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Abstract

In this research, we define a cooperative multiagent system where the
agents use locally designed Bayesian networks to represent their knowledge.
Agents communicate via message passing where the messages are beliefs in
shared variables that are represented as probability distributions. Messages
are treated as soft evidence in the receiver agents, where the belief in the
receiving agent is replaced by the publishing agent’s belief. We call this the
oracular assumption, where one agent is an expert or more knowledgeable
of particular variables. As a result, the agents are organized in a publisher-
subscriber hierarchy. We compare and contrast our system with the MSBN
multiagent model.

Finally, we implement a multiagent system for experimentation using our
multiagent system and MSBNs. We devise performance measures to compare
the two systems. From this comparison, we provide guidance for the design
of probabilistic multiagent systems.

Keywords: Multiagent Systems, Bayesian networks, Distributed Artificial
Intelligence

1. Introduction

Large real world intelligent systems are often too complex or expensive
to build as centralized systems. The computational cost of the large scale
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reasoning required can be too prohibitive, the scale and scope of the sys-
tem too complex for a monolithic system, as well aspects of the system are
often distributed physically further complicating the construction of a sin-
gle agent system. To overcome these challenges, the inference and decision
making tasks can be decomposed into sub-problems that are reasoned about
locally. Multiagent systems can be used to achieve this modular system de-
sign, where each agent is responsible for one or more sub-problems. Through
agent communication, information is exchanged between agents in order to
achieve distributed inferencing and decision making.

The reasoning and decision making task often must cope with uncertainty
in the problem domain. The uncertainty may come from unobservable as-
pects of the domain that must be estimated from aspects that are observable,
incomplete understanding of the domain, observations that are imprecise,
ambiguous, noisy, or unreliable, and lack of resources necessary to observe
all relevant events.

Bayesian networks are a probabilistic framework for reasoning with uncer-
tainty. Although Bayesian networks have greatly reduced the time, space and
design complexity involved with reasoning using a probability distribution,
large complex single networks are challenging to design. Often the computa-
tional cost of exact inference is not possible and approximate methods must
be employed. To overcome these limitations, what is needed is to divide
the network into smaller, manageable units that are locally reasoned upon
and aggregated to solve the global problem. Often this task is described as
distributed Bayesian networks.

In this paper, we provide clear assumptions about agents that use proba-
bilistic representations of knowledge, guidelines for their design, and efficient
algorithms for communicating (or sharing) probabilities. The goal is to allow
easier design of probability-based agents and multiagent systems, resulting in
rational decision making. Previous approaches to this problem have imposed
strong restrictions on the topology of agent communication, tightly coupled
the agents, and have not emphasized the autonomy of each agent. Our agent
model attempts to address these deficiencies by loosely coupling the agents
and allow for more flexible agent topologies.

The rest of this paper is organized as follows...
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2. Agents and Multiagent systems

An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through actuators [1, 2].
The agent’s behavior is described by an agent function that takes as input
the percepts from the agent’s sensors and outputs the actions the agent takes
in the environment via its actuators (1).

Environment

Agent

Sensors

Agent Function

Actuators

Percepts

Actions

Figure 1: Conceptual agent model as presented in [1].

This abstraction is useful since it describes living organisms such as hu-
mans, as well as computational agents that encompass virtual (software) and
robotic (hardware) agents.

Intelligent agents are agents that act rationally by choosing actions that
are expected to achieve its goals or maximize its utility. The specific fea-
tures that define an intelligent agent are: (1) it has an internal model that
represents its prior knowledge and state of the world it is designed for; (2)
it has a set of goals or preferences of the state of the world; (3) it senses the
environment it operates in and updates its internal model to be consistent
with the observations; and (4) it takes actions based on its belief in the state
of the world and that are expected to achieve its goals. We say the agent
reasons about the state of the world to produce desirable outcomes.

In this paper we only consider intelligent computational agents, and not
natural agents such as people, animals, etc. From here onwards we will
simply refer to intelligent computational agents as agents.

It follows from the description of an intelligent agent that the three main
tasks of an agent are:

1. Sensing : Using its sensors to make observations

2. Reasoning : Reasoning about the true state of the environment

3. Acting : Take actions based on goals and belief of true state of environ-
ment
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Our research focuses on the first two tasks, where an agent reasons about
the state of the world based on evidence it receives either from local sensors or
messages from other agents. Whether the agents utilize their internal models
using goal based planning or the principle of maximum expected utility is
outside the scope of this paper.

A multiagent system (MAS) is characterized as a system composed of
more than one agent where the agents communicate directly or indirectly
through interactions in the environment.

Often the domain world of the agent is too large for one single agent to
sense and act upon the state of the world to achieve its goals. For example,
consider an intrusion detection system for a large corporate computer net-
work system. A single agent monitoring the network would need to monitor
each servers logs, firewalls, routers, incoming and outgoing network connec-
tions, email systems, database accesses, web server traffic, etc. The agent
would need to have details on various particular vendors of these systems so
as to be general enough to be a commercial product. This is a very challeng-
ing task and centralizing these tasks would require high computational and
communication cost as well as agent complexity. To manage the complexity,
the tasks could be divided up amongst several agents rather than one large
agent. The process is to modularize a system into separate functional units
and assign a functional unit to an agent. The agents communicate with each
other to share information in order to achieve the overall system goal.

In a multiagent system, agent communication is often necessary since
observations that are useful may be sensed by an agent that has direct access
to the required sensor, and other agents may require this information. The
observing agent can communicate the observation to the interested agents.
Observations that are directly sensed by an agent are called local observations
(evidence) and observations that are from other agents are called external
observation. The observations are often referred to as evidence.

When designing a multiagent system the following key considerations
must be addressed [3] :

• How do agents represent knowledge?

• How do agents communicate?

• Whom should agents be allowed to communicate with?

• What is the purpose of the communication?
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• How should messages be processed?

• Is global consistency desired, and if so how is global consistency main-
tained?

These questions will be addressed in this paper with the proposal of a
multiagent system where the agents represent their knowledge using Bayesian
networks and communicate via messages that represent shared beliefs. The
details of this agent model will be discussed further in the following chapters.

Agents can be either cooperative or selfish. Cooperative agents do not
attempt to deceive or gain advantage over other agents, rather they work
with other agents to achieve mutual goals. Selfish agents, however, will act
in their best interest at the expense of other agents. In this paper, we only
consider cooperative agents that work together to reason over the state of
the world.

3. Related Work

In this section, we briefly review related work in the area of distributed
Bayesian networks and multiagent systems. In the following sections we will
review probabilistic multiagent systems and present our agent model.

3.1. Distributed Bayesian Networks

Multi-Entity Bayesian Network (MEBN) [4, 5], proposed by Laskey et
al. extends the expressiveness of Bayesian networks through the instantia-
tion of parameterized Bayesian network fragments (MFrags) that are com-
posed into a situation-specific Bayesian network (SSBN), using a knowledge-
based network construction mechanism. The MEBN framework allows for
a distributed representation of a Bayesian network, but after the SSBN
is constructed, reasoning is centralized using standard Bayesian inference.
Therefore, MEBN is not appropriate for multiagent distributed interpreta-
tion tasks.

Semantically-Linked Bayesian Networks (SLBN) [6] is a framework for
performing probabilistic inference over individually designed Bayesian net-
works. SLBN defines linkages between semantically similar variables where
probabilistic influences are propagated over variable linkages from one Bayesian
network to another using soft evidence and virtual evidence. Soft evidential
update is performed using the wrapper methods of [7].

