Asia asia.net 8 / 6561 5.185604E-6

Stud Farm (Figure 15) stfrm.net 12 / 708588 5.364418E-6

Flood flood.net 6 /972 5.1259995E-6

Mrs Gibbon mrs gibbon.net 5 /243 4.827976E-6

Simple Poker (Exercise 3.5 (i) in ex-3.5-i.net 5 /18000

[Jen95])

Simple Poker (Exercise 3.5 (ii) in ex-3.5-ii.net 7 / 486000 5.066395E-6

[Jen95])

Table 4: Test file list.

Ann = carrier
0.4999 (0.25)
0.0001 (0.25)

Ann = pure
0.0001 (0.25)
0.4999 (0.25)

Eric = pure
Eric = carrier

Table 5: P(Ann,Eric) and (P(Ann) x P(Eric)) for soft evidence (0.5,0.5).

0.5) as soft evidence into “Ann” and “Eric” respectively, and do a propagation,
the resulting joint probability for P(Ann, Eric) shows dependency of soft evi-
dence, as displayed in Table 5. P(Ann) x P(Eric) is 0.25 for each combination
of the values of Ann and Eric, while the joint probabilities, as computed using
BC-Hugin, reflect a strong preference for single faults. For example, P(Ann =
pure, Eric = carrier) is much greater than P(Ann = carrier, Eric = carrier).
It is easy to show (by algebraic manipulation) that P(Ann = pure, Eric = pure)
must be equal to P(Ann = carrier, Eric = carrier) and P(Ann = pure, Eric =
carrier) must be equal to P(Ann = carrier, Eric = pure).

Table 6 shows similar results for the situation in which the soft evidence (0.8,
0.2) is entered for both “Ann” and “Eric.” In this case, P(Ann = carrier, Eric =
carrier) is much smaller than the value (0.04) obtained by assuming indepen-
dence. Analogously to the previous case, it is easy to show that P(Ann =
pure, Eric = carrier) must be equal to P(Ann = carrier, Eric = pure).

Table 7 compares the results obtained by the virtual evidence and soft ev-
idence methods when the evidence for Ann and Eric is (0.5, 0.5). The virtual
evidence interpretation is that we do not know anything new, whereas the soft
evidence interpretation is that the probability that Ann is a carrier is %, and
the probability that Eric is a carrier is %, which is something very different and,
in this case at least, clearly appropriate.

17
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Figure 15: Stud farm model.

5.3 Testing Soft Evidence Absorption 1: Comparing Hard
with Soft Evidence

The main purpose of this test is to observe the behavior of BC-Hugin when soft
evidence is entered. Since hard evidence is a special case of soft evidence, when
we enter 0 and 1 as soft evidence, the result from BC-Hugin’s soft evidential
absorption must be same as the result from Hugin with the findings entered
as hard evidence. Note that the evidence was entered in BC-Hugin as soft
evidence, even though it could have been entered as hard evidence, as it should
be apparent from the BC-Hugin probability input windows. Therefore, this test
is different from the one of Section 5.1. We executed this test with the files
in Table 4 and obtained correct results. Table 8 shows one example from stud

Ann = pure | Ann = carrier
Eric = pure 0.6000 (0.64) | 0.2000 (0.16)
Eric = carrier | 0.2000 (0.16) | 0.0000 (0.04)

Table 6: P(Ann,Eric) and (P(Ann) x P(Eric)) for soft evidence (0.8,0.2).



[ Big Clique Tree ==l

Cligued : :
1ann, Fred, Dorathy, Gwenn, Eric, L, Brian, K}

Cligued i
{rene, Gwemt, Eric, Dorothy, Fred}

Figure 16: BC-Hugin clique tree window for stud farm example. There is soft
evidence for Ann and Eric.

Ann = pure Ann = carrier
Eric = pure 0.0001 (0.0152) | 0.4999 (0.6048)
Eric = carrier | 0.4999 (0.3710) | 0.0001 (0.0054)

Table 7: P(Ann,Eric) computed using the soft evidence method and (P(Ann,
Eric) computed using the virtual evidence method), with evidence (0.5,0.5).

farm. We chose to display the updated probability of three nodes (“Henry,”
“Ann,” and “John”) among the 12 nodes in the model. For each case, the
hard evidence (step a) and soft evidence (step b) for “Irene” are entered and
compared, and BC-Hugin produced correct results.

