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Summary  
This report describes a proposal to develop computationally feasible technology to support optimal 
management of uncertainty, inconsistency and disagreement in collaborative intelligence analysis by 
importing semantically guided proof search techniques in development at HNC into Bayesian network 
techniques in development at USC.   

Uncertainty is pervasive in intelligence analysis.  Support systems for intelligence must be able to 
quantify and track uncertainties in evidence findings, in data used by inferential processes, in the 
imperfect theories that emerge from the individual and collective experience of analysts, and from other 
sources.  Bayesian probability theory defines the unique paradox-free method for reasoning with 
uncertainty, a proven result [Van Horn 2003] that is less widely known than it deserves to be.  Although 
they enjoy certain advantages in versatility and computational complexity, logical knowledge bases are 
ill-suited to represent uncertainty and then reason about it correctly, because knowledge representation 
languages based on classical logic do not provide facilities for representing and reasoning about 
uncertainty expressed in a probabilistic form.  

Recent work shows that, in principle, such facilities can be provided by extending the logical framework 
to support such representations as multiple-entity Bayesian networks and probabilistic relational models 
[Bangsø and Wuillemin 2000; Getoor et al. 2002; Laskey and da Costa 2005], but the scalability of such 
approaches is questionable [Jaeger 2000].  We propose to overcome this problem by developing 
approximate methods that automatically convert logical proofs into Bayesian networks.  A proof is 
derived from the application of a logical knowledge base to a particular situation, leveraging knowledge 
summarization techniques developed by HNC that guide and accelerate proof search. The Bayesian 
network can then be used to reason about the uncertainty of data sources, the uncertainty associated with 
expert judgment, conflicting data, and conflicting judgments.  Conflicting data will be a major issue as 
larger knowledge bases are used, and particularly as more of their content is extracted automatically from 
text, because logic engines fail catastrophically upon encountering a contradiction.  Our approach will 
provide the main advantages of a full integration of logical knowledge bases with Bayesian networks 
without facing the computational complexity of such a project.  

The results of our effort will be a logical and probabilistic reasoning system (BALER, for Bayesian And 
Logical Engine for Reasoning) that (1) can be incorporated into other CASE projects, (2) will be used, 
demonstrated, and validated within USC’s Magellan system for generating and evaluating hypotheses, 
and (3) will enable analyst teams to collaborate on large-scale tasks.  We will evaluate the reasoning 
system on realistic intelligence problems and, uniquely, by using large groups of students at USC acting 
as teams of novice analysts or, similarly, analysts working in a domain that is new to them.  We expect to 
be able to demonstrate our claim that the amount of information that an analyst must process is greatly 
reduced because the combined reasoner will have removed the irrelevant portions, while bringing to the 
attention of an analyst the most relevant information. 

Having constructed this advanced reasoner and integrated it into the CASE environment, we will study its 
scalability properties and extend its design for operability with large teams of analysts working on large 
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data sets during the two option years (FY09 and FY10).  We will provide documentation and training in 
support of field testing of our tools and will evaluate the results of field tests in order to continue to make 
the developed tools more usable and more powerful.  We will develop scenarios, tutorials, and 
demonstrations that provide for transfer of technology into operational environments within the 
intelligence community. 

The intelligence community has long had a need for intelligent tools to support analysts and decision 
makers.  Reasoning in formal logical systems, at various levels, has been able to provide some of these 
tools in the past.  Statistical and probabilistic systems have also contributed valuable tools that have 
enhanced an analyst’s command over data.  These distinct approaches have yet to be fruitfully merged, 
and doing so requires a significant improvement in the state of the art.  It also requires collaboration 
between communities that struggle to find a common vocabulary and are not often motivated to seek each 
other out.  The practical tools that we will generate through participation in the CASE program and the 
improved understanding of the theory relating Bayesian and logical techniques will be a significant step 
toward the synergistic merger of these historically disparate approaches to reasoning over massive data 
sets and other information sources.  The fruit of this integrated approach will be tools for analysts 
providing far higher intelligence (and hence utility) than any that can be constructed under the current 
state of the art.  
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1.0 Technical Approach 
Innovative Claims 
1.  We will extend classical logic formalisms to support reasoning over uncertain information.  
Classical knowledge representation formalisms provide for reasoning from certain assumptions to certain 
conclusions.  Uncertainty in any assumption entails uncertainty in the conclusion, but there is no 
mechanism for quantifying the degree of uncertainty.  Applying Bayesian networks to formal logical 
arguments provides such a mechanism, allowing for robust reasoning from uncertain assumptions. 

