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Abstract

An experiment in Bayesian model building from a large medical
dataset for Mental Retardation is discussed in this paper. We give a
step by step description of the practical aspects of building a Bayesian
Network from a dataset. We enumerate and briefly describe the tools
required, address the problem of missing values in big datasets result-
ing from incomplete clinical findings and elaborate on our solution to
the problem. We advance some reasons why imputation is a more de-
sirable approach for model building than some other ad hoc methods
suggested in literature. In our experiment, the initial Bayesian Net-
work is learned from a dataset using a machine learning program called
CB. The network structure and the conditional probabilities are then
modified under the guidance of a domain expert. We present valida-
tion results for the unmodified and modified networks and give some
suggestions for improvement of the model.
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1 Introduction

A large quantity of non-experimental data is generated in Medicine from
studies of the natural history of disease, case reports and epidemiological
surveys!. If experiments are well-designed, it is comparatively easy to ana-
lyze and interpret the data obtained. But, making sense of non-experimental
data is a difficult task and involves a huge investment of time, effort and ex-
pertise. However, data collected for one purpose can often be used to answer
other questions. Federally funded research projects make datasets available
after the original study is completed. These datasets often are underutilized.
This type of data is also referred to as archival data and is basically avail-
able to the investigators in “as is” condition [ZyBa91]. Techniques based on
Bayesian networks hold great promise in the task of detecting associations
which can be interpreted (with great caution!) as causal relationships using
non-experimental data [PeVe91, Pear00].

We developed a model to answer the question—“What is the risk of
Mental Retardation (MR) for a particular pregnancy or infant based on in-
formation from the prenatal, perinatal or postnatal period?” We do not
have a diagnostic model in mind. We expect our model to quantify the risk
of MR outcome, which in the early prenatal period can be used as a guide-
line for seeking invasive procedures such as amniocentesis for arriving at a
definitive diagnosis and recommendation about the desirability of sustaining
the pregnancy. During infancy the model may be used to screen children
who are at greater risk for MR to plan special educational or environmental
interventions.

The prevalence of MR is estimated to be about 2.5 per cent of the pop-
ulation [Bats93, StSu92]. MR is a developmental disability with a complex
etiology, and the causative factors and mechanisms are not well understood.
“Mental Retardation is characterized by significantly subaverage intellec-
tual functioning” [AAMR92, p.5]. The American Association on Mental
Retardation (AAMR) quantifies the identification of people as those scoring
below two Standard Deviations (SD) in a standardized 1Q test [AAMR92,
p.5]. These tests are usually normalized to a mean of 100 with a SD of 15.

LA similar situation exists in many other fields, both in the social and in the natural
sciences; consider the tremendous amount of non-experimental data sent by spacecraft for
an example outside the social sciences



Those with scores below 50 are classified as having severe mental retarda-
tion. Scores in the category of 50-69 fall in the classification of Mild Mental
Retardation (MMR). AAMR suggests inclusion of limitation of adaptive
skills for individual diagnosis [AAMR92, p.6], but many studies have used
cognitive tests (IQ scores) for classification [StSu92, McDe93].

We shall use IQ scores and include the additional category of Borderline
Mental Retardation (BMR, scores falling between one and two standard
deviations). For severe MR a cause can be found in the majority of cases.
In MMR, which forms 85% of MR, a cause cannot be identified in half the
cases [Bats93].

So here we have a complex web of unknown causal mechanisms, dis-
agreement among experts, controversies (the large literature of nature ver-
sus nurture) and serious gaps in the experts’ understanding of the etiological
factors. A Bayesian modeling approach may shed some light on the causal
mechanisms, give us a tool for prediction of MR and open up avenues for
early intervention—medical and social.

A companion publication in the developmental disabilities literature [MaMc97]
discusses our model further from a medical perspective. In this paper, we
discuss the techniques used in model building and validation from an applied
artificial intelligence perspective.

2 Model Building Methodology

We refer the reader to [Neap90, Section 5.3] for a precise and thorough
definition of Bayesian network and to [Pear88, Char91, SDLC93, CDLS99,
Jens96, Jens01] for extended presentations of related concepts. We only give
a sketch of the definition with a brief example.

A Bayesian network consists of a directed acyclic graph (DAG), prior
probability tables for the nodes in the DAG that have no parents, and con-
ditional probabilities tables for the nodes in the DAG given their parents.
(We identify nodes in the DAG and the variables they represent.) The net-
work and the probability tables define a joint probability distribution on
all variables corresponding to the nodes, with the defining property that
the conditional probability of any variable v given any set of variables that
includes only nodes that are not descendent of v is equal to the conditional
probability of v given only its parents. From this property, it follows that
the joint probability of the variables in a Bayesian network decomposes in
a multiplicative fashion; more precisely, if V' is the set of the nodes in the
DAG, the following equality (the chain rule for Bayesian networks) holds:



P(V) =II,ey P(v | parents(v)). In turn, this decomposition allows for very
efficient computation of marginal posterior probabilities upon observation
of evidence.

