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Abstract 

The wealth of data collected by automated systems, or pen and paper processes, 

and available on the World Wide Web, is staggering. With these vast amounts of data 

come amazing possibilities for data mining and learning of data patterns through 

automated and semi-automated tools. However, these tools are inherently reliant on the 

quality of the data with which they are supplied. Without a thorough understanding of our 

data’s quality and the effects of poor quality on our learning algorithms, we are 

consequently unable to accurately judge the quality of our models. We have distilled the 

ideas of prominent data quality researchers into four features of data sources: data 

accuracy, completeness, timeliness, and consistency. After understanding various 

dimensions of data quality we were able to test the effects of inaccurate data on learning 

of Bayesian Networks, specifically in Parameter Estimation and Structure Learning. By 

testing the learning algorithms with differing percentages and amounts of inaccurate data, 

we have begun to develop guidelines for adjusting the learning techniques and judging 

the quality of the learned models.  
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1. Data Quality Metrics 

 Assessing the quality of our data is a difficult process and is ripe with 

subjectivity. Researchers have been attempting for some time to create quantitative 

metrics to accurately judge the quality of our data. There are many different 

measurements that these researchers use to assess data quality. These range from the 

subjective –value-added and understandability, to those that are more easily quantifiable, 

such as completeness and timeliness. While some researchers have up to sixteen different 

metrics [Pipino et al 2002], we will concentrate on a core set of four for this research – 

accuracy/precision, completeness, consistency/believability, and timeliness, distilled from 

[Wand and Wang 1996], [Strong et al 1997], and [Tayi and Ballou 1998]. We will 

explain these terms in the context of our research. 

 Accuracy and precision are taken from their common scientific meanings. 

Accuracy represents how close a measurement, or data record, is to the real-world 

situation that it measures. Precision will refer to two similar ideas in this research. Firstly, 

it will refer to the standard deviation or variation in a numerical data record with multiple 

readings. As an example, if a weather sensor is calibrated before its use to have a 

variation of ± 0.01°C, we would use this calibrated range as the precision of the 

instrument.  The second use for precision is to quantify the degree to which a sensor, or 

other data input, gives a consistent data output for a given input, regardless of the 

accuracy of these results. Of course, we would wish our data to be both accurate and 

precise. While accuracy is a metric that must be calculated over time and with much 

diligence to discover discrepancies between what is contained in the real world and what 
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is represented in the data record, precision can more easily be calculated from the data at 

hand. 

Completeness in this research will refer to the amount of missing data records. This 

can be computed as the total number of missing data, or the total number of rows 

containing missing data. Each can be useful in our research. This metric is easily 

calculated from the data at hand, and requires no subjective insertions from the user or 

data manager. Completeness is especially important in our research, as we can gauge the 

effects of using approximation algorithms, such as Gibbs Sampling or the Expectation-

Maximization (EM) algorithm, in our learning techniques. Large amounts of missing data 

can also point to problems in the data collection method and the data collection tools. 

Timeliness of the data is also important in the context of our data set. Data that is 

outdated is often useless in many fields of study, such as weather data records, or stock 

market data that must be used to make buying and selling decisions in seconds. However, 

in other fields the timeliness of data is not as crucial. If historical data is being used to 

track consumer spending over the last decade, having data within minutes of the real-

world event is not as important. This metric is therefore at once both subjective and 

objective. If the data is time-stamped, it is not difficult to determine the time difference 

between the entry and the present time. However, we must have allowed a Subject Matter 

Expert to then guide the program to determine how current the data should be for that 

particular purpose.  

Lastly, our research will employ the idea of consistency or believability. These 

metrics are similar to precision, except will be used here to compare data from different 

data sets. Where precision applies to one particular data source – a particular sensor or 
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manually inputted data source, consistency/believability will apply to multiple data sets 

reporting on the same real-world situation. If we have three sensors reporting weather 

information from one location (or small radius) we can measure the consistency of the 

data for that region as the deviation between the data records from each sensor. Similarly, 

if we have eyewitness accounts at the scene of a crime, we can judge the consistency of 

the data set by the similarity of the accounts. This metric is computed separately from the 

accuracy and precision calculations and gives no weight to one data source over the 

other. If there are three data sources, we will calculate one consistency metric for that 

data record which takes into account differences from all the data sets, without declaring 

which data source is most accurate. This allows us to account for differences in data 

without knowing the accuracy of the data set. This may seem faulty, and indeed if we 

have the resources to judge the accuracy of the data sets then we can assign data quality 

based on those findings. However, consistency allows us a metric to determine that there 

are indeed differences in data sources, without tracing the data sets back to the sources 

and having to exhaustively determine which data set is most accurate. Consistency is an 

easier metric to calculate and more likely to be available for use in our algorithms.  