2.  We will provide for meaningful reasoning over inconsistent information.  As larger knowledge 
bases become available, as their content is derived automatically from text, and as collaboration results in 
the integrated use of theories from multiple analysts, it will become increasingly difficult to maintain the 
logical consistency that today's knowledge engines require.  Inconsistency-tolerant reasoning is naturally 
supported by probabilistic modeling.  Since our assumptions may be uncertain already, the appearance of 
a logical contradiction only reduces the degree of certainty held in some of those assumptions entailing 
the contradiction.  The Bayesian framework provides the unique theoretic foundation for appropriate 
propagation of the resulting changes in certainty.   

3.  We will develop a tool that identifies significant agreements and disagreements with potential 
collaborators and identifies the most significant contributors to disagreements.  We will create tools that 
support different analysts working on the same problem, with similar models, and with different beliefs.  
These tools will find and analyze disagreements between analysts and determine whether differences in 
the models are consequential or inconsequential for the hypotheses considered by analysts.  These tools 
will also be able to lead the analysts to understand the source of disagreements, such as crucial pieces of 
evidence that only one of the potential collaborators has seen. 

4.  We will develop a tool that considers an analyst’s existing prior/tacit knowledge before reporting 
newly discovered data, prioritizing that data which will be most surprising to the analyst.  The Bayesian 
framework naturally updates degrees of certainty upon the receipt of new data.  Data which does not 
significantly confirm any working hypotheses or alternative competing hypotheses need not be brought to 
the analyst’s attention. 

5.  We will provide a well-founded theoretical framework in which a new family of techniques can be 
developed which allow robust reasoning over uncertainty and inconsistency and which directly address a 
number of challenges facing the intelligence community.  The current proposed research is a necessary 
precursor to the types of applications described below.  Any non-Bayesian approach to modeling 
uncertainty can be shown to lead the reasoner into a paradoxical state of beliefs in which the reasoner 
becomes vulnerable to arbitrage [Van Horn 2003].  Non-Bayesian software could tell the analyst that 
there is a 70% certainty that a given conclusion is correct, while at the same time behaving as though 
there is a 95% certainty that the same conclusion is incorrect; the latter evaluation may or may not be 
available to the analyst. 

1.1 Technical Discussion 
Provenance and collaboration.  When information sources are made explicit in the reasoning fragments, 
one can model the degree to which particular sources of information contribute to strongly trusted 
conclusions, and which sources tend to yield conclusions which are discarded.  A similar analysis of 
information from collaborators will provide further insight into collaboration work habits and help 
analysts find appropriate collaborators. 

Detecting analyst bias.  By having a model of data generation from an analyst’s assumptions, we can 
estimate elements of the source data that are most consistent with and most inconsistent an analyst’s 
beliefs.  If a conclusion is trusted more strongly than is warranted by the argument for it, we have an 
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indication that the analyst may be relying on a prior prejudice toward the conclusion or may be 
incorporating unconscious knowledge into the reasoning.  This bias can be tracked, isolated, and 
presented to the analyst for evaluation. 

Study of the relationship between the prior/tacit knowledge of individuals and that of groups.  We 
will develop techniques for assembling larger Bayesian networks from smaller fragments.  When the 
smaller fragments become sufficient to represent the beliefs of individual analysts, the assembled 
networks represent the beliefs of the groups.  This provides for both a theoretical and empirical 
investigation into the relationship between the prior and tacit knowledge of individuals and that of groups. 

Hypothesis generation and tracking.  Testing and comparing alternative hypotheses is addressed by 
comparing the degree to which each hypothesis explains observations.  The degree by which each 
hypothesis can be derived from observations and background assumptions can also be measured 
numerically.  When multiple hypotheses are considered within a group of collaborators, they can be 
assessed not only in terms of the degree to which they are consistent with the fragments contributed by 
each collaborator but also by the variation in acceptance.  Key reasons for the stronger acceptance of a 
hypothesis by one collaborator than by another could be automatically worked out in terms of different 
prior knowledge held by the collaborators.  As with all assertions, the uncertainty in a given hypothesis 
would be quantified precisely given any body of background knowledge. 

Data integration tools.  Finally, we observe that the ability to integrate BN fragments is a step toward 
the ability to integrate data, information, knowledge, and people.  Bayesian reasoning provides the only 
well-founded theory for the science of uncertain reasoning, and this science would certainly be furthered 
by our ability to apply the proposed techniques to the challenges facing the intelligence community. 