As an example, the graph in Figure 1 models a small portion of the
mental retardation domain. We do not claim that this model is accurate or
sensible: it is provided only for the sake of illustration. At the depth of un-
derstanding required for the example, the names of the variables should be
considered self-explanatory. Recall that a Bayesian network is composed of
two parts: an acyclic directed graph and the numerical specification of con-
ditional and prior probability tables. Three features of Bayesian networks
are worth mentioning.

First, the directed graph constrains the possible joint probability dis-
tributions represented by a Bayesian network. For example, in any distri-
bution consistent with the graph of Figure 1, Chld_Ravn (the 1Q score of
the child) is conditionally independent of Fam_Inc (Family Income) given
Mom_Age_Birth (the age of the mother at birth) and Mom_Smoke (whether
the mother smokes); also, P_Mom (the 1Q score of the mother) is condition-
ally independent of any subset of the other variables given Mom_Smoke.

Secondly, the explicit representation of constraints about conditional in-
dependence allows a substantial reduction in the number of parameters to
be estimated. In the example, assume that the possible values of the five
variables are given in Table 1. Then, the joint probability table
P(Fam_Inc, Mom_Age_Birth, Mom_Smoke, Chld_Ravn, P_Mom) has 2 x
3 X2 x4 x4 =192 entries. It would be very difficult to assess 191 indepen-
dent parameters’. However, the independence constraints encoded in the
graph permit the factorization
P(Fam_Inc, Mom_Age_Birth, Mom_Smoke, Chld_Ravn, P_Mom) =
P(Fam_Inc)x P(Mom_Age_Birth | Fam_Inc)x P(Mom_Smoke | Fam_Inc)
x P(Chld_Ravn | Mom_Age_Birth, Mom_Smoke)x P(P_Mom | Mom_Smoke),
which reduces the number of parameters to be estimated to 1+4+2+18+6 =
31. The second term in the sum corresponds to the conditional probability
table for em Mom_Age Birth given em Fam_Inc, which is given in Table 2;
note that there are only four independent parameters to be estimated, since
the sum of values by column is one. Again, we emphasize that these numbers
are fictitious.

Thirdly, the Bayesian network representation allows a substantial (usu-
ally, dramatic) reduction in the time needed to compute marginals for each
variable in the domain. The explicit representation of constraints on inde-

2Probabilities sum to 1, so one of the 192 parameters is dependent on the other 191.



Mom_Age Birth

Figure 1: A Microscopic Model of MR



Fam_Inc >=10000, <10000
Mom_Age_Birth 14-19, 20-34, >=35
Mom_Smoke yes, no
Child_Rawvn mild, border, normal, super
P_Mom mild, border, normal, super

Table 1: Values of the Five Micro-Mentor Variables

Fam_Inc
>=10000 | <10000
14-19 0.1 0.3
20-34 0.7 0.6
>=35 0.2 0.1

Table 2: Conditional Probability Tables for Mom_Age_Birth Given Fam_Inc

pendence relations is exploited to avoid the computation of the full joint
probability table in the computation of marginals, both prior and condi-
tioned on observations. Space prevents the description of the relevant al-
gorithms. See, e.g., [Jens01, Ch.5] for a discussion of the junction tree
algorithm, the most widely used one.

There are two methods of building a Bayesian network for a particular
application domain. The first method consists of asking the domain expert
to construct the network (DAG) and assign the prior and conditional prob-
abilities. The second method consists in building the network from data.
There are several algorithms available to accomplish this learning task—
for example, BIFROST [LaTS93], K2 [CoHe92] and CB [SiVa93, SiVa95].
The prior and conditional probabilities can also be computed from data.
The models are validated by comparing with the performance of an expert
[SDLC93]. We use a combination of the two strategies—capture the skeleton
network from data using the CB algorithm and refine the DAG with the help
of the expert and published literature. Prior and conditional probabilities
are obtained from data and fine-tuned by the expert.



3 Datasets Used in Model Construction

We obtained the Child Health and Development Study (CHDS) data set,
which was developed in a study concerning pregnant mothers and their
children [CHDS87]. The children were followed through their teen years
and included numerous questionnaires, physical and psychological exams,
and special tests. The study was conducted by the University of California
at Berkeley and the Kaiser Foundation. It started in 1959 and continued
into the 1980’s. There are approximately 6000 children and 3000 mothers
with IQ scores in the data set. The children were either 5 years old or 9
years old when their IQs were tested. The IQ test used for the children was
the Raven Progressive Matrices Test. The mothers’ I1Qs were also tested,
and the test used was the Peabody Picture Vocabulary Test.