  

2. Testing the Effects of Inaccuracy 

While all four data quality dimensions will eventually be thoroughly studied in 

our research, the focus of this paper will remain on inaccuracy and its effect on learned 

Bayesian Networks (BNs). In order to understand these effects, a set of tests was 

constructed. Two test BNs were modeled – one that will be considered the “true” state of 

the BN and another, “bad” data set in which all of the potentials were set at 0.5 (equal 
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likelihood of either result). Data sets were then generated with 0%, 10%, 25%, 50%, 

75%, and 90% “dirty” data by creating one data set with the “true” data records and a 

second with the “bad” data and melding them together. For example, to generate a 10% 

dirty set for 100 records, one would generate 90 cases from the “true” data set and 10 

cases from the “bad” data set and combine them for a 100 record set. This was done for 

100, 500, 1000, and 10,000 record sets. 

For purposes of this research, two traditional BNs were studied – Trip to Asia and 

the Stud Farm network. The structures of these networks are shown in Figures 1 and 2 

respectively. 

 

 

                                                       Figure 1 Trip to Asia 
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Figure 2 Stud Farm Network 

 
 

After creating the data sets, the generated data were given to three BN learning 

programs – a Parameter Estimation algorithm, the Hugin Researcher Structure 

Learning tool that implements the NPC and PC algorithms, and Visual CB, an 

implementation of the CB algorithm developed by [Singh and Valtorta 1995]. See also 

[Neapolitan 2004]. The pseudocode for the Parameter Learning algorithm is displayed 

below in Figure 3. The input to the code is a Hugin .net file as well as the data sources 

either in a flat file or XML schema. The algorithm uses either the linear calculation, or 

the mean of the beta distribution for the potential calculation. This code can be easily 

manipulated for testing our new algorithms by changing the potential calculations of each 

data set. 

 

6 



 
Parameter Estimation Pseudo code 
Input: Bayesian Network structure in form of Hugin .net file, flat file or 
          XML schema of data sets 
 
Parse structure – get nodes and states of nodes from Hugin structure 
For each Node 
    If Node with no parents 
          i = count total number of entries for that node 
          For each state of node (yes, no, other, etc) 
                 j = Count entries of that state 
                Calculate beta distribution for that state 
               Potential for the state = effective value, E(F) = j/i,  

 or mean of beta distribution 
    If Node with parents 
         For each state of parent 
                i = count total number of entries where parent = that state 
        For each state of node 
                j = count number of entries where parent = current state and node = current             
state 
              Calculate beta distribution for that state 
              Potential for the state = effective value, E(F) = j/i,  

 or mean of beta distribution 
 
Output: Bayesian Network with learned potentials in form of Hugin .net file 
 

Figure 3 Parameter Estimation Pseudocode 

The potentials generated by the algorithm were compared to the baseline of 

learning from 0% dirty data. The variance between the baseline and the dirty data sets 

was then calculated (standard variance calculation - 
)1()( 2

2

+++
=

βαβα
αβσ , where α 

and β are standard parameters of the beta distribution). Then the average variance was 

calculated for each size of the data set - 100, 500, 1000, and 10,000 data records. Also, 

the data sets’ potential calculations were graphed to show differences in original and dirty 

data sets. 

In order to test the effects of inaccurate data on the Hugin Structure Learning 

algorithms, the dirty data sets were inputted to this program and compared to a structure 
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learned from a baseline of 0% dirty data. These structures were compared for missing 

links, reversed links, and extra links to determine the effects of this inaccurate data on the 

learned structures. Further, the data sets were run through a second Structure Learning 

algorithm developed by [Singh and Valtorta 1995] – the CB algorithm. This algorithm is 

a combination of a conditional independence testing algorithm with the traditional K2 

algorithm for determining BN structure. These structures were also compared for missing 

links, reversed links, and extra links against the baseline data. 

 

3. Parameter Estimation Results   

  The resultant potential calculations for the Trip to Asia experiments are shown in 

tabular form in Figure 4 and graphical form in Figure 5.  