1.1.1 Core Scientific Principles 
The core scientific principles underlying our proposal are that (1) it is possible to extend first-order logic 
theories to Bayesian networks for the purpose of addressing the uncertainty inherent in many phases of 
analytical activities, (2) such extension is feasible in a practical way for particularly salient situations, and 
(3) it allows the resolution of key problems that occur in collaboration.  

1.1.2 Scenarios 
Our scientific program extends classical knowledge representation and reasoning systems.  We begin by 
considering the use of such a classical system in order to illustrate the extensions that will be made 
available by our proposed research.  We borrow from the Sign of the Crescent [Hughes 2003] for 
familiarity.  We present two scenarios.  The first one emphasizes use of an argument graph.  The second 
scenario emphasizes the use of causal information in the construction of probabilistic models. 

1.1.2.1 Scenario 1: Extending an Argument Graph  

Anna was using her new CASE environment to put together an argument that terrorists had access to the 
New York Stock Exchange.  Initially, she applied techniques she had learned in Professor Hughes’ class.  
Anna structured the argument and checked it for completeness:  Sahim Albakri was a terrorist and was the 
roommate of Hamid Alwan, therefore Albakri and Alwan collaborated on terrorist activities.  Alwan had 
access to the NYSE, therefore a terrorist has access to the NYSE.  She thought that this should be enough, 
but the argument checker told her that it wasn’t formally complete.  It asked whether people who 
collaborated on terrorist activities were necessarily terrorists.  She was amazed that this wasn’t already in 
the knowledge base, but she replied yes.  The environment asked her how certain she was about this, and 
she replied that this was a hard fact that should get absolute certainty.  Now came the part that hadn’t 
been in class.  She asked the system for a probability estimate in the truth of the conclusion that a terrorist 
had access to the NYSE.  The system replied that the likelihood was 64%.  Anna had expected a stronger 
result, so she asked why it was so low.  The system indicated that the primary uncertainty drew from the 
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fact that Anna had indicated only a 75% probability that Albakri and Alwan were actually roommates.  
Figure 1 diagrams Anna’s argument, where the assertions are [Hughes 2003, p 41]: 

144.  Hamid Alwan has access to the NYSE. 

151.  Sahim Albakri belongs to a terrorist organization in the USA. 

152.  Sahim Albakri shares an apartment with Hamid Alwan. 

154.  Sahim Albakri collaborates with Hamid Alwan in terrorist activities. 

128.  A terrorist operating in the New York City area has access to the NYSE. 

144

128

154

151 152
95%

90% 75%

144

128

154

151 152
95%

90% 75%

 
Figure 1.  Part of the argument diagram from Sign of the Crescent, Chart H.  Here we have annotated the 
leaves with probability assessments. 

Anna was about to write up her report when an update came in.  She had turned off updates that weren’t 
related to her current work because she didn’t want to get distracted, so she decided to look at this update 
right away.  It informed her that the system had gotten new information that indicated with 70% certainty 
that Alwan lived on 10th street.  Since Anna was considering Albakri’s address on 50th street to be certain, 
the system warned her about the inconsistency: the system indicated 75% certainty that the two were 
roommates and 70% certainty that they were not.  She was glad to get the warning---she had heard about 
systems in the past that would have held both probabilities simultaneously without warning the analyst.  
She had even heard that someone had used that kind of data to make a case for a conclusion with 110% 
certainty.  The system asked whether she wanted to manually track down the inconsistency or just let the 
system handle it.  She recalled that her previous system used to handle this type of thing by holding on to 
one or the other claim and throwing away everything that depended on the claim not chosen.  But that 
wasn’t a probabilistic system, so she was curious what would happen.  She let the system resolve the 
inconsistency itself, and it suggested setting the probability that the two were roommates to 56%, 
resulting in a 48% certainty in the conclusion.  Anna decided that this was too low, and asked the system 
to find someone for her to collaborate with. 

Anna expected the system to send her to Bill, who she knew had been doing some work on Alwan.  (Bill, 
in fact, had pointed her to the information that Albakri and Alwan were roommates.)  Instead, the system 
recommended talking to Chris and Dan.  The system said that Chris had some information on Alwan 
having received weapons training in Afghanistan, and that Dan had the same information as Anna about 
the roommates, but had assigned different probabilities.  Anna asked the system to explain the relevance 
of Chris’s information, and it responded that since Chris had independent intelligence indicating with 
75% certainty that Hamid Alwan was a terrorist, and this additional evidence of Alwan’s being a terrorist 
boosted confidence in her conclusion to 87.6%.  Anna decided that she was likely to agree with Chris’s 
assessment of the reliability of this information, so she decided to trust it for now and go see why Dan had 
so much more confidence in the information about roommates than she did.  Dan explained that the 
informant who had supplied the 10th Street address for Alwan had turned out to have supplied a large 
amount of misinformation.  Anna returned to her desk and told her system to throw out the 10th Street 
address.  The system correctly returned to the previous estimate of 75% for the likelihood that Alwan and 