We identified about 50 variables scattered among several CHDS files
that are thought to play a role in the causal mechanism of MR. Under the
guidance of the domain expert this set of fifty variables was reduced to a
set of twenty-three resulting in the datasets described in 3.1. The subject
expert thought that this set of variables was sufficient to capture the domain
knowledge. Only one child of the mother is included in each of the datasets.
Table 3 contains a list of the twenty-three variables used in the final Bayesian
network. (The files used in network construction include a twenty-fourth
variable, MAR_STAT, indicating marital status of the mother, which was
removed at a late stage.)

3.1 Datasets Used for Network Construction

RAVNG6X24 This dataset contains 5985 cases and 24 variables. In this
dataset many of the IQ scores of mothers are missing. The percentage
of missing values is 12. This dataset is the total relevant dataset

RAVN2X24 This dataset contains 2212 cases and 24 variables. The IQ
scores of mothers and children are present. There are no missing values
for the IQ scores. This is a subset of the RAVN6X24 dataset. with
all the rows which did not have IQ scores for the mother and child
removed. The percentage of missing values is 4.

RAVN6X23 This dataset contains 5985 cases and 23 variables. As only
about 3000 mothers were given 1Q tests, this dataset was created with-
out the variable P_-MOM (IQ score of the mother). This is also a subset
of the RAVN6X24 dataset with the variable mother’s IQ deleted. The
percentage of missing values is 10.



Variable

What the Variable Represents

MOM_RACE

Mother’s race classified as White (European or White and American Indian or others
considered to be of white stock) or non-White (Mexican, Black, Oriental,

interracial mixture, South-East Asian).

MOMAGE_BR

Mother’s age at time of child’s birth categorized as 14-19 years, 20-34 years, or > 35 years.

Mother’s education categorized as < 12 and did not graduate, high school, graduated

MOM_EDU . .
high school, and >high school (attended college or trade school).
DAD_EDU Father’s education categorized same as mother’s.
Yes if mother had one or more of lung trouble, heart trouble, high blood pressure, kidney trouble,
MOM_DIS convulsions, diabetes, thyroid trouble, anemia, tumors, bacterial disease, measles, chicken pox,
herpes simplex, eclampsia, placenta previa, any type of epilepsy, or malnutrition; no otherwise.
FAM_INC Family income categorized as < $10,000 or > $10,000.
MOM_SMOK Yes if mother smoked during pregnancy; no otherwise.
Mother’s alcoholic drinking level classified as mild (0-6 drinks
MOM_ALC
per week), moderate (7-20), or severe >20).
PREV_STILL Yes if mother previously had a stillbirth; no otherwise.
PN_CARE Yes if mother had prenatal care; no otherwise.
MOM_XRAY Yes if mother had been X-rayed in the year prior to or during the pregnancy; no otherwise.
Period of gestation categorized as premature (< 258 days),
GESTATN
or normal (259-294 days), or postmature (> 295 days)..
Fetal distress classified as yes if there was prolapse of cord, mother had a history of
FET_DIST uterine surgery, there was uterine rupture or fever at or just before delivery,
or there was an abnormal fetal heart rate; no otherwise.
INDUCE_LAB Yes if mother had induced labor; no otherwise.
C_SECTION Yes if delivery was a caesarean section; no if it was vaginal.
CHLD_GEND Gender of child (male or female).
BIRTH-WT Birth weight categorized as low < 2500 g) or normal (> 2500 g).
RESUSCITN Yes if child had resuscitation; no otherwise.
HEAD_CIRC Normal if head circumference is 20 or 21; abmormal otherwise.
Child anomaly classified as yes if child has cerebral palsy, hypothyroidism, spina bifida,
CHLD_ANOM Down’s syndrome, chromosomal abnormality, anencephaly, hydrocephalus, Turner’s syndrome,
cerbellar ataxia, speech defect, Klinefelter’s syndrome, or convulsions; no otherwise.
Child’s health problem categorized as having a physical problem, having a behavior problem
CHLD_HPRB . P . g - g a phy P s g P s
having both a physical and a behavioral problem, or having no problem.
Child’s cognitive level, measured by the Raven test,
CHLD_RAVN
categorized as mild MR, borderline MR, normal, or superior.
Mother’s cognitive level, measured by the Peabody test,
P_MOM

categorized as mild MR, borderline MR, normal, or superior.

Table 3: The variables used in MENTOR.




All three datasets were used for network construction, as explained in sec-
tion 6.1.