5



SLBN is proposed as a general distributed inferencing method, and does
not address use in a multiagent environment. Further, SLBN does not ad-
dress the problem when linkages result in multiply connected Bayesian net-
works. Therefore, the rumor problem [8, 9] is not solved or addressed.

The advantage of SLBN over our proposed work is the lack of need for
a common ontology. However, SLBN requires a mapping function to related
similar concepts amongst the linked Bayesian networks. Our work assumes
this mapping has been implicitly performed during the design of each AEBNs
internal model.

In the next section, we discuss distributed Bayesian network models under
a multiagent paradigm, and propose our model.

3.2. Truth Maintenance Systems

A justification-based truth maintenance system (JTMS) is a form of non-
monotonic belief revision system where the beliefs are restricted to propo-
sitional logic representations. In a JTMS, inferred assertions are dependent
on the direct assertions used to assert it during inferencing. Each inferred
assertion maintains a “justification set” of assertions that justify the inferred
assertions truth. When new facts are introduced or retracted, logical consis-
tency is maintained by introducing or retracting assertions. Each assertion
that has a relationship to the new facts, update their justification set by
adding or removing assertions to be consistent with the new facts. If the
justification set becomes empty then the proposition is labeled OUT to rep-
resent that it no longer holds in the JTMS knowledge base. If they do hold,
they are labeled IN.

JTMS is similar to hard and soft evidential update in Bayesian networks,
in that the belief system is revised to respect the new evidence and be con-
sistent with it. This is a non-monotonic belief update, where previously held
beliefs may be reduced or increased based on the new evidence. In the case of
JTMS, the beliefs must be 0 or 1, while a Bayesian network is more general
and allows degrees of beliefs in [0,1]. Since each assertion is dependent on
a set of justifying assertions in the JTMS, we can represent the dependence
using a DAG, where parent nodes represent direct causal relationships to
the children nodes. This is analogous to the dependence structure of causal
Bayesian networks and means we could represent a JTMS as a Bayesian
network where the conditional probability tables represent the disjunction of
the supporting propositions in the JTMS. Each node represents a proposition
and has two states: IN and OUT to represent whether the proposition holds
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in the knowledge base. To perform belief update, new facts can be entered
as hard evidence in the Bayesian network and standard belief propagation
can be performed to revise the knowledge base.

Belief update in Bayesian networks with virtual evidence is a different
method of incorporating uncertain evidence. It does not hold the same prop-
erties as hard and soft evidence where the evidence is treated as a constraint
on final beliefs. Virtual evidence only specifies the strength a piece of evi-
dence has on a belief system and therefore is not treated as a constraint on
the final beliefs. Only the likelihood ratio of the virtual evidence is respected.
In this way belief update with virtual evidence does not correspond to JTMS.

Multiagent Truth Maintenance (MTM) proposed by Huhns and Brige-
land [10] is a cooperative multiagent framework where each agent reasons
non-monotonically using justification-based truth maintenance systems (JTMS)
to maintain the integrity of its own knowledge base. Agents communicate
by exchanging messages that are assertions over shared variables. A dis-
tributed truth maintenance algorithm determines whether global inconsis-
tencies amongst agents need to be resolved and provides a mechanism for
resolving them. The cost of ensuring complete global consistency of all the
agents’ knowledge bases makes this property impractical. Instead MTM aims
for a weaker form of global consistency by ensuring consistency of shared data
amongst agents.

Our proposed mutiagent system shares similar belief revision goals as
MTM, such as maintaining global consistency of shared beliefs amongst the
agents. In both systems, agents partition their internal models into private
and shared variables. The shared beliefs are exchanged between agents via
message passing, while the private variables are internal to an agent. Agents
receiving messages revise their internal models to be consistent with the
received beliefs. The belief revision process in both models commit to a
principe of minimizing the change of belief necessary to ensure consistency.

MTM differs from AEBNs in that a receiving agent can reject received
information if it conflicts with strongly held local beliefs. In AEBN, we as-
sume publishing agents have oracular or expert knowledge over their shared
variables and subscribing agents must respect the publishers beliefs. How-
ever, it is permitted for an AEBN to discount a publishing agent’s belief by
explicitly modeling the agent’s reliability directly into its internal knowledge
model. Additionally, the publisher/subscriber nature of the AEBN system
restricts agent communication to a DAG topology, whereas in MTM com-
munication can be bidirectional or contain cycles.
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Finally, in an MTM multiagent system reasoning is based on propositional
logic and therefore the system does not support reasoning about uncertainty,
while our multiagent model is based on uncertain reasoning using Bayesian
networks. While there are similarities in the belief revision methods of the
two multiagent systems, they are essentially aimed at addressing completely
different problem domains.

4. Probabilistic Multiagent Systems

This section is concerned with multiagent systems that represent their
knowledge using probability and share their beliefs with other agents in the
system. We review a prominent approach to probabilistic knowledge repre-
sentation in multiagent systems, and then introduce our agent model.

As Pan identifies, the three main issues of probabilistic multiagent sys-
tems are [6]:

1. How is a joint probability distribution decomposed amongst the agents?

2. How are beliefs or local observations exchanged amongst agents?

3. How is global consistency maintained in the system?

The assumptions and constraints defined for a probabilistic multiagent
model to address these three main issues lead to different formalisms with
various advantages and disadvantages. In this paper, we will highlight some
of the differences between our agent model and others proposed.

4.1. Multiply Sectioned Bayesian Networks

Multiply Sectioned Bayesian Networks (MSBNs) [3, 11] is a knowledge
representation formalism for multiagent uncertain reasoning that effectively
sections a large Bayesian network into subnetworks that are each assigned to
an agent in the multiagent system.

The MSBN knowledge representation formalism is built up from five guid-
ing basic assumptions of an “ideal” probabilistic multiagent system. These
assumptions are used to derive the requirements and constraints necessary
that give rise to MSBNs. For discussion on how the assumptions lead to the
MSBN formalism see [3, Chapter 6]. The five basic assumptions of MSBNs
are:

1. Each agent’s belief is represented by probability.
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2. Agent’s communicate with concise messages that are joint probability
distributions over the variables they share.

3. A simpler agent organization is preferred in which agent communication
by concise message passing is achievable.

4. Each agent represents its knowledge dependence structure as a DAG.

5. Within each agent’s subdomain, a JPD is consistent with agent’s belief.
For shared variables, a JPD supplements an agent’s knowledge with
others’.

Xiang argues the logical consequence of the basic assumptions is a hyper-
tree structure that is built from a multiply sectioned directed acyclic graph
(hypertree MSDAG). Each node in the hypertree represents an agent and
the DAG represents the Bayesian network that models the agent’s subdo-
main of knowledge. Thus as opposed to having one distinct, locally de-
signed, Bayesian network that is encapsulated within each agent, each agent
effectively contains a piece of a larger, globally designed, Bayesian network.
Agents communicate only with neighbors in the hypertree by passing mes-
sages that are made up of the variables shared among the agents. The agent
interfaces d-separate the subdomains.

A formal set of definitions for MSBNs are presented below using the
definitions from Xiang [3].