 

- 4 - 

Albakri were roommates.  The conclusion was now held with probability 92%.  Anna was pleased that it 
was higher than before and realized that this was because of Chris’s additional information.  She decided 
that she should have asked for potential collaborators initially, even before getting the bogus address 
information, and decided she would have to remember to do that next time before writing her analysis.  
She then went to talk to Chris to verify the information and its probability assessment. 

1.1.2.2 Scenario 2: Exploiting Causal and Temporal Information 
The Sign of the Crescent example contains several messages that, when taken together, lead one to 
consider the likelihood that Faysal Goba could be attending a meeting in Springfield and, at 
approximately the same time, be on a train in Atlanta.   Formalization of this project was taken up under 
NIMD.  One approach is to include among the axioms assumptions about typicality.  In a pure logical 
system, these axioms are sufficient to entail with certainty the conclusion that Faysal Goba cannot be 
present at the Springfield meeting.  The proof is illustrated in 2.  Note that a proof is a directed acyclic 
graphs (DAG). 

This example is typical of envisioned applications of knowledge representation and reasoning systems.  
Our research will address two well-known weaknesses of this approach to reasoning.  Firstly, the degree 
of uncertainty in the assumptions of the system (the “typicality axioms”) is never quantified, and the 
resulting degree of uncertainty in the conclusion is also not quantified.  Note that depending on the 
structure of the argument, a conclusion may have either higher or lower certainty than the assumptions 
from which it is drawn.  Secondly, it is quite reasonable that inconsistent assumptions are made (such as 
“trains follow published schedules” and “trains often run late”).  Classical logical reasoning in 
inconsistent systems is meaningless, as all conclusions can be reached with equal validity. 

 
Figure 2.  From the logical axioms, we obtain the DAG shown here. The theory is written causally, so 
edges point from an event to a manifestation that is evidence for the event. The conditional probability 
assessments shown quantify the “typicality” of axioms informally stated as “if someone is on a train, then 
that person as a reservation on that train,” and “if someone is on a train and that train is in some place, 
then that person is in that place.” 

In the ultimate Bayesian framework that we envision enabling, the system knows how strongly the 
analyst believes in the axioms of the system already.  The system estimates the degree of certainty that 
Goba will be on the train in Atlanta and then reports the degree of certainty that Goba cannot be in a 
meeting in Springfield.  When additional data comes in that confirms Goba’s likely attendance at the 
Springfield meeting (We are now departing from the Sign of the Crescent exercise), confidence that Goba 
will be on the train drops.  The analyst looks for the most weakly supported background assumptions that 
most strongly cause the two conclusions (attending the Springfield meeting and being on the train in 
Atlanta) to both have low degrees of confidence.  Although there are a large number of factors 
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influencing both conclusions, the system finds that one of the most easily overturned assumptions is the 
date of the Springfield meeting, for which very little evidence has been gathered.  The analyst asks the 
system to consider the alternative hypothesis that the Springfield meeting will occur one day earlier than 
the Atlanta train ride, and the system reports that this is sufficient to grant high likelihood that Goba will 
both attend the meeting and ride the train.   The analyst decides to focus on information about the date of 
the meeting. 

1.1.3 Bayesian Extension of Classical Logic 

1.1.3.1 Classical logic and uncertainty 
Uncertainty is pervasive in the real world.  Several types of uncertainty are present in intelligence analysis 
applications.  Some has a linguistic character, some is inherent in the evidence itself, and some reflects 
the lack of complete knowledge of the true state of the world on the part of even the most informed and 
experienced decision maker.  While there are approaches to the representation of these types of 
uncertainty in classical logic, they are, at least, cumbersome, because they require a level of detail 
equivalent to capturing probability theory in the logical formalism used, and often wrong, because of the 
natural tendency to avoid such level of detail. 