4 Tools for Model Building

The CB algorithm takes as input a dataset with no missing values and
outputs a Bayesian network structure. The network structure, when aug-
mented with suitable conditional probability tables constitutes a Bayesian
network, as defined in Section 2 that models the data, in the sense that
the data can be taken to be a sample of the distribution encoded by the
network. Moreover the network structure output by CB has usually only a
few edges, because it exploits independence relations among variables well.
The network is therefore appropriate for use by inference algorithms and for
visual inspection.

The CB algorithm works in two phases. In the first phase, CB uses
Conditional Independence tests % tests) for ordering the nodes. In the
second phase, which is based on the K2 algorithm [CoHe92], CB computes
greedily an approximation to the most likely network structure given the
dataset [SiVa95]. Given a dataset and network, CondProb computes the
prior and conditional probabilities using the formulas in [CoHe92]. An im-
plementation of CB with a user-friendly graphical user interface is available
by contacting the first author3.

HUGIN provides a graphical interface for representing the nodes (do-
main variables) and the directed edges (usually interpretable as causal re-
lationships between the variables). A user-friendly mechanism for naming
the variables, entering the states of the variables and assigning the condi-
tional probabilities is also provided. HUGIN implements the Lauritzen and
Spiegelhalter method of probability propagation in DAGs [LaSp88], with
some improvements. The HUGIN shell was developed by Andersen, Olesen,
F.V. Jensen and F. Jensen in Denmark [AOJJ89].

The IMP program analyzes the given dataset and predicts missing val-
ues. We use statistical, case matching and randomization methods. A ran-
dom guess is attempted when case matching fails. The method is expected to
succeed in domains where there is good interdependency between variables.
Fortunately most real world data and medical data in particular have many
interdependent variables. We have not analyzed the theoretical properties
of IMP, but we consider it to be a practical and useful method particularly

3This implementation, which includes CondProb, is called Visual CB and is de-
scribed in [Xia, 2002]



for purposes of model building.

CAP-CPN is an application written in C to call Bayesian Networks
using HUGIN*. It provides modules to use the HUGIN-API C library in an
organized way. CAP-CPN converts an ASCII dataset to the format required
by HUGIN for batch validation. It also provides functions to perform simple
statistical tests on the data gathered by sampling the outcome node when
a batch file containing cases is processed.

5 Handling Missing Values

Real world data contains missing values. This is particularly true of med-
ical datasets. The general practice in the analysis of missing data is deleting
cases (records) with missing data. But when there are numerous variables
such a policy can mean that most records will have to be disregarded from
analysis or many variables will have to be sacrificed. It will help if we
can come up with a scheme to predict and assign missing values. To start
with, this strategy will be very useful for model building and validation from
datasets. We do not discuss the merits and demerits of imputing for data
analysis here.

We decided against the easy way of making a separate category for the
missing values. We believe that it is not a satisfactory procedure as in most
cases it is hard to trace a causal pathway between the missing category of
one variable and the missing category of another variable. Treating missing
value as a separate category is also likely to create serious problems in com-
puting the conditional probabilities from data. For example, assigning the
conditional probability of a variable with 4 states which has 5 parents having
2 states each results in a table of 128 entries. Now if a missing category is
included, the table space grows to 1215 entries. And for this example (which
is by no means an extreme case) we have more than 1000 junk entries. Not
only is the size of the conditional probability table a problem, but we also
encounter semantic difficulties computing conditional probabilities for the
occurrences including missing states. Hence it is desirable to come up with
a scheme to avoid missing categories. Then in the quantitative modeling
stage only the valid categories of the variables in the network and the con-
ditional probabilities will have to be entered. Another method which has
been used [LaTS93, page 94] is to assign one of the valid categories to all
the missing values of a particular variable. It may be suitable for variables

*Another name for Bayesian Networks is Causal Probabilistic Networks; hence the
second part of the acronym.
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where the domain expert can predict with a high probability which category
the missing values should have.

We developed and implemented an algorithm(IMP) for predicting and
imputing missing values. The accuracy of IMP can be validated using
datasets across domains. Datasets without any missing values were used
for validation. By random number generation a fixed percentage (say ten
percent) of data values are assigned missing, thus obtaining a dataset on
which IMP is run to impute missing values. The output dataset is com-
pared with the original dataset. Our validation tests using LED, ALARM
and SOYBEAN which are small to large artificial datasets used for Ma-
chine Learning research and available from the University of California at
the Irvine Machine Learning repository [MuAh94] gave a mean accuracy of
80% over ten runs. The range was from 67% to 95%.

Another possibility is to impute a dataset using the algorithm. This im-
puted dataset has no missing values. Now we assign missing values (we can
assign the same percentage of missing values originally present) generating
random numbers, imputing and comparing with the dataset we created orig-
inally by imputing. This technique, called customized validation, gives the
predictive accuracy for the particular dataset in question with its given per-
centage of missing values. Even though this takes into account the size and
other peculiarities of the dataset for validation purposes, it may introduce
a small error for the estimate as we are using IMP twice for validation.