Average  Variance 
 Baseline 10 percent 25 percent 50 percent 75 percent 90 percent

100 0.018178 0.032588 0.033372 0.040341 0.063067 0.072432 
500 0.008783 0.019858 0.02729 0.042288 0.053119 0.070345 
1000 0.008304 0.025121 0.026132 0.039092 0.053945 0.067608 
10000 0.001273 0.019202 0.028597 0.039567 0.055699 0.068735 

           Figure 4 – Average Variance From Baseline 
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Comparison Of Learned Potentials
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       Figure 5 – Comparison of learned potentials from dirty data sets. 
       Series 1 – Baseline Data Potentials learned from 0% dirty data on 100 records 
       Series 2 – Baseline Data Potentials learned from 0% dirty data on 10,000 records 
       Series 3 – Potentials learned from 10% dirty data on 100 records 
       Series 4 – Potentials learned from 10% dirty data on 10,000 records 
       Series 5 – Potentials learned from 90% dirty data on 100 records 
       Series 6 – Potentials learned from 90% dirty data on 10,000 records 
 
The results from the graph are surprising at first, because it seems as though the smaller 

data sets yield better results than the larger ones. This is not the case however, and the 

apparent rise in variance as the data set gets larger is due to normal variances of the beta 

distribution. While the distribution of “good” and “bad” data sets is important, the results 

do not change on average with a rise in the total number of data records used. We will 

prove this in two parts. Firstly, we will prove that the potential of a state is due to the 

distributions of the data, and is not affected by the amount of data used to learn the data 

sets. Secondly, we will show that the variance from the original learned data sets is 

directly related to the inherent properties of the beta distribution.  
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Theorem 1 – The learned potential of a state is invariant with respect to the number of 

“good” and “bad” data sets, ng and nb, respectively, when the ratio 
b

g

n
n

 is fixed.  

 
Proof: Consider a binary variable, say X, in state ‘yes’. The potential of X = yes is φgood. 

If a sample of size ng is obtained by simulation, the number of cases in which X = yes has 

mean ng * φgood.  

Consider a second distribution in which the probability of X = yes is φbad. If a sample of 

nb size is obtained from this distribution, the number of cases for which X = yes has mean 

nb * φbad.  

Considering a sample that is an aggregate of the above two, we obtain the fraction of the 

cases for which X = yes is  

)(
)()(

bg

badbgoodg
overall nn

nn
+

∗+∗
=

φφ
φ . (1) 

To prove that this ratio is invariant with respect to ng + nb when 
b

g

n
n

 is fixed, we will 

replace ng with k * ng and nb with k * nb.  
 

))()((
))(())((

bg

badbgoodg
overall nknk

nknk
∗+∗

∗∗+∗∗
=

φφ
φ . 

 
This reduces to  

)(*
))()((*

bg

badbgoodg
overall nnk

nnk
+

∗+∗
=

φφ
φ . 

 
The factor k cancels out, proving that the φoverall is invariant with respect to the size of the 

overall data set, when 
b

g

n
n

  is fixed.  

Lemma 1 - The variances in the data sets that are apparent in the experiment are due to 

the inherent properties of the beta distribution.  
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Explanation  
The formula for the beta distribution is 

)!1(
)!1()!1(),(

−+
−−

=
βα
βαβαB  . 

The mean is given by 
βα

αµ
+

=  and the variance by  

)1()( 2
2

+++
=

βαβα
αβσ . 

We proved in Theorem 1 that the mean is invariant with respect to additional overall data 

when the ratio of “good” data to “bad” data is constant. Now we will see if the variance is 

also invariant with respect to ng + nb when the ratio 
b

g

n
n

 is fixed.  

We have the same ng, nb, φgood, and  φbad from the previous proof. Substituting for α and β 

we have 

)1()(
))](())([()]()[(

2
2

+++

∗−+∗−∗∗+∗
=

bgbg

badbbgoodggbadbgoodg

nnnn
nnnnnn φφφφ

σ . 

 
Substituting ng with k*ng and nb with k * nb we have 
  

)1()(
))](())([()]()[(

2
2

+++

∗−+∗−∗∗+∗
=

bgbg

badbbgoodggbadbgoodg

knknknkn
knknknknknkn φφφφ

σ . 

 
Factoring k we have 
 

)1()(
))](())([()]()[(

22

2
2

+++

∗−+∗−∗∗+∗
=

bgbg

badbbgoodggbadbgoodg

knknnnk
nnnnnnk φφφφ

σ  

 

)1()(
))](())([()]()[(

2
2

+++

∗−+∗−∗∗+∗
=

bgbg

badbbgoodggbadbgoodg

knknnn
nnnnnn φφφφ

σ . 