A brief review of the literature on model-based diagnosis provides an illuminating example of attempts to 
solve a problem inherently ripe with uncertainty using logic.  A seminal paper by Reiter [1987] describes 
how to apply default logic [Reiter, 1980] to the diagnosis of a system made up of discrete components 
that can fail and be replaced as a unit.  In this approach, a system is at fault if its description is 
inconsistent with observations about its behavior.  A key to this approach is the definition of a 
component-based logical description of the system to be diagnosed.  Some of the logical formulas take 
the form of rules whose premise includes a normality assumption. A diagnosis is defined as a minimal set 
of components that, when assumed to be working abnormally, reconcile the observations with the system 
description.  It was soon realized that this conceptually powerful framework leads to a combinatorial 
explosion in the number of diagnoses. The need to prioritize diagnoses as they are generated, as well as to 
select observations that are valuable in guiding the diagnostic process, became apparent [de Kleer and 
Williams 1987]. Some attempts were made to add “ad-hoc” numerical priorities to the components, with 
varying degrees of success, and a move towards explicit use of probabilities in component-based 
diagnostic solvers is evident [Jensen et al. 2001b]. 

The problems that follow from application of classical logic to reasoning under uncertainty are well 
documented in the literature.  Pearl [1988] contains many examples of the paradoxical results that arise 
from using extensional (also known as truth-functional or compositional) approaches, which “treat 
uncertainty as a generalized truth value; that is, the certainty of a formula is defined to be a unique 
function of the certainties of its subformulas.”  He concludes that probability is a “faithful guardian of 
common sense.”  On the theoretical side, the definitive study of compositional systems is in [Hajek et al. 
1992].  Their overall conclusion, that “compositional systems seem unlikely to become again a matter of 
central theoretical interest,” corresponds, on the applied side, to a blossoming of applications of graphical 
probabilistic models. 

A major issue to be addressed in making probabilistic reasoning a reality is computational complexity.  
Worst-case complexity of the three major problems in probabilistic inference, namely probability update 
(Pr, the computation of posterior probability in the presence of evidence), most probable explanation 
(MPE, the computation of the most likely state of all variables in a Bayesian network in the presence of 
evidence), and most likely a posteriori hypothesis (MAP, the computation of the most likely state of 
selected variables in the presence of evidence), is well known and not encouraging [Park 2002].  One 
should be discouraged by these apparently negative results.  The complexity of the most commonly used 
solution algorithms depend on graphical parameters, such as treewidth [Dechter 1996; Bodlaender 1998]. 
“Many probabilistic networks appear to have bounded treewidth in practice” [Bodlaender 2005], and the 
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treewidth is almost invariably very small when the models are obtained from people or human-generated 
documents (as opposed to models that may arise in, say, bioinformatics).  It is therefore possible to 
conjecture that for all-source intelligence applications, the complexity of probabilistic inference is not a 
major issue, but we shall be prepared to deal with other sources of complexity in the process of Bayesian 
network fragment matching and composition.  In particular, as the number of fragments in a repository 
grows to the point that the existing algorithm in Magellan cannot cope, we shall formulate the matching 
and composition process as a heuristically guided search process. 

1.1.3.2 Quantifying uncertainty 
Bayesian networks (BNs) provide a means to quantify uncertainty about information and to propagate that 
uncertainty in a consistent manner.  A BN can be constructed over any DAG; the primary component in 
addition to the DAG is a conditional probability distribution over each node given its parents.  
Considering the DAG in Figure 1, for example, what we really want to know is the probability that the 
hypothesis of interest to an analyst is true, given estimates of the probabilities that the axioms are true.  
The axioms are the leaves of the tree, and the leaves of the tree encode evidence received by the analyst, 
which may be soft, because of uncertainty associated with the finding in which case the marginal 
probabilities associated with the leaves are a special case of the conditional distributions defined by the 
BN extension of the DAG [Valtorta et al. 2002; Vomlel 2004; Kim et al. 2004; Chan and Darwiche 
2005].  Any such BN provides an assessment of the probability that the conclusion is true.  Not only is 
this of value when we initially construct our analysis, but it can be used to automatically update the 
assessment of the conclusion in light of any updated assessment of the assumptions, such as finding out 
that the information about the train schedule came from an unreliable source.  Sensitivity analysis can 
also be applied to determine those assumptions which have the most impact on the current assessment of 
the conclusion.  These may be given a high prioritization for further analysis. 