Our datasets were imputed using IMP. For our datasets RAVN2X24,
RAVN6X23, and RAVN6X24, we obtained an accuracy of 79%, 82% and
83% respectively. The accuracy of the imputed values were judged by the
technique of customized validation.

6 Network Generation and Refinement

6.1 Network Generation

The CB algorithm was run on the three imputed datasets described in Sec-
tion 3.1 for generating the networks. The datasets were randomly parti-
tioned into two—a major part and a minor part. The bigger partition was
used for constructing the network and the smaller part was set apart for
validation. For RAVN2X24, we used the first 2000 cases for generating the
network and for the other two, the first 5000. The network generated from
the RAVN6X24 dataset is shown in Figure 2. The networks obtained are
given in tables 4, 5, and 6.
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Variable

‘ Parents

MOM_RACE

MOM_AGE_AT_BIRTH

MAR_STAT, MOM_EDU,

FAM_INC, PREV_STILLBRTH

MAR_STAT

MOM_EDU MOM_RACE

DAD_EDU MOM_EDU?, P MOM!

MOM_DIS MOM_AGE_AT BIRTH

FAM_INC MOM_EDU

MOM_SMOKE MOM_RACE, MOM_EDU,
MOM_ALC, PN_CARE?

MOM_ALC FAM_INC

PREV_STILLBRTH

PN_CARE

MOM_XRAY MOM_DIS, C_SECTION

GESTATN MOM_RACE, FET_DIST

FET_DIST INDUCE_LAB!, C_SECTION', RESUSCITN'

INDUCE_LAB

C_SECTION

CHLD_GEND CHLD_HPROB!

BIRTH.WT PN_CARE, GESTATN

RESUSCITN MOM_RACE?

HEAD_CIRC MAR_STAT, INDUCE_LAB?, CHLD_ANOM

CHLD_ANOM

CHLD_HPROB CHLD_ANOM

CHLD_RAVN MOM_EDU, CHLD_ANOM

P_MOM MOM_RACE, MOM_EDU

Table 4: RAVN2X24 NETWORK

! Violates law of chronology

? Goes against commonsense

3 Violates domain rules
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Variable

Parents

MOM_RACE MAR_STAT!, MOM_EDU', DAD_EDU?,
MOM_SMOKE', MOM_ALCT, C_SECTION!
MOM_AGE_AT_BIRTH | MAR_STAT, FAM_INC, PREV_STILLBRTH
MAR_STAT
MOM _EDU MOM_AGE_AT BIRTH?, FAM_INC
DAD_EDU
MOM_DIS MOM_RACE, MOM_AGE_AT_BIRTH, MAR_STAT?
FAM_INC MAR_STAT
MOM _SMOKE MOM_EDU, MOM_ALC, BIRTH.WT
MOM_ALC FAM_INC, MOM_AGE_AT _BIRTH
PREV_STILLBRTH
PN_CARE
MOM_XRAY MOM_RACE?, MOM_DIS, C_SECTION
GESTATN MOM_AGE_AT BIRTH, PREV_STILLBRTH,
PN_CARE
FET_DIST PN_CARE, GESTATN,
INDUCE_LAB', C_SECTIONT,
INDUCE_LAB PREV_STILLBRTH
C_SECTION
CHLD_GEND CHLD_HPROB!
BIRTH.-WT PN_CARE, GESTATN
RESUSCITN MOM_RACE?, MAR_STAT?, FET_DIST
HEAD_CIRC MAR_STAT, CHLD_ANOM
CHLD_ANOM
CHLD_HPROB MAR_STAT, HEAD_CIRC
CHLD_RAVN FAM_INC

Table 5: RAVN6X23 NETWORK

! Violates law of chronology
2 Goes against commonsense

3 Violates domain rules
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Variable

‘ Parents

MOM_RACE MAR_STAT!, MOM_EDU!, DAD_EDU?,
MOM_SMOKE!, C.SECTION!, RESUSCITN!

MOM_AGE_AT BIRTH | MAR_STAT, FAM_INC, PREV_STILLBRTH

MAR_STAT

MOM_EDU MOM_AGE_AT _BIRTH?, FAM_INC

DAD_EDU

MOM_DIS MOM_AGE_AT BIRTH, MAR_STAT?,
MOM_EDU, HEAD_CIRC?