 
We cannot factor out the k from the denominator. 
 
The Therefore, as k gets larger the variance becomes smaller.  .0lim 2 =

∞→
σ

k
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Results from the Stud Farm Network are similar, but were run on only 100 and 10,000 

data records, for the baseline, 10%, 50%, and 90% dirty data.  The Parameter Estimation 

results are shown in tabular form in Figure 6, and graphically in Figure 7.  

Average Variance 
 Baseline 10 Percent 50 Percent 90 Percent 

100 0.067763969 0.080317446 0.083564781 0.115821561 
10000 0.015885502 0.0203215 0.065876298 0.047815416 

Figure 6 – Stud Farm Average Variance from Baseline 

Comparison of Learnt Potentials - 10,000 Data Records
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Figure 7 – Stud Farm Learnt Potentials Graph 

 

4. Structure Learning Results 

 The results of the structure learning tests for the NPC/PC algorithm using the 

Hugin Researcher tool, and the CB algorithm, are shown in tabular form in Figure 8. 

Because the results from the NPC and PC tests were very similar, we will display only 

the NPC results for ease. 
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 NPC-100 NPC-500 NPC-1000 NPC-10000 CB-100 CB-500 CB-1000 CB-10000
Total 

Wrong         
Baseline 6 5 4 4 4 5 7 2 

10 Percent 6 10 9 13 11 14 13 16 
25 Percent 7 5 10 14 15 14 12 14 
50 Percent 7 11 10 15 8 15 13 14 
75 Percent 12 9 9 10 15 9 12 14 
90 Percent 6 8 10 10 7 9 9 11 

  Figure 8 – NPC and CB Structure Learning Results 

The total incorrect links are calculated by adding the extra links, reversed links, and 

missing links. This is displayed in graphical form for 100 and 10,000 data records in 

Figure 9.  

Comparison of Incorrect Links
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 Figure 9 – Comparison of Incorrect Links – NPC and CB Algorithms 

 
These results are also deceiving at first, as it appears that the total amount of wrong data 

increases until approximately 75% of dirty data, and then declines at 75-90% dirty data. 

This is not the case, however, as revealed by a careful examination of the total correct, 

missing, reversed, and extra links. At around 25-75% missing data, the learning 
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algorithms begin to discover about twice as many total links as in the 0-10% and 75-90% 

dirty data sets. With the larger amounts of conflicting data, the algorithm finds links in 

both the 50-50 “bad” data set and the true data set – giving us twice as many links – both 

correct and incorrect. As the percentage of 50-50, or “bad” data increases to 75-90%, or 

as the “bad” data percentage is low, 0-10%, the algorithms finds only one set of links. 

This can be seen as we graph the total number of incorrect links divided by the total 

number of links found. This is shown in tabular form in Figure 10 and graphically for 100 

and 10,000 data records in Figure 11. 

 A similar result is noted in [Spirtes et al 2000]. The authors discovered that if the 

PC algorithm fails to find an edge from the true graph in the second stage of the 

algorithm, then the algorithm fails in subsequent steps to remove nonexistent edges. They 

also discovered that the failure to find an edge in the true graph could lead to orientation 

mistakes in subsequent stages.  

Total Wrong/Total 
Links NPC-100 NPC-500 NPC-1000 NPC-10000 CB-100 CB-500 CB-1000 CB-10000 

Baseline 2 1.25 0.8 0.666666667 0.5 0.555556 0.636364 0.25
10 Percent 1.5 1 0.75 0.684210526 0.7857143 0.823529 0.8125 0.761904762
25 Percent 1.75 0.625 0.714285714 0.666666667 1 0.823529 0.666667 0.7
50 Percent 2.333333333 0.785714286 0.769230769 0.652173913 0.6666667 0.882353 0.866667 0.666666667
75 Percent 3 0.818181818 0.75 0.714285714 1.875 0.692308 0.923077 0.736842105
90 Percent 3 4 2 0.769230769 1.75 9 1.5 0.6875

Figure 10 – NPC and CB Structure Learning Results Total Incorrect/Total Links 

14 



Comparison of Learnt Structures
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     Figure 11 –Comparison of Incorrect Links – Total Incorrect/Total Links 

Results from the Stud Farm network were similar and are shown in tabular form in Figure 

12 and graphically in Figure 13.  