1.1.3.3 Reasoning in the presence of logical inconsistency 
Reasoning from inconsistent assumptions means that certain nodes of the DAG will contain contradictory 
assertions.  Classical logic approaches to this problem include default logic [Reiter 1980] and belief 
revision [Arlo-Costa et al. 2004; Levi 1991], both of which result in systems that need to remove large 
amounts of argumentation, because logic is “all or nothing” and cannot simultaneous consider two 
inconsistent propositions in a meaningful way.  In the BN framework, on the other hand, recognizing 
inconsistency only imposes a new set of constraints.  In their simplest form, these modifications amount 
to requiring that the probability of not(A) is 1 minus the probability of A.  This allows us to have a 
consistent probability distribution in which to assess our confidence in a given conclusion.  Minimum 
entropy techniques provide one reasonable approach to finding distributions satisfying these kinds of 
constraints [Vomlel 1999].  A special case of this approach is to define the given state which is logically 
inconsistent to be statistically consistent by considering contradictory assertions to be independent 
variables.  This is what was done by Anna’s system, in the scenario, when it had a 75% certainty that 
Albakri and Alwan were roommates and a 70% certainty that they were not. 

Let X and Y represent “roommates” and “not roommates”, respectively.  X=TRUE if the two are 
roommates and FALSE otherwise; Y=TRUE if the two are not roommates and FALSE otherwise.  The 
original distribution, P0, holds that P0(X=TRUE)=0.75 and P0(Y=FALSE)=0.70.  This is a consistent 
probability distribution on independent variables.  The logical inconsistency arises from the recognition 
that these variables should not be modeled as independent, and in fact is a special case of learning new 
dependencies in general.  What we desire is a probability distribution P for which 
P(X=TRUE)=P(Y=FALSE) (since these events are now recognized as being identical).  Of all possible 
such P, we will choose the one that lies the closest to P0 under the Kullback-Leibler divergence. (A 
number of alternative techniques may be considered, but this one offers a convenient starting point.)  We 
choose p=P(X=TRUE) to minimize D[P, P0]: 
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Numerical techniques can be applied to find that D[P, P0] is minimized when p=0.5625 (reported as 56% 
in the scenario). 

This approached generalizes to the more typical case where a large number of formulas are involved in 
generating an inconsistency.  This is especially problematic for classical logic systems, which need to 
choose which of the many formulas to eliminate. 

1.1.3.4 Incorporation of new information 
We now provide another short example from the Sign of the Crescent case study that illustrates 
explaining away, a powerful pattern of uncertain reasoning that is well supported by Bayesian networks, 
but hard to represent using a logical rule representation [Wellman and Henrion 1993].  This is the case of 
Shiela [sic] Watson, a person who (in the fictitious example) gives an incorrect address on a job 
application.  We would believe that she is a liar and, therefore, a suspect in the context of the case study.  
However, we are later told that “she simply made a mistake in listing her home address on her NYSE 
vendors’ ID application. She had recently moved and gave her earlier address by mistake.”  The 
conclusion we would reach then is that the mistake is an alternative explanation for the incorrect address, 
and we would therefore reduce our belief in Shiela’s guilt.  The situation is described in Figure 3. 

IncorrectAddress

SuspectPerson

Mistake

Prob1 = 0.98

Prob1 = 0.01Prob1 = 1.00

Prob2 = 0.01

Prob2 = 1.00Prob2 = 1.00

 
Figure 3.  The initial probability assessments are shown above the nodes of the DAG.  The probability of 
a mistake is low and the resulting probability of being a suspect is high.  The probability assessments 
below each node are those made after the mistake is understood.  The probability of an incorrect address 
does not change, but is explained by the new high probability of having made a mistake.  The resulting 
probability of being a suspect is reduced from a very high value to a very low one. 

1.1.4 Technical Challenges and Detailed Approach 
Our approach to the difficult problem of integrating logical knowledge bases and Bayesian networks 
builds on the strengths of the two partners and previous work in the NIMD program.  

1.1.4.1 Construction of Bayesian Networks over proofs 
We intend to start with proofs generated through the use of proof planning based on association-grounded 
semantics (AGS). AGS is a class of techniques for representing the meaning of a data object by a 
probability distribution over the contexts in which the data object may occur.  AGS can hierarchically 
cluster symbols in a formal knowledge representation system, yielding a hierarchy of abstraction layers in 
which formal reasoning may occur.  A proof in one of these layers becomes a plan for finding proofs in 
lower layers.  Given a low-layer proof, a higher layer abstract proof may easily be derived, allowing for 
summarization.  Choosing a greater degree of summarization should yield more feasible BN computation, 
but choosing a greater degree of specificity yields probability assessments of more precise conclusions. 
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The proof instances arrived at will be mapped to Bayesian networks.  The precise details of this mapping 
shall be carefully researched, beyond the illustrations given in this proposal. (Cf. [Getoor 2002; Jaeger 
2002; Laskey and da Costa 2005; Poole 2003].)  While the structure is given at this point, assessing the 
needed parameters, which are probabilities for particular variables and conditional probabilities for 
families of variables, is a more challenging task.  We will experiment with several techniques, including 
using a Kroneker delta with smudge, noisy OR and related functional models [Vomlel 2006], counting 
explicit mentions of contradictions, and counting references both in the raw input data and in finalized 
intelligence products.  We also anticipate being able to make use of data made available by those 
contractors that model the analyst or capture analyst activity.  Given this starting point, we will extend 
Laskey and Mahoney’s framework of Bayesian network fragment composition, which we already use in 
the Magellan system within NIMD [Cheng et al. 2005; Laskey 1997]. 