FAM_INC MAR_STAT

MOM _SMOKE MOM_EDU, MOM_ALC, BIRTH.-WT

MOM_ALC FAM_INC, MOM_AGE_AT BIRTH

PREV_STILLBRTH

PN_CARE

MOM_XRAY MOM_DIS, C_SECTION

GESTATN MOM_AGE_AT BIRTH, PREV_STILLBRTH,
PN_CARE

FET_DIST GESTATN, INDUCE_LAB!,
C_SECTION!, RESUSCITN!

INDUCE_LAB PREV_STILLBRTH

C_SECTION

CHLD_GEND RESUSCITN?

BIRTH.-WT PN_CARE, GESTATN

RESUSCITN MAR_STAT?, PN_CARE, GESTATN

HEAD_CIRC MAR_STAT, CHLD_ANOM

CHLD_ANOM

CHLD_HPROB MOM_RACE, MAR_STAT, HEAD_CIRC, P_.MOM

CHLD_RAVN FAM_INC

P_MOM MOM_RACE, MOM_AGE_AT_BIRTH, MOM_EDU

Table 6: RAVN6X24 NETWORK

! Violates law of chronology

% Goes against commonsense

3 Violates domain rules
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Figure 2: Network Generated by CB from RAVN6X24 Dataset
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6.2 Network Refinement

We defined three rules to characterize the inadequacies of the generated
networks.

Rule of Chronology Events occurring later in time cannot be the parents
of earlier incidents. For instance a child health problem cannot be the parent
of maternal disease.

Rule of Common Sense The directed edges of the network should not
go against common sense. For instance, Father’s education cannot be a
cause of Mother’s race.

Domain Rule This rule has been referred as the Rule of Biological Plau-
sibility in the medical and biological science literature. This rule states that
a causal explanation is tenable in terms of existing knowledge level about the
variables involved. This level is what we obtain from an intelligent review
of the relevant literature. The directed edges should not violate established
domain rules. For example, pre-natal care cannot be put down as a cause
of maternal smoking. Mausner and Kramer strike a note of caution here:
“The development of biological knowledge often introduces new factors that
previous studies have not taken into account. In the existing studies, the
major causal factors may have been missed because their importance was
not appreciated.” [MaKr85, p.187]. This point is well taken and if there is
a strong case, such a directed edge should be investigated further. But for
our network construction purposes, if an edge clearly violated established
domain constraints, it was removed. The directed edges of the network in
Figure 2 are given in Table 6 with annotations describing examples of rules
that are broken. So also new edges were incorporated to capture the knowl-
edge of the known domain causal mechanisms. The variable MAR_STAT
was removed as the expert felt that it was not playing a useful role in repre-
senting domain relations. See Tables 4, 5 and 6 for examples of rules that
are broken. The expert refined network is a synthesis and refinement of the
three raw networks. The expert-modified network is shown in Figure 3.

6.3 Refinement of Conditional Probabilities

The prior and conditional probabilities were computed using the program
CondProb. For nodes without parents prior probabilities of the various
states calculated from the RAVN6X24 dataset were assigned. For the nodes

16
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with one or more parents, the conditional probabilities calculated using the
same dataset was assigned. The Conditional Probabilities of the outcome
variable CHLD_RAVN (See paragraph 3) were refined by the expert. There
were many possible instantiations that were not represented in the dataset
RAVN6X24. A reasonable conditional probability was assigned by the ex-
pert for these. For the raw networks probabilities were assigned from the
RAVN2X24 dataset using the program CondProb.

7 Validation of the Model

7.1 Validation by the expert

As ours is a model for risk assessment and risk prediction of mental retarda-
tion, it is different from a classification or diagnostic problem. In a typical
diagnostic approach we consider a set of differential diagnoses and the at-
tempt is to assign probabilities to them and order them on that basis. In
risk assessment we are interested in the change in magnitude of a particular
category of interest even though it may still occupy a low position in an
ordering of the variable levels. We have a prior probability of 5.6% for mild
and 12.4% for borderline MR. Hence if the risk of both mild and borderline
doubles, still we get a combined probability of only 36%. That leaves a
probability of 64% for normal and superior. Most of the actual cases from
the dataset with mild or borderline MR give a >50% probability for normal
outcome. This is because there are more normal outcome cases with similar
instantiations of variables than outcomes that result in mental retardation.
Hence we decided first on a strategy of validation by comparing with the
expert. We generated nine cases with instantiation for a subset of variables.
We ran these cases on the model and computed the probabilities. The ex-
pert was asked to score the results as agree or disagree. The expert was in
agreement with the model’s assessment in eight out of nine cases used for
validation. Three of the cases are depicted in Table 7, while the conditional
probabilities of the values of CHLD_RAVN for those cases are shown in
Table 8.

