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Introduction 

A Bayesian network – also called a belief network or causal probabilistic network- is a 

graphical representation of probabilistic information: It is a directed acyclic graph in 

which nodes represent random (stochastic) variables, and links between nodes represent 

direct probabilistic influences between the variables. In this formalism, propositions are 

given numerical probability values signifying the degree of belief accorded them, and the 

values are combined and manipulated according to the rules of probability theory. 

Typically, the direction of a connection between nodes indicates a causal influence or 

class-property relationship [1]. 

 

Bayesian statistical inference uses probabilities for both prior and future events to 

estimate the uncertainty that is inevitable with prediction.  The fundamental concept in 

Bayesian networks is that probabilities can be assigned to parameter values, and through 
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Bayes’ theorem, these probabilities can be updated given new data. In Bayesian models 

the parameter is viewed as a domain variable, with a probability distribution, since the 

actual value of the parameter is unknown. The causal links between the variables are 

represented by arrows in the model. The model is strong if the arrows can be interpreted 

as causal mechanisms. The relationships can, alternatively, be considered an association 

and this type of model would be viewed more cautiously. 

 

Bayesian networks can express the relationships between diagnoses, physical findings, 

laboratory test results, and imaging study findings. Physicians can determine the a priori 

(“pre-test”) probability of a disease, and then incorporate laboratory and imaging results 

to calculate the a posteriori (“post-test”) probability [2].  Bayesian networks can be used 

to plan diagnostic tests and therapeutic intervention [3]. Efforts are underway to 

formulate large, general medical decision support systems such as Iliad [4] and QMR [5] 

into Bayesian networks. 

 

Model Building 

Data of 167 elderly subjects used in this model building were randomly collected in our 

earlier research project entitled “Cholesterol, Selected Minerals and Health Status of the 

Elderly in South Carolina” at S. C. State University, Orangeburg, SC [6]. The above 

study took an interdisciplinary look at a variety of factors that affect older adults’ well 

being. The interaction of these variables could yield further information for the 
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development of nutritional guidelines and exercise recommendations for this population. 

This exploratory study had four main objectives. 

• To assess serum cholesterol values in an elderly population. 

• To assess the Calcium, Copper and Magnesium status in an elderly population 65 

years old and older. 

• To assess the dietary intake of nutrients using 24-Hours Diet Recall. 

• An activity questionnaire was completed to assess subject’s physical activity level. 

 

The above study used a modified cluster stratified sampling technique, which is an 

effective method of choosing subjects. Subjects were stratified on four levels of 

independence since this variable can affect the intake of nutrients, health care and health 

status of individuals.  Seventeen variables were carefully chosen from the above study 

based on relevant information reported in the literature [6] and also the author’s expertise 

in biochemistry, nutrition and Public health research. 

 

The network was constructed using the Hugin graphic interface [1]. Directed causal links 

were drawn from the parent variable to its children. The various levels (states) of the 

variables were also entered. For variables without parents, prior probabilities of the 

various states were entered. For the variables with one or more parents, the designer of 

the model assigned conditional probabilities. The network was ready at this point and the 

prior probabilities of the different states of all the variables were read from the network 

monitor. 
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Results and Discussion 

Bayesian networks represent a promising technique for clinical decision support and 

provide a number of powerful capabilities for representing uncertain knowledge. They 

provide a flexible representation that allows one to specify dependence and independence 

of variables in a natural way through the network topology. Because dependencies are 

expressed qualitatively as links between nodes, one can structure the domain knowledge 

qualitatively before any numeric probabilities need to be assigned. 

 

The schematic diagram (Figure 1) shows the probabilistic model of heart disease. Out of 

17 variables, 13 were identified as predecessors and 4 as children of heart disease. The 

predecessors, Atherosclerosis, High BP, Family History, Serum Selenium and Adverse 

Medicine were identified as parents, and ECG, Angina Pectoris, Miocardial Infraction 

and Rapid Heartbeats as children of heart disease. Some of the predecessors do not 

influence heart disease directly but influence through their respective parent nodes. For 

example, smoking and alcohol and obesity do not influence heart disease directly but 

through their common parent node, High BP. 

 

Parent nodes established predictive (or causal) reasoning, i.e. cause to effect, and children 

nodes established diagnostic (or evidential) reasoning, i.e. effect to cause. 