5.4 Testing Soft Evidence Absorption 2: Observation with
Soft Evidence

In this test, we demonstrate the operation of BC-Hugin on two examples with
soft evidence as well as hard evidence. The first example is the Wet grass
example of Section 3.1. Since this example is reasonably small, we manually
computed each value of nodes with soft evidence in order to verify the correctness
of the result. Please note that the value of the soft evidence node (“Holmes”)

19



Case Evidence Ann(A) Henry(H) John(J)

No. | (Hard or Soft) | P(carrier,pure) | P(carrier,pure) | P(sick,carrier,pure)
la | Hard: I=(0,1) | (0.0001, 0.9999) | (0.0001, 0.9999) (0,0,1)

1b Soft: I=(0,1) | (0.0001, 0.9999) | (0.0001, 0.9999) | (0, 0.0001, 0.9999)
2a | Hard: 1=(1,0) (0.25, 0.75) (0.17, 0.83) (0.042, 0.5, 0.458)
2b Soft: 1=(1,0) (0.25, 0.75) (0.17, 0.83) (0.042, 0.5, 0.458)

Table 8: Stud farm example for soft/hard evidence update.

did not change after propagation, which fulfills the requirement of soft evidence
absorption.

We entered soft evidence for the “Holmes” node and hard evidence for an-
other node to capture the behavior of soft evidence. In Table 9, when we
assigned higher probability for the yes state in “Holmes,” then “Sprinkler,”
“Watson,” and “Rain” have higher probability for the yes state too. This is the
correct behavior because the probability for Holmes’ grass being wet is influ-
enced by “Sprinkler” and “Rain.” When there is hard evidence added to this soft
evidence (say there is no rain, case 5), “Watson” has the same value as in case
2, because the node “Watson” is blocked by the hard evidence “Rain”. Also
“Sprinkler” now is the only influence for “Holmes”, the probability distribu-
tion is close to that of “Holmes”, the soft evidence, because Q(S =y) = P(S =
y/H=9y)-QH =y)+P(S=y|lH=n)-Q(H =n) =1-0.840.11-0.2 = (0.8022).
(Since R=y, P(S=y|H=y)=P(S|H =y,R=y) and P(S=y|lH =n) =
P(S|H=n,R=y).)

Figure 18 shows the behavior of three nodes in the stud farm model when
the soft evidence node (“Irene”) has incremental changes. The values for the
carrier state increase linearly following with the linear increase of the value
in “Irene”. For the single soft evidence case, this linear increment behavior is
correct because soft evidential update follows Jeffrey’s rule. In general, this
is only true after introducing observation variables, as explained in Sections 2
and 3.1 and, in more detail, in [VKV02]. In this particular example, however,
the required conditional probabilities are invariant upon presentation of soft
evidence. Recall that Jeffrey’s rule is,

Q4) = 3 P(AIB) - Q(B:)

where Q(B) is soft evidence, and P(A|B) is the conditional probability of A
given B).

Since the conditional probability P(A|B) is fixed, this formula can be rep-
resented by a multivariate polynomial such that the soft evidence is the de-
termining variable. For example, let a;,as be the conditional probability for
P(John = pure|Irene = pure) and P(John = pure|lrene = carrier) respec-
tively, and @1, Q2 be Q(Irene = pure) and Q(Irene = carrier) respectively.
Then Q(John = pure) = a1 - Q1+ a2 Q2 = a1 - Q1 +az- (1 —Q1) =
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Case | Evidence Holmes(H) | Watson(W) Sprinkler(S) Rain(R)
No. | (Hard or Soft) P(yes,no) P(yes,no) P(yes,no) P(yes,no)
1 | no evidence (027, 0.73) | (0.36, 0.64) (0.1, 0.9) (0.2, 0.8)
2 | Hard: R=(0,1.0) | (0.09,0.91) | (0.2, 0.8) (0.1, 0.9) (0, 1.0)
3 | Soft: H=(0.5,0.5) | (0.5,0.5) | (0.49,0.51) | (0.17,0.83) | (0.37, 0.63)
4 | Soft: H=(0.8,0.2) | (0.8,0.2) | (0.67,0.33) | (0.27,0.73) | (0.59, 0.41)

5 | Soft: H=(0.8, 0.2),
Hard: R=(0,1.0) (0.8,0.2) | (0.2,0.8) | (0.8022,0.1978) | (08, 0.2)

(a1 — a2) - Q1 + .