7.2 Validation using RAVN2X24

7.2.1 Risk Means of Cases and Controls

All the cases in the dataset RAVN2X24(unimputed) were run through the
models—the expert network, and the two raw networks that have twenty-
four variables (raw2x24net and raw6x24net) using CAP-CPN. The results
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Variable Case 1 Case 2 Case 3
Variable Value Variable Value Variable Value
MOM_RACE non-White White White
MOMAGE_BR 14-19 > 35
MOM_EDU <12 > high school <12
DAD_EDU <12 > high school high school
MOM_DIS no
FAM_INC < $10,000 < $10,000
MOM_SMOK yes
MOM_ALC moderate
PREV_STILL
PN_CARE yes
MOM_XRAY yes
GESTATN normal normal premature
FET DIST no yes
INDUCE_LAB
C_SECTION
CHLD_GEND
BIRTH.WT low normal low
RESUSCITN
HEAD_CIRC abnormal
CHLD_ANOM no
CHILD_HPRB both
CHLD_RAVN
P_MOM normal superior borderline
Table 7: Generated values for three cases.

Value of Case 1 Case 2 Case 3
CHLD_RAVN and Posterior Posterior Posterior
Prior Probability Probability Probability Probability

mild MR (.056) 101 .010 .200
borderline MR (.124) .300 .040 400
normal (.731) .559 .690 .380
superior (.089) .040 .260 .200

Table 8: Posterior probabilities for three cases.
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showing the relative risk for controls (children with normal outcome) and
cases (children with mild or borderline MR) are given in Table 9 for the
three nets.

A TTest procedure was performed to assess the statistical significance
of the predicted risks. The Prob>|T| was 0.0001, 0.0000 and 0.1878 for
the expert net, raw2x24net and raw6x24net respectively. This shows that
there is significant difference in the mean risk scores between the cases and
controls for the expert net and raw2x24net (P<0.05). Note that there are
fewer violations of the rules described in Section 6.2 for raw2x24net (9) than
for raw6x24net (14). The performance of the expert net was the best of the
three based on the mean risks.

7.2.2 Evaluation using a risk threshold

In the initialized state, the expert network gives a resting MR risk of 0.18 if
the risks for mild and borderline retardation are added together, as shown
in Figure 4.

If we take twice the resting state risk as our threshold for significant
risk, our threshold can be set at the value of 0.36. Using this threshold
we find that twenty nine per cent of cases are flagged correctly. This also
results in eighteen per cent of controls being flagged as significant risk for
MR. (Figure 5 shows the increase in risk of MR for an example case with
some known risk factors.) These results are contained in Table 10, which
also presents the same type of results for raw2x24net, whose resting MR risk
is 0.16. (The results for raw6x24 are very poor.)

expert net raw2x24net raw6x24net
Level Controls | Cases || Controls | Cases | Conitrols | Cases
n=1863 | n=349 || n=1863 | n=349 | n=1863 | n=349
mean risk mean risk mean risk
Mild MR 0.05 0.07 0.02 0.02 0.02 0.02
Borderline MR 0.11 0.14 0.14 0.16 0.14 0.15
Mild + Border 0.16 0.21 0.16 0.18 0.16 0.17

Table 9: Mean Risk of MR predicted for cases and controls by the three nets
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Expert Network
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non-white 33.0 m—m g 33
on college  51.0 mumm—— college  56.() mumm— yes 101
white 67.0 — Sp. Sch 101 Sp. Sch. 1.01
MOM._DIS6 MOM_ALCH CHLD_GEND-17
— mild 93.0 n——
no-dis 3.8 mmmm mod 60m fom 200 r—
dis-yes 67.2 e— severe 1.01 -
FAM_INC-7
>=10000 14.8 mm
<10000  85.2 ne——
MOMAGE _BR-2 PREV_STILL_10 MOM. SMOK-S
14-19 68m
20-34 77.0 e—— none 97.0 e—— no 67.2 e—
>=35 16.1 mm yes 3.01 yes 32.8 m—
INDUCE_LAB-15
no 95.4 m—
yes 46
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.3 — ] =
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yes 26.0 m— o 016
yes 84m
\
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emotional 9.4 m
both 82m
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full-term ~ 80.1 EE— mild Som mild
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Figure 4: Initial probabilities in the expert network.
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Figure 5: Probabilities in the expert network for a high risk case.




We considered using n-fold cross-validation to estimate the error rates of
our methods, but we did not employ it, because it can be applied only to
the raw networks. In n-fold cross-validation, the cases are divided into n
(typically, ten) groups of roughly equal size. All except one of the groups are
used in learning, while the group that is left out is used to estimate an error
rate. This process is carried out n times, each time leaving out a different
group, and the overall error rate for the learning algorithm is the average of
the n error rates [WeKu91]. Since the expert modified network was crafted
from the three raw networks by removing and adding edges to reflect domain
knowledge and the conditional probabilities were also modified by the expert,
cross-validation cannot be used to compare the performance of the raw and
refined networks.