The variables and their states, and conditional probabilities are enumerated in  

Tables 1- 6. In order to simplify the calculation of conditional probabilities of the 

variables, we have assumed that the model typically behaves like a Noisy-OR-gate with 

discrete binary nodes. There are two reasons why the noisy-OR model is valuable. The 
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first reason is that the model can easily be expanded to many diseases. Each new cause of 

heart disease only requires the specification of one conditional probability to generate an 

exponentially growing table of conditional probabilities for heart disease. The second 

reason, which is probably the most important, is that the obvious difficulties involved in 

providing statistical data for all possible combinations of 13 predecessors that may all or 

combination of all may cause heart disease. In this case we are better off replacing 

statistics by some plausible assumption about the interaction of the different causes of 

heart disease, allowing us to generate plausible conditional probabilities that cannot be 

supported by statistics from the few conditional probabilities that can be supported by 

statistics. However, the Noisy-OR-gate assumes that the variables act independently and 

there are no synergestic or antagonistic effect of variables on heart disease [7]. This is 

one of the limitations of the model.  

 

The conditional probability tables have been generated (Tables 1 – 6) assuming Noisy-

OR gate approximation. For the sake of clarity and understanding, we have given the 

assumptions and calculations involved in the conditional probability of Atherosclerosis 

given Serum Triglycerides, Serum LDL, Moderate Exercise and Cholesterol HDL Ratio. 

There are five events that cause Atherosclerosis. 

• Background causes are responsible for Atherosclerosis 20% of the time. 

• Serum Triglycerides (High) cause Atherosclerosis with probability 0.60. 

• Serum LDL (High) causes Atherosclerosis with probability 0.40. 

• Moderate Exercise (No) causes Atherosclerosis with probability 0.10. 

• Cholesterol HDL Ratio (High) causes Atherosclerosis with probability 0.10. 
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The Noisy-OR approximation can be interpreted in the following way. If any one of the 

causes is present then there would be Atherosclerosis, unless something has prevented it. 

For example, there is a 40% of chance that some inhibitor prevents Atherosclerosis when 

Serum Triglycerides are high. We assumed that these preventing factors are independent. 

So the combined probabilities are easy to calculate as one minus the product of the 

probabilities for the appropriate inhibitors (Note that the background causes are always a 

fact). For Example, the conditional probability of Atherosclerosis when Serum 

Triglycerides, Serum LDL, Cholesterol HDL Ratio are high and Moderate Exercise is 

absent is given by the following expression: 

P (Atherosclerosis | Serum Triglycerides = high, Serum LDL = high,  

Cholesterol HDL Ratio = high, Moderate Exercise = No, Background Causes) 

= 1 – (1 – 0.6)(1 – 0.4)(1 – 0.1)(1 – 0.1)(1 – 0.2) = 0.84 

 

Similarly, P (Atherosclerosis | Serum Triglycerides = low, Serum LDL = low,  

Cholesterol HDL Ratio = low, Moderate Exercise = Yes, Background Causes) 

= (1 – 0.8) = 0.20  

The conditional probabilities of other fourteen cases can be calculated in an analogous 

way. The conditional probabilities of all sixteen cases have shown in Table 3.  

 

We generated seven cases with instantiation for a subset of variables to be sure that the 

model is working effectively. We ran these cases on the model and came up with the 

probabilities for each of the variables. In the first case (Figure 2), there was no evidence, 

and the model calculated the probability of heart disease based on probabilities of the 
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input variables. We found that our subjects have 64% probability of heart disease, which 

justified our findings of lipid (cholesterol) profile report that the subjects belong to a 

moderate risk category of heart disease. 

 

In the second (Figure 3) and third (Figure 4) cases we have introduced evidence of 

adverse and good health respectively, and the model calculated the probabilities of heart 

disease. In the case of adverse health scenario, the evidence was that all of the 

predecessors of heart disease, except for Adverse Medicine and Serum Selenium, were in 

the adverse state. The model correctly updated the probabilities of every other variable. 