Definition 4.1 (Hypertree MSDAG). Let G = (V,E) be a connected
DAG sectioned into subgraphs {Gi = (Vi, Ei)}. Let the Gi’s be organized
as a connected tree Ψ, where each node is labelled as Gi and each link be-
tween Gk and Gm is labeled by the interface Vk ∩Vm such that for each i and
j, Vi ∩ Vj is contained in each subgraph on the path between Gi and Gj in
Ψ (the running intersection property). Then Ψ is a hypertree over G. Each
link between the subgraphs of Ψ is a hyperlink. A hypertree MSDAG is a
hypertree if each node x contained in more than one subgraph, there exists a
subgraph Gi that contains its parents, π(x).

Definition 4.2 (MSBN). An MSBN M is a triplet (V,G, P ) : V =
⋃

i Vi is
the total universe where each Vi is a set of variables called a subdomain. G =⋃

iGi (a hypertree MSDAG) is the structure where nodes of each subgraph Gi

are labeled by elements of Vi. Let x be a variable and π(x) be all parents of x in
G. For each x, exactly one of its occurrences (in a Gi containing {x}∪π(x))
is assigned P (x|π(x)), and each occurrence in other subgraphs is assigned a
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uniform potential. P =
∏

i Pi is the JPD, where each Pi is the product of the
potentials associated with nodes in Gi. Each triplet Si = (Vi, Gi, Pi) is called
a subnet of M . Two subnets Si and Sj are said to be adjacent if Gi and Gj

are adjacent in the hypertree.

Distributed inferencing in a MSBN multiagent system is performed by
compiling the hypertree MSDAG into a linked junction forest, which is a
tree of junction trees. An inferencing scheme analogous to message passing
in junction trees is used to collect and distribute evidence amongst agents,
ensuring global consistency in the system.

MSBN was originally proposed for distributed inferencing over a global
Bayesian network by assigning subnetworks to individual processors for ef-
ficient inferencing on computationally constrained equipment [12]. Xiang
argues MSBNs are also appropriate for multiagent systems where the sub-
networks can be individually designed as long as soundness of sectioning is
achievable.

The MSBN framework is appropriate if the multiagent system can be
compiled into a linked junction forest. This is a highly restrictive constraint
on the multiagent organization and the internal knowledge model of each
agent. To compile the agent system into a linked junction forest, the hyper-
tree MSDAG first must perform a distributed moralization and triangulation
procedure over all the agents to ensure consistency of the agent’s graphical
models. The triangulation has a partial order constraint in order to ensure
a linkage tree can be constructed, which is a data structure used for effi-
ciency of communication. Once this step is complete, each agent constructs
a local junction tree for efficient inferencing over its subdomain. From the
local junction trees and the linkage trees, the original hypertree MSDAG is
converted into a linked junction forest over which system level inferencing is
performed.

MSBNs have the requirement that the union of the local DAGs of agents
must also be a DAG. In order to ensure this, a distributed verification process
must be performed to ensure the acyclicity of the union of each agent’s DAG.
If directed cycles exist, the composition of the agents is invalid.

When variables exist in more than one subnet, only one subnet that con-
tains the complete family specifies the conditional distribution of the variable.
This is necessary to ensure local and global consistency in the agent system.
The method proposed is to assign the “correct” conditional probability table
to one agent, and a uniform distribution to all others. Determining the CPT
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to respect requires intervention from a system designer, or a complex negoti-
ation scheme. However, in individually designed agents, there may not exist
an agent that contains the complete family of an interface variable. Xiang
devised a distributed algorithm to determine if each interface variable meets
this requirement. If this is not the case, the agent decomposition is not valid
and agents may need to be merged, or their subdomains modified to satisfy
this requirement.

The verification and compilation algorithms demonstrate the complexity
involved with probabilistic reasoning in multiagent systems. The complexity
is required if one commits to the five basic assumptions as Xiang shows
admirably. However, the restrictions imposed by MSBN semantics restrict
the autonomy of the agents, and imposes a tight coupling of the agents that
limits their applicability in distributed reasoning. Xiang has made several
arguments to support the role of MSBNs for multiagent systems [13, 14, 11,
3, 15], however, individually designing the agents can be a challenging task
(and may not be possible) in order to satisfy the requirements of the MSBN
model. Xiang provides little guidance on how to design agents to satisfy the
restrictions, rather only methods for checking whether the design is sound.

MSBN is focussed on the distributed computation of a global Bayesian
network, where each agent is responsible for a sub-network. In our proposed
system we designate agents with expert knowledge over particular variables
and the sharing of this knowledge among interested agents. The internal
models of each agent are the concern of each agent’s designer. This stresses
the autonomy, rather than the distributed computational aspects of the mul-
tiagent system. We only require consistency over the shared variables to
support normative system behavior. Their hidden (non-shared) variables
represent an agent’s internal beliefs about the world and therefore are not
relevant outside the agent.

Our approach is distinct from Xiang’s in that we commit to a different
set of basic assumptions, resulting in a different formalism. Our model is less
complex as it does not require the agents to be organized into a hypertree
MSDAG, but instead introduces a strong independence relation called the
oracular assumption. Xiang describes MSBNs as a tightly coupled frame-
work [13], it is our goal to set out to construct a loosely coupled framework
that stresses the autonomy of the agents. Additionally, Xiang shows that
concise message passing is only achievable in tree topologies. We adopt Xi-
ang’s basic assumptions, but we relax basic assumptions #2 and #3 in order
to allow agents to be organized in more complex topologies than trees. Fur-
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ther, we introduce a new basic assumption, the oracular assumption, that
ensures global consistency is achieved via message passing in multiply con-
nected graphs.

MSBNs are more expressive than our agent model and are more appro-
priate for agent systems that must coordinate. They also are based on con-
ditional independence relations in the system and do not require additional
independence assumptions not present in Bayesian networks, whereas in our
model we introduce an oracular assumption. Our agent model allows for
more flexible topologies than trees, but when the agent topology is multiply
connected, global consistency can only be achieved by detecting and com-
pensating for what we call rumors to avoid bias. The details of solving the
rumor problem are outside the scope of this paper and can be found in [8, 9].

5. Agent Encapsulated Bayesian Networks

We now present our agent model, which extends Bloemeke’s Agent En-
capsulated Bayesian Network model. First, we briefly provide an overview
of Bloemeke’s work and restrictions we aim to address. Finally, we present
a formal description of our extended model.

5.1. Original Formalism

This research extends the Agent Encapsulated Bayesian Network (AEBN)
multiagent model originally proposed by Bloemeke [16]. This model describes
a method of linking individually designed Bayesian networks using a multi-
agent framework, where each agent utilizes a Bayesian network to represent
its internal knowledge representation of the world. The agents communicate
by passing messages that are represented as probability distributions over
shared variables.

The agents in this model are organized in a publisher-subscriber hierar-
chy, where the topology of agent communication must conform to a DAG
structure. Agents pass messages from publisher to subscriber that are sin-
gle marginal probability distributions over variables they share. Producer
agents are assumed to be experts or more knowledgeable about the variables
they produce and share this information with subscribing agents via message
passing. Subscribing agents integrate the beliefs of the publishing agents by
revising their internal model so it is consistent with the publishing agent.
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This is done simply by replacing the agent’s current view of the shared vari-
able with the publishers. In this way, the publishing agent is said to have
oracular knowledge over the variables they produce.