7.2.3 Validation Using a Separate Data Set

The National Collaborative Perinatal Project (NCPP), of the National Insti-
tute of Neurological and Communicative Disorders and Strokes, developed a
data set containing information on pregnancies between 1959 and 1974 and
8 years of follow-up for live-born children. For each case in the data set,
the values of all 22 variables except CHLD_RAVN (child’s cognitive level as
measured by the Raven test) were entered, and the conditional probabilities
of each of the four values of CHLD_RAVN were computed. Table 11 shows
the average values of P(CHLD_.RAVN = mildMR | d) and P(CHLD_RAVN
= borderlineMR | d), where d is the set of values of the other 22 variables,
for both the controls (children in the study with normal cognitive function
at age 8) and the subjects (children in the study with mild or borderline
MR at age 8).

Risk Threshold expert net raw2x24net

for MR Controls Cases Controls Cases
(Mild + Border) n=1863 n=349 n=1863 n=349
Resting Value 434 (23%) | 122 (35%) | 901 (48%) | 240 (69%)
1.5 x Resting Value | 370 (20%) | 111 (32%) || 242 (13%) | 73 (21%)
2 x Resting Value 342 (18%) | 101 (29%) | 9 (<1%) 5 (1%)

Table 10: Cases flagged for different risk thresholds
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Cognitive Avg. Probability for Avg. Probability for

Level Controls (n = 13019) Subjects (n = 3598)
Mild MR .06 .09
Borderline MR 12 .16
Mild or Borderline MR, .18 .25

Table 11: Average probabilities, as determined by MENTOR, of having
mental retardation for controls (children identified as having normal cogni-
tive functioning at age 8) and subjects (children identified as having mild
or borderline MR at age 8).

8 Discussion and Future Work

8.1 Discussion

The validation results are significant but not dramatic. We feel that this
is due to the incomplete state of knowledge of the etiological factors of
MR. This results in datasets where some of the relevant variables (not yet
recognized as contributory or causative) have not been collected. Hence our
model is constrained by the state of domain knowledge existing at this point
in time.

Throughout the development of MENTOR, we emphasized the causal
interpretation of the links. While this is not in any way necessary, it seemed
to be a good decision for two reasons. First, there is widespread belief that
ordering variables in a causal direction simplifies modeling, or, as Russell
and Norvig put it, “If we stick to a causal model, we end up specifying fewer
numbers, and the numbers will often be easier to come up with” [RuNo95,
p.443]. Second, it is easier to involve the expert in validating the edges if
the model is causal.

Still, there is a serious problem with a causal interpretation in the case
of MENTOR. It is quite likely that there are many hidden (unmeasured
or even unknown) variables playing a role in the causal pathway of MR.
Despite this, we attempted to build a DAG model and assign to it a causal
interpretation. This is clearly suspect. There are two possible approaches
to dealing with this problem. The first is to attempt to discover hidden
variables using a data analysis technique, such as TETRAD [Spir00, Ch.2]
that purports to discover such variables. A second approach is to explicitly
model correlations that have no causal interpretation by using undirected
links as in chain graphs (graphical models that include both directed and
undirected links). It is commonly (and somewhat simplistically) believed
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that the undirected links can be used to model associational, non-causally
interpretable information, while the directed links are used to model the
causally interpretable information [LaRi0O1]. For our research we did not
address this issue further.

8.2 Future Work

The networks generated from the different datasets using the CB algorithm
had many nodes that violated the rule of chronology. A facility for inputting
the chronological order can be incorporated. Likewise, if some rules could be
incorporated in the network generation stage to take care of domain-specific
constraints, directed edges violating domain rules would be avoided. In other
words, the ordering of nodes built by the first phase of the CB algorithm
would be forced to be consistent with chronology and domain rules. Another
mechanism to incorporate these rules in the network generation phase would
be to set appropriate priors on the network structures, which would favor
networks compatible with the rules. This is a more drastic change to the
current approach, in that the scoring metric used by CB assumes prior
equivalence of all network structures. (Other metrics, while forgoing prior
equivalence, are also insensitive to domain peculiarities.)

In some cases, the values of variables in the original dataset have been
discretized. In many cases (e.g., for head circumference), this has been
done according to accepted practice in epidemiology. Still, it may be in-
teresting to challenge accepted wisdom and attempt different ways of dis-
cretizing variable ranges, for example by using a decision tree building algo-
rithm [MoCo99]. (We observe, incidentally, that the variable FAM_INC,
which represents family income, was already normalized in the original
dataset.)

Finally, since there are many variables in the Mental Retardation do-
main, it may be advantageous to attempt attribute selection [ProSi96], and
use only a subset of variables.
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