In particular, the probability of heart disease was updated to 93%, the probability of 

abnormal Serum Selenium, a parent of heart disease, increased from 46% in the no-

evidence case to 70%, and the probability of abnormal ECG, a child of heart disease, 

increased from 62% in the no-evidence case to 88%. Similarly in case of good health 

scenario, the evidence was that all of the predecessors of heart disease, except for 

Adverse Medicine and Serum Selenium, were in the good state. The model correctly 

updated the probabilities of every other variable. In particular, the probability of heart 

disease was updated to 17%, the probability of abnormal Serum Selenium, a parent of 

heart disease, decreased from 46% in the no-evidence case to 30%, and the probability of 

abnormal ECG, a child of heart disease, decreased from 62% in the no-evidence case to 

20%.  This small probability of heart disease (17%) (in case of evidence of good health) 

can be attributed to a leak probability in the Noisy-OR model i.e. some other factors may 

be responsible for heart disease, which the model did not take into account. This is 

another limitation of the model. 
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In cases four and five, the model calculated the marginal probabilities of each variable 

when heart disease was present and absent, respectively. 

 

In case four (Figure 5), the marginal probabilities of the parents nodes i.e. 

Atherosclerosis, High BP, Serum Selenium increased considerably as compared to case 

one. Similarly the marginal probabilities of all the children nodes increased considerably 

in case four as compared to case one. This is justified by the causal links between heart 

disease and its parents and heart disease and its children.  In case five (Figure 6), our 

observation was just the opposite of what we observed in case four. One significant 

observation in this case was the increase in marginal probabilities of normal ECG (95%) 

and no Miocardial Infraction (95%) when heart disease was absent. This suggests that 

ECG and Miocardial Infraction are the most specific diagnostic tools for heart disease.  

Combining cases four and five we conclude that ECG is both a very sensitive and 

specific diagnostic tool for heart disease, whereas Miocardial Infraction is very specific 

but not as sensitive as ECG. 

 

Case six (Figure 7) justified the causal links between heart disease and its parents. When 

Atherosclerosis, High BP and Serum Selenium were forced to be adverse, the probability 

of heart disease increased significantly (64% to 91%) with P (evidence) = 0.124406. This 

established the fact that among its parents Atherosclerosis, High BP and Serum Selenium 

contribute significantly towards heart disease.  On the contrary in case seven (Figure 8), 

when we increased the probabilities of Adverse Medicine and Family History to 

maximum, keeping the probabilities of other three parent nodes unchanged, the 
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probability of heart disease increased very little (64% to 72%) with P (evidence) = 0.03. 

The change in probability of heart disease suggests that Adverse Medicine and Family 

History do not contribute significantly towards heart disease as compared to 

Atherosclerosis, High BP and Serum Selenium. But when either High BP or 

Atherosclerosis  was in the adverse state along with Adverse Medicine and Family 

History, the probability of heart disease increased to 88%. The large difference between 

the probability of evidence in the two cases (case six and seven) suggests that Adverse 

Medicine and Family History are not sufficient causal factors for heart disease. 

 

Here are some comments on additional test cases. We noticed that among the children of 

heart disease, when ECG or Miocardial Infraction was in the adverse state, the 

probability of heart disease increased very substantially (64% to 97%), but when Angina 

Pectoris or Rapid Heartbeats was in the adverse state, the probability of heart disease 

increased only marginally: from 64% to 79% and from 64% to 85% respectively. When 

High BP was in the adverse state and the other four parents were not observed, the 

probability of heart disease increased from 64% to 80%, and when Atherosclerosis was in 

the adverse state and the other four parents were not observed, the probability of heart 

disease increased from 64% to 81%. The results on these cases also suggested that High 

BP  and Atherosclesosis are important factors for heart disease, and ECG and Miocardial 

Infraction are important diagnostic tools of heart disease.   
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Conclusions 

• The model should be treated only as a prototype. 

• The variables of the model act independently i.e. the model did not take into account 

any synergistic or antagonistic interactions of the variables that might influence the 

heart disease [7]. 

• The model did not take into account other unknown factors that might influence heart 

disease. 

• The available test results show that the model is working well with the available data. 

• ECG is both a very sensitive and specific diagnostic tool for heart disease, whereas 

Miocardial Infraction is very specific but not as sensitive as ECG. 

• Adverse Medicine and Family History do not contribute significantly towards heart 

disease as compared to Atherosclerosis, High BP and Serum Selenium. 