Total Incorrect 
Links/Total Links NPC-100 NPC-10000 CB-100 CB-10000 
Baseline 2.6 0.071428571 0.416666667 0
10 Percent 2.333333333 0.138461538 0.269230769 0.078125
50 Percent 1.4 1.714285714 0.083333333 6.5
90 Percent 2.166666667 0.134328358 0.282608696 0.093023

Figure 12 Stud Farm NPC and CB Structure Learning Results  
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Figure 13 Stud Farm Comparison of Incorrect Links – Total Incorrect/Total Links  

5. Conclusions 

Even from a cursory overview of the results of these experiments, it is evident that 

Parameter Estimation algorithms are more tolerant of inaccuracies in data than the 

Structure Learning algorithms we have studied – NPC and CB. At only 10% dirty data, 

the CB algorithm with 10,000 data records increased the number of incorrect links from 2 

(baseline) to 16  - an 800% increase. NPC also had an increase in incorrect links of 325% 

for 10,000 records with only 10% dirty data. The results after 10% dirty data, while not 

increasing at a significant rate, also do not become closer to the original structure, as 

would be expected. There does not seem to be a significant advantage to either of these 

Structure Learning algorithms in terms of handling inaccurate data, although the CB 

algorithm appears, in these two examples, to create better structures for smaller data 

records, and NPC seems to create better structures with larger amounts of data. Therefore 

when dealing with small data sets of inaccurate data, the CB algorithm may be a better 
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choice for learning structures. The most significant finding of this research, though, is 

that even at small amounts of inaccurate data, these Structure Learning algorithms are 

unable to generate correct structures. Therefore a thorough understanding of the quality 

of the data is very important when using Structure Learning algorithms, as even small 

inaccuracies can create completely incorrect models.  

 Our parameter estimation algorithm, however, does follow a gradual increase in 

inaccurate modeling when learned from inaccurate data sets. As the inaccuracy of the 

data increases, the learned potentials also deviate from the original and increase gradually 

according to percentage of missing data. Therefore, unlike the Structure Learning 

algorithms we have studied, BNs learned from inaccurate data can be useful when the 

potentials are given a range of accuracy based on the believed accuracy of the data. 

Therefore if a model is believed to be based on data that is 90% accurate with 100 data 

records, the potentials can be given with a standard deviation of approximately 0.18 

( 032588.0variance = ). This variance was taken from the Trip to Asia data results, 

however we realize that the Stud Farm standard deviation for 10% missing data would be 

higher – 0.28. Our future research will strive to verify an average potential deviation for 

the various percentages of inaccurate data that can be applied to a wide range of new 

models.  

6. Future Research 

Future research shall include methods for incorporating the results of these experiments 

into learning algorithms for BNs. For Parameter Estimation this opens two areas of future 

research – quantifying average standard deviation figures for expressing the range of 

accuracy of a model learned from partially inaccurate data, and investigation into 
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methods for discounting those sets of data that are deemed to be partially inaccurate. We 

believe this will add to the adaptation work of [Olesen et al 1992] which was 

incorporated into the Hugin engine. The results of these experiments are discouraging 

for improvement of Structure Learning algorithms for learning from inaccurate data sets, 

as even small amounts of inaccurate data appear to greatly impact the usefulness and 

accuracy of the learned models. Our research will continue to test further Structure 

Learning algorithms with the intent of finding an algorithm that handles inaccuracies 

more effectively. Along with this research, it is also our belief that the inaccuracies of the 

data itself can be modeled effectively to show the dependence of the model upon data 

quality. For example, each node or link in the learned Bayesian Network can also have a 

quality node that quantifies the overall accuracy, completeness, timeliness, and 

consistency of the data set that was used for learning. There exists a causal link from the 

accuracy of the data to the learned potentials and structure. An example of this idea is 

shown in Figure 14.  
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Figure 14 Modeling Inaccuracies as a Causal Entity 

The potential table for Tuberculosis changes to add the parameter of Link Dependence on 

Data Accuracy. As the accuracy of the data decreases, the causal relationship between 

Trip to Asia and Has Tuberculosis begins to fade and the potentials become evenly split – 

no dependence on one parameter over another. This allows us to change our model 

dynamically as our beliefs about the quality of the data changes. This is a challenging 

problem, as more experiments will be needed to confirm the relationship between 

accuracy of the data and existence of a learned causal link. Using this initial research as a 

guide, however, it is our belief that we can begin to understand and account for data 

quality in the automated learning of BNs. 
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