Table 9: Wet grass example with soft evidence node “Holmes”.

Since a; and ag are constant, this function is linear.

We note that this is a slight generalization of the polynomial network repre-
sentation discussed in [Dar00] and based on the following theorem [CG96] (as
stated in [Jen99]): “Let BN be a Bayesian network. Let a be a state of the
variable A, let e be a set of observations, and let ¢ be a simple parameter in
BN. Then, P(a,e) as well as P(e) are linear functions in ¢.”
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Figure 17: BC-Hugin probability input window for stud farm example, before
entering evidence.
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Figure 18: The linear behavior of nodes in stud farm model.
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6 Conclusion

We have described BC-Hugin, a program for soft evidential update that im-
plements the big clique algorithm. We have given several examples of use of
BC-Hugin. We have tested BC-Hugin in various ways.

6.1 Complexity Issues

In [VKVO02], we describe an alternative algorithm for soft evidential update,
based on the space-saving implementation of IPFP [Jir91], which does not re-
quire the construction of a big clique but requires iteration over all the cliques.
To be more precise, it is necessary to iterate only on cliques that form a path
in the junction tree that includes all soft evidence variables.

We illustrate this point and the existence of a trade-off between the two
algorithms by examples on a simple class of Bayesian networks. Consider a
Bayesian network structure that consists of a single path of n nodes, as in
Figure 19. The junction tree of minimum state-space size for that graph is
shown in Figure 20.

Figure 19: A path of n nodes.

G~

Figure 20: The junction tree of minimum total state-space size for the path
network.

Assume that soft evidence is entered on two nodes that are not adjacent.
The big clique built by the big clique algorithm in this case will contain three
nodes: two of them are the soft evidence nodes, and the third one is a node
between the soft evidence nodes in the chain. Clearly, the state space for the
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junction tree built by the big clique algorithm is larger than the state space for
the junction tree of Figure 20, if each variable has more than two values.

With respect to Figure 19, assume that soft evidence is observed for nodes V;
and V,,, with w > t+1. The algorithm based on the state-space saving implemen-
tation of IPFP requires cycling over each clique between V;, V11 and V,,_1,V,,
ie, {Vi, Vigr}, {Vig1, Viga}, oo, {Vu—1,Va}. The union of these cliques is a
superset of the big clique. Still, it is possible for the state-space saving imple-
mentation of IPFP to be faster, because each cycle of IPFP requires propagation
in a junction tree all of whose cliques contain only two nodes, while the junction
tree for the big clique algorithm contains at least one cliques with three nodes.

The precise trade-off depends on the state-space size of the individual vari-
ables and on how far apart in the path the variables V; and V,, are: by making
the distance between ¢t and u larger, we force the space saving implementation
of IPFP to iterate over a larger number of nodes, while the big clique algo-
rithm will always iterate only over three nodes. We conjecture that this is the
dominant factor in the complexity of these procedures; further analysis and
experimentation are needed.

6.2 Future Work

The implementation could be tuned for performance. In particular, as described
in Section 4.2, the size of the junction tree constructed by BC-Hugin could be
greatly reduced by using standard techniques. We need to work on application
of soft evidential update to decision nets (influence diagrams). We need to com-
pare the big clique algorithm to the iterative modification of the junction tree
algorithm described in [VKV02] and based on the state-space saving implemen-
tation of IPFP [Jir91]. We need to study further the possibility or impossibility
of algorithms that require neither a big clique nor iteration over all nodes. The
rumor problems for agent-encapsulated Bayesian networks needs to be solved.
The infrastructure necessary for large-scale applications of soft evidential update
needs to be built. See [Kim01] for the design and prototypical implementation
of a system for time-critical decision making with communicating agents that
uses soft evidential update.
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