• Careful thoughts and consideration should be given to find the causes of heart 

disease. 

• Synergistic and antagonistic interactions of the variables should be taken into 

consideration that might influence the heart disease. 

• More data need to be collected to make sure that the model is fully functional. 

• Our model can be improved by using more recent datasets and by addition of new 

variables or editing the directed causal links. The available data made it impossible to 

improve the accuracy further. 

• The model should be validated using a different dataset than the one used for its 

construction. 
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Table 1. Conditional probability of Heart Disease given Atherosclerosis, Serum                                   

Selenium, High Blood Pressure, Family History and Adverse Medicine. 

Abbreviation used: Atheresclerosis (ATS), Serum Selenium (SSM), High Blood                                    

Pressure (HBP), Family History (FH), Adverse Medicine (ADM), and  

Heart Disease (HD) and Probability (P). 

States used: ATS (Yes, No), SSM (Norm, Abnorm), HBP (High, Norm), 

                     FH (Yes, No), ADM (Yes, No). 

ATS SSM HBP FH ADM P(HD) P(¬HD) 
       

 
Yes Abnorm High Yes Yes 0.94 0.06 
Yes Abnorm High Yes No 0.93 0.07 
Yes Abnorm High No  Yes 0.92 0.08 
Yes Abnorm High No No 0.91 0.09 
Yes Abnorm Norm Yes No 0.84 0.16 
Yes Abnorm Norm Yes No 0.82 0.18 
Yes Abnorm Norm No Yes 0.80 0.20 
Yes Abnorm Norm No No 0.78 0.22 
Yes Norm High Yes Yes 0.91 0.09 
Yes Norm High Yes No 0.91 0.09 
Yes Norm High No Yes 0.90 0.10 
Yes Norm High No No 0.89 0.11 
Yes Norm Norm Yes Yes 0.80 0.20 
Yes Norm Norm Yes No 0.78 0.22 
Yes Norm Norm No Yes 0.76 0.24 
Yes Norm Norm No  No 0.73 0.27 
No Abnorm High Yes Yes 0.79 0.21 
No Abnorm High Yes No 0.77 0.23 
No Abnorm High No Yes 0.74 0.26 
No Abnorm High No No 0.71 0.29 
No Abnorm Norm Yes Yes 0.48 0.52 
No Abnorm Norm Yes No 0.42 0.58 
No Abnorm Norm No Yes 0.35 0.65 
No Abnorm Norm No  No 0.28 0.72 
No Norm High Yes Yes 0.74 0.26 
No Norm High Yes No 0.71 0.29 
No Norm High No Yes 0.68 0.32 
No Norm High No No 0.64 0.36 
No Norm Norm Yes Yes 0.35 0.65 
No Norm Norm Yes No 0.28 0.72 
No Norm Norm No  Yes 0.19 0.81 
No Norm Norm No No 0.10 0.90 
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Table 2.  Conditional probability of High Blood Pressure given Medicine Taken,          

                Smoking and Alcohol, Moderate Exercise and Obesity.  

 

Abbreviation Used: Medicine Taken (MED), Smoking and Alcohol (SMALC),  

                                  Moderate Exercise (MEXC), Obesity (OBT),  

                                  High Blood Pressure (HBP), Probability (P). 

States Used: MED (Yes, No), SMALC (Yes, No), MEXS (Yes, No), 

                      OBT (Yes, No). 

 

MED SMALC MEXS OBT P(HBP) P(¬HBP) 

 

No Yes No Yes 0.92 0.08 

No Yes No No 0.87 0.13 

No Yes Yes Yes 0.85 0.15 

No Yes Yes No 0.79 0.21 

No No No Yes 0.76 0.24 

No No No  No 0.70 0.30 

No No Yes Yes 0.58 0.42 

No No Yes No 0.52 0.48 

Yes Yes No Yes 0.58 0.42 

Yes Yes No No 0.52 0.48 

Yes Yes Yes Yes 0.40 0.60 

Yes Yes Yes No 0.34 0.66 

Yes No No  Yes 0.31 0.69 

Yes No No No 0.25 0.75 

Yes No Yes Yes 0.13 0.87 

Yes No Yes No 0.07 0.93 
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Table 3.  Conditional probability of Atherosclerosis given Serum LDL,          

                Serum Triglyceride, Moderate Exercise and Choresterol HDL Ratio.         