The originally proposed method of revising an agent’s Bayesian network
relied on the assumption of independence of all received evidence, E. The
belief revision was performed using Jeffrey’s rule to update P (V ) with Q(E):

P (V ) =
P (V )

∏
Ei∈E Q(Ei)

P (E)

This restriction as well as the limitation of only passing single marginals
can result in a loss of dependence among shared variables in two possible
ways. We illustrate these two cases with the following two examples. In the
first example, consider an agent X sends its beliefs of variables A and B to
an agent Y , shown in Figure 2(a). Since only single marginals are passed,
agent Y will receive P (A) and P (B) losing any dependence between them.

Y X

A

B

(a)

Z

X

A B

Y

(b)

Figure 2: Loss of dependence between variable A and B.

In the second example, agent X and Y send their beliefs in variables A
and B respectively to agent Z, shown in Figure 2(b). The revision procedure
will result in forcing A and B to be independent in agents Z’s internal model
after absorbing the passed messages. Should we not commit to a revision
procedure that minimizes the change in agent Z’s model but respects the
beliefs of agent X and Y ?

Valtorta et al. [17] argue that agents should not force independence of the
received evidence, and illustrate their argument with the following example1:

Example 5.1. Consider an agent that models the age group (A) and educa-
tion level (E) of US citizens. The agent conducts a small survey on a sam-
ple of the population and calculates a joint probability distribution, P (A,E).

1The example was inspired by Demming and Stephans 1940 paper on IPFP [18].
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Later, the agent communicates with two other agents that provide it with ac-
curate US census data for age groups, Q(A), and education levels, Q(E). If
we treat the evidence as independent in the receiving agent, then the agent
revises its model P (A,E) as Q(A,E) = Q(A) · Q(E). In doing so, it loses
all information from its survey!

Instead, Valtorta et al. argue the agent should instead revise its model
to a joint probability distribution, Q∗(A,E) such that:

• The marginals for the US census agents are respected.

• The distribution Q∗(A,E) is the distribution that is closest to the orig-
inal distribution P (A,E) (measured as I-divergence).

Soft evidential update has recently been the subject of methological in-
quiry and algorithm development [17, 19, 20, 21, 22, 23, 7, 24] can be used to
satisfy these requirements by revising an agent’s joint probability distribution
to respect the beliefs received from publishing agents.

5.2. Proposed Framework

In our proposed agent model, each agent represents its internal knowledge
base as a Bayesian network. Each agent’s probabilistic model is partitioned
into three sets of variables:

• Input variables (I): variables which other agents have better knowledge

• Output variables (O): variables which this agent has the best knowledge
and that are shared with other agents

• Local or hidden variables (L): variables which are private to this agent

Definition 5.1 (Agent Encapsulated Bayesian Network). An AEBN is
defined as a tuple: A = (I, L,O,E, P ), where I is a set of input variables
that other agents have better knowledge of, L is a set of local variables and
O is a set of output variables that the agent has oracular knowledge of. The
union V = I ∪ L ∪ O define the variables of the AEBNs local Bayesian net-
work, where E is the edges in the model that define the causal relationships
amongst the variables V and P is the unique joint probability distribution
defined over V . The union S = I ∪ O are the AEBNs shared variables, and
L are its private (non-shared) variables.
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Our desire is to ensure global consistency of shared variables, while mini-
mizing the changes to each agent’s local model. This is achieved by treating
messages as soft evidence and utilizing soft evidential update.

Each agent provides its best guess as to the correct distribution of its input
variables, and relies on other more knowledgable agents providing it with a
more accurate view. In the event, no agent can be found, or communication
is severed, the overall system will gracefully degrade due to the agents using
their estimated guesses or last received belief from the knowledgeable agent.

Agents communicate via passing of messages that are joint probability
distributions over their shared output variables, O. The topology of the
communication in the multiagent system must conform to a DAG structure
to ensure equilibrium can be reached. The agents are organized into a pub-
lisher/subscriber hierarchy, where agents are publishers of their output vari-
ables and subscribers to their input variables. The underlying assumption
is known as the oracular assumption, where one agent is more knowledgable
about certain variables and shares its knowledge with interested agents. It is
permissible for multiple agents to share knowledge over the same quantities,
however, each quantity must have its own unique label.

The method of updating an agent’s probability distribution upon the re-
ceipt of messages from other agents is described in a related paper [17], where
the messages are called soft evidence. In particular, we adopt the modeling
approach of introducing observation variables into an agents Bayesian net-
work, and updating the agent’s probability distribution using the approach
of soft evidential update [17, 19]. Therefore, each agent that receives mes-
sages from other agents obtains soft evidence for one or more observation
variables2 (see Figure 3) that are created by the following procedure:

1. Create an observation variable, Obsi, for each soft evidence received,
where the states of the observation variable correspond to the possible
outcomes of the soft evidence.

2. Add directed edges to Obsi from all variables in the Bayesian network
that have a direct influence on the observation. The set of parents
d-separates the observation variable from the rest of the network.

3. Model the logical dependence of the parents of Obsi, π(Obsi), on Obsi
by specifying the conditional probability table P (Obsi|π(Obsi)) where

2The introduction of observation variables is a modeling technique that enables update
on a single observation node, rather than a set of nodes.
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P (Obsi = o|π(Obsi) = ~x) = 1⇐⇒ ~x corresponds to o.

Publisher 
Agent

Obs

I1

Ik
. . .

Subscriber Agent

Q(I1,..,Ik)

message

Figure 3: Introduction of an observation variable in a subscriber agent for absorption of a
publisher message over shared variables I1, ..., Ik.

To update an agent’s distribution P (V ) with new evidenceQ(E1, E2, ..., En)
for some set of observation variables {E1, E2, ..., En} = I one calculates the
joint probability P (V ), dividing by the marginal probability P (I), and mul-
tiplying it by the new distribution of {E1, E2, ..., En}, this corresponds to the
application of Jeffrey’s rule,

Q(I) = Q(E1) ·Q(E2) · ... ·Q(En), (1)

thus obtaining:

Q(V ) = P (V \I|I) ·Q(I) =
P (V )

P (I)
·Q(I). (2)

In the case in which the input variables are not independent in the receiving
agent, Equation 1 does not hold. (See [17, Section 5] for a detailed discussion
on this point.) Lemma 1 in [17] allows the replacement of Equation 2 by:

Q∗(V ) = P (V \I|I) ·Q(I) =
P (V )

P (I)
·Q∗I(I), (3)

where Q∗I is the I1-projection of probability distribution P on the set of all
distributions defined on I and having Q(Ei), i = 1, ..., n, as their marginals.
In practice, P (V ) could be updated to Q∗(V ) using the big clique algorithm
of [17, 20], lazy big clique algorithm of [25], or the wrapper methods of [7].

Thus a mechanism similar to that already used for updating probabilities
in a Bayesian network adjusts the world view of the agent, P (V ), into a
conditional probability table P (O|I). Note that this table is calculated using
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the local observations of the agent: P (O|I) =
∑

L P (O, I, L)/P (I). It then
combines that table with the external view of the inputs, Q(I), to allow the
calculation of the new values for the output variables Q(O).

Given this view of the purpose of each agent in the overall system, an
agent system may be considered an expansion of the Bayesian network for-
malism to a DAG where the distribution of the variables of one agent is
obtained by conditioning on its input variables. This is not strictly the case
for two reasons. First, when input variables are not independent in the receiv-
ing agent, then the calibration equation 2 must be replaced by the formally
identical, but substantially and computationally more complex equation 3.