Sets of proofs or partial proofs for related problems may be considered to be fragments of an overall 
investigation or of an analyst’s overall hypothetical beliefs.  For the purpose of fragment composition, the 
fragments (DAGs) are represented as terms, the matching of fragments with evidence consists of a 
restricted form of unification, and composition of fragments into larger DAGs (which we call situation-
specific scenarios) also consists of a restricted form of unification.  See Figure 4 for an illustration and 
[Cheng et al. 2005] for algorithms.  We shall extend the existing implementation to take advantage of 
some of the features of newer versions of Laskey’s system [Laskey and da Costa 2005], and to review 
related approaches [Bangsø and Wuillemin 2000; Getoor et al. 2002]. In the implementation of [Cheng et 
al. 2005], the probabilities of each fragment do not depend on the attributes of evidence items, but only on 
their values.  While this is a convenient simplification, we have experienced in the Magellan system that 
it is a limitation on what can be expressed conveniently. We shall therefore allow prior marginal and 
conditional probability tables to be affected by the particular details of the evidence items that trigger the 
use of fragments. 
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1) Report Date: 1 
April, 2003. FBI: 
Abdul Ramazi is the 
owner of the Select 
Gourmet Foods shop in 
Springfield Mall. 
Springfield, VA. (Phone 
number 703-659.2317). 
First Union National 
Bank lists Select 
Gourmet Foods as 
holding account number 
1070173749003. Six 
checks totaling $35,000 
have been deposited in 
this account in the past 
four months and are 
recorded as having been 
drawn on accounts at 
the Pyramid Bank of 
Cairo, Egypt and the 
Central Bank of Dubai, 
United Arab Emirates. 
Both of these banks 
have just been listed as 
possible conduits in 
money laundering 
schemes.

Partially-
Instantiated 
Bayesian 
Network 
Fragment

<Protege:Person
rdf:about="&Protege;Omniseer_00135"
…..
Protege:familyName="Ramazi"
Protege:givenName="Abdulla“rrdfs:label="Abdul
la Ramazi"/> 

…..

<Protege:Bank
rdf:about="&Protege;Omniseer_00614"
Protege:alternateName="Pyramid Bank of Cairo"
rdfs:label="Pyramid Bank of Cairo">

<Protege:address
rdf:resource="&Protege;Omniseer_00594"/>

<Protege:note
rdf:resource="&Protege;Omniseer_00625"/>

</Protege:Bank>

….

<Protege:Report
rdf:about="&Protege;Omniseer_00626"
Protege:abstract="Ramazi's deposit in the past 4 

months (1)"
rdfs:label="Ramazi's deposit in the past 4 months 

(1)">

<Protege:reportedFrom
rdf:resource="&Protege;Omniseer_00501"/>

<Protege:detail
rdf:resource="&Protege;Omniseer_00602"/>

<Protege:detail
rdf:resource="&Protege;Omniseer_00612"/>

</Protege:Report>

</rdf:RDF>

BN Fragment
Repository

 
Figure 4. Conceptual framework for matching fragments to evidence.  Fragments are retrieved from a 
repository as they match evidence.  After retrieval, the partially instantiated fragments are composed into 
situation-specific scenarios. 
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Prior and Tacit Knowledge 

Part of the process of inducing the Bayesian network over a given argument tree involves determining the 
prior beliefs of the analyst with regard to those assertions occurring at the leaves of the argument. The 
estimation of priors involves a number of technical difficulties in the realm of continuous, parametric 
approaches to statistical inference and modeling that are the subject of much work in the statistical 
literature. The use of graphical probabilistic models eliminates many of these difficulties, because the 
only priors to be estimated are the probabilities of nodes without parents in the Bayesian network and the 
conditional probabilities of all the other nodes.  An illustration is given below. 