                 

Abbreviation Used: Serum LDL (SLDL), Serum Triglyceride(STRIG),  

                                  Moderate Exercise (MEXC),  

                                  Cholesterol HDH Ratio (CHDLR), 

                                  Atherosclerosis (ATS), Probability (P). 

States Used: SLDL (High, Low), STRIG (High, Low), MEXS (Yes, No), 

                      CHDLR (High, Low). 

 

SLDL STRIG MEXC CHDLR Pr (ATS) Pr (¬ATS) 

 

High High No High 0.84 0.16 

High High No Low 0.83 0.17 

High High Yes High 0.83 0.17 

High High Yes Low 0.81 0.19 

High Low No High 0.61 0.39 

High Low No Low 0.57 0.43 

High Low Yes High 0.57 0.43 

High Low Yes Low 0.52 0.48 

Low High No High 0.74 0.26 

Low High No Low 0.71 0.29 

Low High Yes High 0.71 0.29 

Low High Yes Low 0.68 0.32 

Low Low No High 0.35 0.65 

Low Low No Low 0.28 0.72 

Low Low Yes High 0.28 0.72 

Low Low Yes Low 0.20 0.80 
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Table 4.  Conditional probabilities of ECG, Angina Pectoris, Rapid Heartbeats and  

                Miocardial Infraction as Children, given Heart Disease.         

                 

Abbreviation Used: Angina Pectoris (ANGP), Miocardial Infraction (MIOCAR), 

                                  Rapid Heartbeats (RHB), Heart Disease (HD), 

                                  Probability (P). 

States Used: ECG (Norm, Abnorm), ANGP (Yes, No), MIOCAR (Yes, No),  

                      RHB (Yes, No). 

 

Variable State P (HD) P (¬HD) 

ECG Abnorm 0.95 0.05 

 Norm 0.05 0.95 

 

ANGP Yes 0.85 0.15 

 No 0.40 0.60 

 

MIOCAR Yes 0.90 0.10 

 No 0.05 0.95 

 

RHB Yes 0.99 0.01 

 No 0.30 0.70 

 

 

 

 

 

 

 

 

 

 

 



 15

 

Table 5.  Conditional probabilities of Serum Selenium, Serum LDL,  

    Cholesterol HDL Ratio, and Serum Triglyceride given Diet. 

 Abbreviation Used: Serum LDL (SLDL), Serum Triglyceride(STRIG),  

    Cholesterol HDH Ratio (CHDLR),  Serum Selenium (SSM), Probability (P). 

States Used: SLDL (High, Low), STRIG (High, Low), SSM (Abnorm, Norm), 

    CHDLR (High, Low), Diet (Good, Bad). 

 

Variable State P(Diet) = Good P(Diet) = Bad 

SLDL High 0.25 0.75 

 Low 0.75 0.25 

 

STRIG High 0.30 0.70 

 Low 0.80 0.20 

 

CHDLR High 0.25 0.75 

 Low 0.75 0.25 

 

SSM Abnorm 0.30 0.70 

 Norm 0.70 0.30 

 

 

Table 6.  Conditional probability of Obesity given Moderate Exercise and Diet.                     

Abbreviation Used: Obesity (OB), Moderate Exercise (MEXC), Diet (DIET) , Probability (P). 
States Used: MEXC(No, Yes),  DIET (Bad, Good). 

MEXC 

 

DIET P(OB) P(¬OB) 

No Bad 0.6 0.4 

No Good 0.1 0.9 

Yes Bad 0.1 0.9 

Yes Good 0.05 0.95 
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Figure 1: Probabilistic Model of heart disease 

 

 

                      Figure 2: Probability of heart disease with no evidence 
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Figure 3: Probability of heart disease with evidence of adverse health 

             

Figure 4: Probability of heart disease with evidence of good health 
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     Figure 5: Marginal  probability of each variable when heart disease is present    

 

      

 Figure 6: Marginal probability of each variable when heart disease is absent 
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Figure7: Probability of heart disease when Atheroscelorosis, High BP and Serum 

Selenium are high 

Figure 8: Probability of heart disease when Adverse Medicine and  

Family History are high 
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