Second, the oracular assumption imposes the additional constraint that,
in the agent system, unlike a Bayesian network, all parents are not affected
by their descendants. More precisely, the only variables that may affect
the variables in an agent are (1) those in the agent itself and (2) those in a
preceding agent. In order to provide a formal definition of “preceding agent,”
we introduce the notion of communication graph in Section 5.3.

5.3. Communication Graphs

In order to represent the message passing and updating implications of
AEBN’s, we define a graphical representation of the agent system, called a
communication graph. This graph is a DAG whose nodes are the agents and
where edges are drawn from a publisher of shared variables to each of the
subscribers of the shared variables. These edges are in turn labeled with
the variables that they share. It is permissible for an agent to subscribe to
only a subset of the published variables of another agent. In this case, the
publishing agent will marginalize Q(O) to the desired subset and pass this
marginal to the subscriber agent.

We can now formalize the constraint that, in the agent system, all vari-
ables that are parents are not affected by their descendants. Let Ai and Aj

be two distinct agents, let Vi, Vj be the sets of variables in agent Ai and
Aj, respectively, and let Wi ⊆ Vi, Wj ⊆ Vj. Then if there is no directed
path in the communication graph from Aj to Ai, any changes (whether by
observation or by intervention) in the state of the variables in Wj does not
affect the state of the variables in Wi. This is a very strong condition on
the distribution of the variables in different agents of the agent system. This
is not a symmetric relation, and therefore cannot be represented by any in-
dependence relation, since every independence relation is symmetric. There
is an analogy to be made with casual Bayesian networks [26]. In a causal
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Bayesian network, when a variable is set (by external intervention), the par-
ents of that variable are disconnected from it; more precisely, the result of
the intervention is to create a new Bayesian network in which we remove
the edges incoming into a variable that is set. The analogy, however, is not
complete. In a causal Bayesian network, when a variable is set by interven-
tion, some of the parent variables may be affected through backdoor paths,
as explained in [26, section 3.3]. In an AEBN, there is no possibility for a
variable in an agent to be affected by a descendent agent.

Consider as an example a four-agent system, where a supervisor agent
fuses reports from two observer agents, each of which reports information
from a single sensor agent. The communication graph shown in Figure 4
is constructed by first identifying shared variables (S, L1, and L2), then
directing labeled edges from the producing agents to the consuming agents.
The labels for the edges correspond to the shared variables. In this example,
the edges directed from the Sensor agent to the Observer1 and Observer2
agents are labeled with S, and the edges from Observer1 and Observer2 to
the Supervisor agent are labeled with L1 and L2, respectively.

Sensor

Observer1 Observer2

Supervisor

S S

L1 L2

Figure 4: Redundantly Observed Sensor Example (ROSE) communication graph.

6. Multiagent Simulation

To evaluate the proposed AEBN model, we implemented an AEBN frame-
work using the Java SE software development kit (JDK 1.6). This implemen-
tation allows us to run agent simulations and capture various performance
metrics. These performance metrics are compared with similar simulations
implemented using Xiang’s MSBN framework and provide insight into the
trade-offs of modeling using our AEBN model, and MSBNs. Performance
metrics are collected for all agents during each phase of message passing in
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the agent communication graphs. In order to compare the two systems, we
collect the following performance metrics:

1. Cross-entropy and CD distance w.r.t. MSBN distribution of shared
variables

2. Posterior beliefs of shared variables

3. Total size of all messages sent

The first two metrics provide insight into the effect the oracular assump-
tion has on the shared beliefs in the agent system as compared with a system
that strictly adheres to d-separation properties in a centralized graphical
model. Since posterior beliefs in MSBN are identical to those in a global
Bayesian network model, we will compare the belief of each shared variable
in our agent model to the corresponding belief in a similar simulation imple-
mented as an MSBN. The last metric provides insight into the computational
and resource implications of our model and MSBNs.

Our desire is for the multiagent simulation to be semi-realistic to reflect
design issues a multiagent system designer may face designing real world
systems. Our chosen simulation is based on a “bio-attack” example devised
by Laskey and Levitt [27]. In this example, a sophisticated coordinated
multi-city bio-warfare attack is orchestrated by a terrorist organization on
the United States. The terrorist organization utilizes multiple contagions to
masquerade a deadly anthrax attack as a less serious cutaneous anthrax and
foot-and-mouth disease outbreak in the american cattle industry. All three
contagions have similar symptoms in cattle and humans.

The goal of the terrorist organization is to cause government authorities to
mistakenly link illness in humans from a deadly strain of anthrax with two
independent disease outbreaks in cattle. The ensuing confusion will delay
detection of the terrorist plot, resulting in high civilian casualties and high
economic damage.

Although the example is fictitious, it is semi-realistic due to the following
facts [27]:

1. Outbreaks of foot-and-mouth disease on livestock has the potential of
causing trillion dollar economic damage to the US economy.

2. Over 95% of beef processing in the United states is concentrated in
a very small number of large scale factories, mainly located in large
industrial cities such as Chicago, Kansas City, Denver and Dallas/Fort
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Worth. The animal-to-product cycle is highly efficient and it takes only
a few days for the product to reach the dinner table.

3. Cutaneous anthrax can be transmitted to humans from livestock.

4. Inhalation anthrax is deadly to both humans and livestock and is easily
spread in aerosol form. Only 50-100kg of weapons grade anthrax would
be required to attack an urban population.

The sequence of events for the scenario are outlined in Table 1. The
scenario proceeds from day 1 (the start of the scenario) to day 18 (the end
of the scenario) for a coordinated terrorist attack. We stop at day 18 since a
terrorist attack is certainly detected due to the discovery of weapons grade
inhalation anthrax in human populations. In the table, the events that are
evidence the intelligence agents can gather are highlighted in bold. The goal
of our simulation is to determine how well an AEBN and MSBN system can
detect the terrorist attack. Note that the word agent in the phrase “terrorist
agents” in Table 1 does not refer to an intelligent computational agent.

To detect and reason about the scenario, we implement a fictitious dis-
tributed detection network that attempts to detect the unfolding scenario
and minimize damage from the terrorist plot. Laskey and Levitt proposed a
single Bayesian network3 to illustrate the power of MEBNs, we constructed
a similar Bayesian network (Figure 5) for reasoning about the scenario. We
will use this model as a guide for constructing two multiagent systems: one
based on our AEBN model, and the other based on an MSBN.

Our simulation includes early detection agents representing agents lo-
cated in meat processing facilities, and governmental monitoring agencies.
Information gathered from early detection agents is reported to local threat
assessment agents as part of a nationalized monitoring and detection network.
Reports from local threat assessment agents are transmitted to a national
incident agent which is responsible for assessing attack types detected and
issue alerts to appropriate authorities of the probability of a coordinated ter-
rorist attack. Figure 6 shows a summarized overview of the proposed agent
communication graph for the AEBN simulation (only Chicago and Kansas
agents are shown). The full multiagent system contains seventeen agents:
one incident agent, eight attack type agents and eight early indicator agents.
The attack type and early indicator agents are divided by region, where each
region has two attack type agents and two early indicator agents for human

3Constructed using Multi-Entity Bayesian Networks (MEBN).
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Figure 5: Bio-attack full Bayesian network.

and livestock population monitoring and testing. In our simulation, there are
four regions: Chicago, Kansas, Denver and Dallas. The agent set associated
with each region are essentially identical, except variable labels are specific
to each particular region. A similar agent decomposition is devised for an
MEBN multiagent system as discussed in Section 6.2.

6.0.1. Early Indicator Agents

Early indicator agents represent early detection report agents that mon-
itor abnormal rates of illness or deaths in human and livestock populations
and calculate their belief the observations indicate possible anthrax or foot-
and-mouth disease. The joint probability of early indicators is calculated
and passed to the appropriate attack type agent.

6.0.2. Attack Type Agents

Attack type agents represent early government monitoring and testing
facilities that receive early detection reports from early indicator agents and
also are capable of performing tests for specific strains of anthrax and foot-
and-mouth disease. Each attack type agent computes its belief that an in-
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Figure 6: Communication graph for bio-attack AEBN simulation (only Chicago and
Kansas agents shown).

halation, cutaneous or foot-and-mouth disease outbreak in the target popu-
lation has occurred given all the available evidence. The joint probability of
the outbreak is calculated and passed to the incident agent.

6.0.3. Incident Agent

The incident agent represents a national alert agent that receives reports
of outbreaks from attack type agents and assesses the probability of a terrorist
attack and characterizes the type of terrorist attack. The incident agent relies
on the reports from the attack type agents and fuses the information into
its internal model. We envision in a real world scenario the incident agent
would initiate alerts to appropriate authorities if the belief of a terrorist
attack reached an appropriate threshold.

6.1. AEBN Multiagent Simulation

In our AEBN multiagent simulation, each agent calculates and processes
messages according to the following:

1. Messages are only sent to subscribers when new evidence is discovered

2. Messages are computed using current beliefs based on all available ev-
idence

3. Replace previous evidence received with new evidence received

4. The most recent evidence is used to reason
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Each agent in an AEBN has an internal Bayesian network used for rea-
soning given local and external evidence received. The Bayesian network of
the incident agent is shown in Figure 7. An example of the Bayesian net-
works for the attack type agents is shown in Figure 8 and Figure 10 for the
Chicago human and livestock attack type agents respectively. Finally, an
example of the Bayesian networks for the early indicator agents is shown in
Figure 9 and Figure 11 for the Chicago human and livestock early indicator
agents respectively.

In the Bayesian network figures, the shaded nodes with dashed borders
represent observation nodes (as defined in Section 5) that are introduced to
absorb the messages from publishing agents, and nodes that are shaded with
double lined borders represent variables that can be subscribed to by other
agents.

For the purposes of our simulation, we assume perfect communication 4

in the agent system. Each agent first receives all messages from publishing
agents it is subscribed to then performs belief revision. After new beliefs
have been computed, each agent computes and sends messages to subscrib-
ing agents. This process is performed for each evidence phase described in
Section 6.3.

6.2. MSBN Multiagent Simulation

The MSBN multiagent simulation is constructed using a similar decom-
position of the global Bayesian network as the AEBN simulation. We used
Xiang’s publicly available WEBWEAVER-III toolkit5 to construct and val-
idate the soundness of sectioning (see Section 4.1 for details) of the MSBN.
Figure 12 shows a summarized version of the resulting linked junction forest
for the MSBN. Each junction tree in the linked junction forest represents an
agent. The agent roles are defined similarly to our AEBN decomposition and
comprises the same set of seventeen agents.

Belief propagation in an MSBN is analogous to propagation in a junction
tree where branches of the junction tree are distributed to agents, rather
than centralized in one agent. Therefore, as opposed to our AEBN simula-
tion, where agents only transmit messages when new evidence has arrived,

4Perfect communication means no latency, transmission failures or corrupted messages
occur in the network.

5WEBWEAVER-III is available for download at
http://www.cis.uoguelph.ca/∼yxiang/

23



BioAttackType
AttackLoc_Chicago

Targeted_Human_Chicago

Outbreak_Human_InhAnx_Chicago

Obs_Outbreak_Human_Chicago

Outbreak_Livestk_FtMth_Chicago

AnthraxVariety

AttackLoc_Kansas

Targeted_Human_Kansas

Outbreak_Human_CutAnx_Kansas

Obs_Outbreak_Human_Kansas

Outbreak_Livestk_CutAnx_Kansas

Outbreak_Human_InhAnx_Denver

Outbreak_Livestk_FtMth_Denver Outbreak_Livestk_InhAnx_Denver

Outbreak_Livestk_CutAnx_Denver

Obs_Outbreak_Livestk_Denver

Outbreak_Human_CutAnx_Dallas

Outbreak_Livestk_FtMth_Dallas

Outbreak_Livestk_InhAnx_Dallas Outbreak_Livestk_CutAnx_Dallas

Obs_Outbreak_Livestk_Dallas

AttackTargetLivestock AttackTargetHuman

BioAgent

FtMth

Inhalation Cutaneous

Outbreak_Human_CutAnx_Chicago

Targeted_Livestk_Chicago

Outbreak_Livestk_CutAnx_Chicago

AttackLoc_Denver

Targeted_Human_Denver

Outbreak_Human_CutAnx_Denver

Obs_Outbreak_Human_Denver
Targeted_Livestk_Denver Targeted_Livestk_Dallas Obs_Outbreak_Human_Dallas

Outbreak_Human_InhAnx_Dallas

Targeted_Human_Dallas

Outbreak_Livestk_FtMth_Kansas

AttackLoc_Dallas

Outbreak_Human_InhAnx_Kansas

Outbreak_Livestk_InhAnx_Chicago

Obs_Outbreak_Livestk_Chicago

Targeted_Livestk_Kansas

Outbreak_Livestk_InhAnx_Kansas

Obs_Outbreak_Livestk_Kansas

Figure 7: Bayesian network for Incident agent.

in MSBN, messages are transmitted in both directions for each agent dur-
ing each message passing phase similar to the collect and distribute evidence
phases in a junction tree propagation algorithm. A full message passing
phase is initiated when an agent receives new evidence and revises its beliefs.
The evidence is propagated throughout the agent system so all agents are
consistent over their shared beliefs given the new evidence.

In our MSBN simulation, each message passing phase corresponds to one
agent receiving evidence. The evidence phases are described in Section 6.3.
As with the AEBN simulation, we assume perfect communication in the
MSBN simulation.
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Figure 8: Bayesian network for Chicago Human Attack Type agent.
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Figure 9: Bayesian network for Chicago Human Early Indicator agent.

6.3. Evidence Phases

From the sequence of events defined in Table 1, the evidence phases de-
fined in Table 2 will be used for the simulations. Each phase is defined as
evidence for that phase being entered in the appropriate agent, which initi-
ates message passing and belief update on the agent system according to the
semantics of each simulation.

Since the goal of the simulations is the detection and classification of the
terrorist attack we will focus on comparing each simulation’s beliefs of the
BioAttackType variable, which has states: Coordinated Bio Attack, Local
Bio Attack, Non-Bio Attack, and No Attack.

6.4. Enhanced AEBN model

During the course of our experimentation, we discovered a modeling issue
with our originally defined AEBN simulation. External evidence received by
attack type agents had too strong an influence over local evidence. We iden-
tified this as a general modeling issue with AEBN systems and this behavior
may not be appropriate in some situations. For example, when an external
observer agent reports their unreliable belief of the presence of a disease to
a subscriber agent which can obtain local evidence in the form of a test that

25



Outbreak_Livestk_InhAnx_Chicago Outbreak_Livestk_CutAnx_Chicago

SpTest_Livestk_InhAnx_Chicago SpTest_Livestk_CutAnx_ChicagoEarlyInd_Livestk_InhAnx_Chicago EarlyInd_Livestk_CutAnx_Chicago

Obs_EarlyInd_Human_Chicago

Outbreak_Livestk_FtMth_Chicago

SpTest_Livestk_FtMth_Chicago EarlyInd_Livestk_FtMth_Chicago

Figure 10: Bayesian network for Chicago Livestock Attack Type agent.
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Figure 11: Bayesian network for Chicago Livestock Early Indicator agent.

can confirm or deny the existence of the disease with a high accuracy, the
observation received is not as important as the local evidence.

In general, we can state the problem as: the reliability or importance of
the external evidence needs to be modeled so it is offset or discounted by
more reliable or important evidence the local agent acquires.

The situation in our simulation is similar, where our early indicator agents
make observations that suggest (or indicate) the presence of anthrax or foot-
and-mouth disease, and the attack type agents can perform a highly accurate
test to confirm or deny the presence of the contagions.

To account for these type of situations we propose the following modeling
technique in AEBN systems:

1. Introduce a mediating variable in the subscriber agent

2. The mediating variable acts as a “switch” that turns off or discounts
the affect of the external evidence when more accurate local evidence
is present
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Figure 13 shows the general modeling technique, and the mediating vari-
able conditional probability table is shown in Table 3. In our implementation,
the external evidence is ignored (using a uniform distribution) if a test has
been performed, but more generally it could be discounted using any suitable
distribution. In practice, either the discount factor could be specified by a
designer or an agent could maintain a discount factor based on the historic
reliability of the communicating agent.

In Figures 14 and 15 we show the revised Bayesian network models of the
Chicago human and livestock attack type agents. The Kansas, Denver and
Dallas attack type agents are modified similarly.

We will refer to this revised model as the Enhanced AEBN simulation or
simply AEBN v2, and the first AEBN simulation as original AEBN simula-
tion or AEBN v1.

7. Simulation Results

In this section we present the results of our simulations. As discussed in
the beginning of this chapter, several performance metrics were collected to
compare the predictive ability and efficiency of the simulations.

Tables 4, 5, 6 and 7 show the belief of the states of the BioAttackType
variable in the three simulations (MSBN, AEBN v1 and AEBN v2) as the
evidence phases progress. Figures 16, 17, 18 and 19 show the corresponding
plots. From these plots we see AEBN v2 performs closer to the MSBN
simulation than AEBN v1. Both AEBN simulations respond similarly to the
MSBN simulation, but are not as sensitive to the evidence presented in the
evidence phases.

The MSBN detects the coordinated terrorist attack at phase 5 with a
belief of 63.262%, while AEBN v1 detects the coordinated terrorist attack
at phase 9 with a belief of 71.290% and AEBN v2 detects the coordinated
terrorist attack one phase earlier at phase 8 with a belief of 68.463%. The
superior performance of MSBN can be accounted for by the loss of some de-
pendence relationships in the AEBN models due to the Oracular assumption.
We draw the analogy of AEBN being like a naıve Bayes model and MSBN
being like a general bayes model. However, AEBN is far more powerful than
a naıve Bayes model since it does not sacrifice all dependence relationships.

We note that in a realistic setting, an elevated risk of a terrorist attack of
even a modest amount would trigger a national terrorist alert. If we applied
such an approach in the incident agent with an alert threshold of 10% an
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MSBN would detect an unfolding terrorist attack one phase earlier at phase
4 and our AEBN model at phase 5 for our enhanced model and at phase 6
for our original AEBN model. This earlier detection could mitigate some of
the damage to civilians and livestock in Kansas and Denver.

To determine a principled measure of the difference of the distributions
of the BioAttackType variable of the simulations, we calculated the CD-
distance and I-divergence6 of MSBN and AEBN v2. Only AEBN v2 was
compared to MSBN since the plots in Figure 16-19 indicate it is overall
superior to AEBN v1. The resulting distance measure results are shown in
Figure 20 plotted over the evidence phases.

The I-divergence is largest during phase 5, which matches our intuition
by inspecting the plots of belief change that show the largest change in belief
in the MSBN simulation for Coordinate Bio Attack as ∆55 and No Attack
as ∆61, while in the AEBN v2 simulation the change is ∆4 and ∆6.4 re-
spectively. Overall, the I-divergence between the two simulations is not very
large with the highest value being 1.257 during phase 5 and all other phases
being less than 1. This indicates that AEBN v2 performs closely to MSBN
overall.

The CD-distance results differ dramatically from I-divergence and iden-
tify a weakness in using this measure as a distance between distributions.
CD-distance captures the worst case distance between two distributions where
as I-divergence is a weighted average. We feel the weighted average is more
representative and explains why I-divergence is a popular metric for compar-
ing two distributions. As discussed above, one would expect the distance to
be greatest during phase 5, rather than phase 10 as indicated by CD-distance.
In our comparison, CD-distance of the two distributions is a monotonically
increasing function, which is counter intuitive. CD-distance does not weight
the distance by the likelihood of events as does I-divergence which we feel is
a strong weakness of this measure and limits its applicability for providing an
accurate measure of the variability between two distributions. However, CD-
distance has some nice properties such as being a true distance measure and
bounding the difference of beliefs captured by two probability distributions.
For our purposes, these properties are not needed since we are comparing dis-
tance of our AEBN simulation to MSBN which we treat as a “gold standard”,
hence symmetry of our distance measure is not needed, nor is bounding of

6Both CD-distance and I-divergence were calculated using lg rather than ln or log.
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belief difference.
Finally, Figure 21 shows the communication cost of AEBN and MSBN

over the scenario phases. Over all evidence phases, the AEBN has lower
communication cost due to messages only in one direction: from publisher
to subscriber. Additionally, agents only send messages when they have re-
vised their beliefs which can result in considerable savings in communication
cost as can be seen in Phases 2 to 10. Conversely, the MSBN simulation
communication cost is constant because each evidence phase corresponds to
propagating evidence in both directions over the links in the link tree to
maintain global consistency.

For large agent networks where evidence is seldom received by a subset
of agents, we posit an AEBN system can have significantly better commu-
nication performance over an MSBN system, provided the network graph is
sparsely connected.

8. Conclusions and Future Work

A central goal of this research was to allow easier design of probability-
based agents and multiagent systems, resulting in rational decision making.
A multiagent framework was presented and compared with other proposed
frameworks where advantages and disadvantages of each are outlined. To
evaluate our multiagent model, we devised a simulation that we implemented
as an AEBN and MSBN to compare quantitatively the two formalisms.

8.1. Future Work

During the course of our research we have identified several possible av-
enues for further research:

1. Investigate AEBN communication optimizations.

(a) To lower communication costs, the communication graph can be
analyzed and redundant communication links could be removed.
This situation can occur in the redundancy graph, where expanded
messages render some message passing unnecessary.

(b) The passing of large joint probability tables between agents is very
expensive, and it may be possible to decompose the messages into
a factorized representation that requires far less communication
overhead during message passing.
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2. Implementation issues of AEBNs should be explored such as dynamic
multiagent networks, handling of communication failures, and resolving
inconsistent or conflicting evidence.

3. Characterize the joint probability distribution of shared variables rep-
resented by an AEBN system.

(a) In our research, we proved each agent can remove redundant in-
formation from received messages using the communication so-
lution. However, proving these beliefs are consistent with a joint
probability distribution that is compactly represented by the com-
bined AEBNs is challenging due to the asymmetric nature of the
Oracular assumption. Recent research in identifiability in causal
Bayesian networks, such as [28, 29] shows promise in represent-
ing a joint probability distribution with asymmetric constraints.
These recent results should be explored further to prove stronger
properties of AEBNs and solving the rumor problem.
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Table 1: Bio-attack sequence of events

Day Event
Day 1 Terrorist agents infect Chicago cattle herds at target stockyards with

cutaneous anthrax.
Day 3 Terrorist agents infect Chicago cattle herds with foot-and-mouth dis-

ease.
Day 5 First reports of anthrax and foot-and-mouth symptoms in

Chicago cattle herds. Terrorist agents spray Chicago herds with
inhalation anthrax. Simultaneously, terrorist agents infect Kansas
City cattle herds at target stockyards with cutaneous anthrax.

Day 7 Terrorist agents use crop duster to spray Chicago with inhalation
anthrax. Simultaneously, terrorist agents infect Kansas city cattle
herds with foot-and-mouth disease.

Day 8 Lab tests confirm cutaneous anthrax at Chicago stockyard.
Day 9 Terrorist agents spray Kansas city cattle herds with inhalation an-

thrax. Simultaneously, terrorist agents infect Denver cattle herds at
target stockyards with cutaneous anthrax.

Day 11 Terrorist agents use crop duster to spray Kansas city with inhalation
anthrax.

Day 12 Lab tests confirm inhalation anthrax at Chicago stockyard.
Terrorist agents infect Denver cattle herds with foot-and-mouth dis-
ease.

Day 13 Lab tests confirm foot-and-mouth disease at Chicago stock-
yard. Terrorist agents spray Denver herds with inhalation anthrax.

Day 14 Lab tests confirm cutaneous anthrax at Kansas city stock-
yard.

Day 15 Lab tests confirm cutaneous anthrax at Denver stockyard.
Terrorist agents use crop duster to spray Denver with inhalation an-
thrax.

Day 16 Lab tests confirm inhalation anthrax at Kansas city stock-
yard.

Day 17 Lab tests confirm inhalation anthrax at Denver city stock-
yard.

Day 18 Lab tests confirm inhalation anthrax in human populations
in Chicago.
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Figure 12: Linked Junction Forest for bio-attack MSBN simulation (only Chicago and
Kansas agents shown).
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Table 2: Evidence phases for Bio-attack simulation.

Phase 1 Initial state (no evidence)
Phase 2 Sick cows observed in Chicago
Phase 3 Positive test for cutaneous anthrax in Chicago livestock
Phase 4 Positive test for inhalation anthrax in Chicago livestock
Phase 5 Positive test for foot-and-mouth disease in Chicago livestock
Phase 6 Positive test for cutaneous anthrax in Kansas city livestock
Phase 7 Positive test for cutaneous anthrax in Denver livestock
Phase 8 Positive test for inhalation anthrax in Kansas city livestock
Phase 9 Positive test for inhalation anthrax in Denver livestock
Phase 10 Positive test for inhalation anthrax in Chicago human population

Hidden State

Test

Observation 
Discount

External 
Observation

Figure 13: Discounting external evidence given an accurate test modeling technique.

Table 3: Conditional probability table for discount variable.

Test false true

Disease false true false true

false 1 0 0.5 0.5
true 0 1 0.5 0.5
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Figure 14: Revised Bayesian network for Chicago Human Attack type agent.
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Figure 15: Revised Bayesian network for Chicago Livestock Attack type agent.

Table 4: Beliefs of Coordinated Bio Attack over scenario phases.

MSBN - 
CoordAttck

AEBN v1 - 
CoordAttck

AEBN v2 - 
CoordAttck

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6
Phase 7
Phase 8
Phase 9
Phase 10

0.01 0.010 0.010
0.014 0.012 0.011
0.148 0.071 0.086
8.373 0.912 1.452

63.262 4.939 10.430
90.241 18.734 39.809
93.508 27.068 48.031
95.181 49.479 68.463
95.971 71.290 81.353
97.829 78.172 86.828
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Table 5: Beliefs of Local Bio Attack over scenario phases.

MSBN - 
LocalAttck

AEBN v1 - 
LocalAttck

AEBN v2 - 
LocalAttck

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6
Phase 7
Phase 8
Phase 9
Phase 10

0.040 0.040 0.040
0.059 0.056 0.049
0.337 0.237 0.264
3.573 1.327 2.014
9.760 3.677 6.983
8.417 13.475 22.443
6.152 19.184 26.154
4.803 25.234 22.044
4.025 17.673 12.296
2.169 16.770 9.418

Table 6: Beliefs of Non-Bio Attack over scenario phases.

MSBN - 
NonBioAttck

AEBN v1 - 
NonBioAttck

AEBN v2 - 
NonBioAttck

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6
Phase 7
Phase 8
Phase 9
Phase 10

0.1500000 0.1500000 0.1500000
0.1500000 0.1502337 0.1501284
0.1510000 0.1515000 0.1515951
0.1380000 0.1527319 0.1540521
0.0620000 0.1661524 0.1773863
0.0040000 0.1156992 0.0745359
0.0010000 0.0910298 0.0499422
0.0008840 0.0436203 0.0169584
0.0004119 0.0186277 0.0110681
0.0002104 0.0142564 0.0098572
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Table 7: Beliefs of No Attack over scenario phases.

MSBN - 
NoAttck

AEBN v1 - 
NoAttck

AEBN v2 - 
NoAttck

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6
Phase 7
Phase 8
Phase 9
Phase 10

99.8 99.800 99.800
99.777 99.782 99.789
99.364 99.540 99.498
87.917 97.608 96.380
26.916 91.218 82.409
1.338 67.676 37.673
0.339 53.657 25.765
0.016 25.244 9.475
0.004 11.019 6.341
0.001 5.044 3.744

MSBN - 
CoordAttck

AEBN v1 - 
CoordAttck

AEBN v2 - 
CoordAttck

Cross 
Entropy

New Cross 
Entropy

Phase 1
Phase 2
Phase 3
Phase 4
Phase 5
Phase 6
Phase 7
Phase 8
Phase 9
Phase 10

0.01 0.010 0.010 0.0004 0.0004
0.014 0.012 0.011 0.0005493564 0.0005517449
0.148 0.071 0.086 0.0046573963 0.0045372664
8.373 0.912 1.452 0.1707938935 0.1538992971

63.262 4.939 10.430 0.8264179678 0.6210553797
90.241 18.734 39.809 0.6563916088 0.3609768821
93.508 27.068 48.031 0.5306929009 0.2977988672
95.181 49.479 68.463 0.2908568977 0.156612795
95.971 71.290 81.353 0.1410520804 0.086017783
97.829 78.172 86.828 0.1046278336 0.0600098299
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Figure 16: Beliefs of Coordinated Bio Attack over scenario phases.
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MSBN - 
LocalAttck
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Figure 17: Beliefs of Local Bio Attack over scenario phases.
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Figure 18: Beliefs of Non-Bio Attack over scenario phases.
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Figure 19: Beliefs of No Attack over scenario phases.
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Figure 20: CD and I-divergence of BioAttackType distribution in AEBN v2 and MSBN
over scenario phases.
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Figure 21: Total communication cost of AEBN v2 and MSBN over scenario phases.

42