A Bayesian network (BN) is a graphical representation of the joint probability distribution for a set of 
discrete variables. The representation consists of a directed acyclic graph (DAG), prior probability tables 
for the nodes in the DAG that have no parents and conditional probabilities tables (CPTs) for the nodes in 
the DAG given their parents. More formally, a Bayesian network is a pair composed of: (1) a multivariate 
probability distribution over n random variables in the set V = {V1, …,Vn}, and (2) a directed acyclic 
graph (DAG) whose nodes are in one-to-one correspondence with V1;…, Vn. (Therefore, for the sake of 
convenience, we do not distinguish the nodes of a graph from variables of the distribution.) 

Bayesian networks allow specification of the joint probability of a set of variables of interest in a way that 
emphasizes the qualitative aspects of the domain. The defining property of a Bayesian network is that the 
conditional probability of any node, given any subset of non-descendants, is equal to the conditional 
probability of that same node given the parents alone.  In most applications, this property is insured by 
qualitative causal or independence relations that form the basic structure of a domain of interest.   

 
Figure 5.  A sample Bayesian network structure with the conditional probability table P(B|A). 

Three features of Bayesian networks are worth mentioning. First, the directed graph constrains the 
possible joint probability distributions represented by a Bayesian network. For example, in any 
distribution consistent with the graph of Figure 5, D is conditionally independent of A given B and C. 
Also, E is conditionally independent of any subset of the other variables given C. Second, the explicit 
representation of constraints about conditional independence allows a substantial reduction in the number 
of parameters to be estimated. In the example, assume that the domain of the values of the variables have 
size 2, 3, 2, 4, and 4, in order. Then, the joint probability table P(A,B,C,D,E) has 2*3*2*4*4 = 192 
entries. It would be very difficult to assess 191 independent parameters. However, the independence 
constraints encoded in the graph permit the factorization P(A,B,C,D,E) = 
P(A)*P(B|A)*P(C|A)*P(D|B,C)*P(E|C), which reduces the number of parameters to be estimated to 1+ 
4+ 2+18 +6 = 31. The second term in the sum is the table for the conditional probability of B given A. 
This probability is shown in Figure 5; note that there are only four independent parameters to be 
estimated since the sum of values by column is one. Thirdly, the Bayesian network representation allows 
a substantial (usually, dramatic) reduction in the time needed to compute marginals for each variable in 
the domain. The explicit representation of constraints on independence relations is exploited to avoid the 
computation of the full joint probability table in the computation of marginals both prior and conditioned 
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on observations.  See [Dechter 1996; Bloemeke and Valtorta 1998; Jensen 2001] for a discussion of some 
algorithms for this computation. 

Some prior information may be elicited from the analyst directly, for example, if, as in the Magellan 
system, an ACH front-end is used to obtain estimates of the credibility of evidence items and of 
conditional probabilities.  Research will need to be carried out on whether such information can be used 
reliably in the assessment process, since ACH is not, in its basic form, a probabilistic system.  In a way 
somewhat related to [Nielsen and Jensen 2004], simply by observing which conclusions the analyst trusts 
the most, we can start to get estimates of the analyst’s confidence in a variety of assumptions on which 
the arguments are based.  Any other tools that monitor the analyst’s knowledge can also provide input for 
our estimation of these prior beliefs.  By having a model of data generation from these assumptions, we 
can estimate elements of the source data that are most consistent with or most inconsistent with an 
analyst’s beliefs.  If a conclusion is trusted more strongly than is warranted by the argument for it, we 
have an indication that the analyst may be relying on a prior prejudice toward the conclusion or may be 
incorporating unconscious knowledge into the reasoning. 

For the first scenario, we used an extremely simple first algorithm for constructing the BN.  We use the 
DAG of the argument itself.  Each node is a formula that is either true or false.  The probability of truth of 
a node given the truth of all of its parents is 1.  Given any other combination of truth values for the 
parents, we take the probability of the conclusion being true to be the same as the probability of its truth 
without any argument.  Since the probability of an intelligence claim such as “Hamid Alwan is a terrorist” 
with no supporting evidence of any kind is extremely small, we set the probability to 0 for simplicity.  
Looking at nodes 151, 152, and 154 in Figure 1, we have assessed P(151)=0.9 (i.e., we believe that there 
is a 90% chance that claim #151 is true) and P(152)=0.75.  We construct the following conditional 
probability table for P(154|151,152): 

 151 True, 152 
True 

151 True, 152 
False 

151 False, 152 
True 

151 False, 152 
True 

154 True 1 0 0 0 

154 False 0 1 1 1 

An incorrect application of this table allows us to conclude with certainty that an assertion is false 
whenever the premises are false.  This is not what is desired, which is why use of the table is restricted to 
the context of the argument: we assume that an argument based on false assumptions offers no support for 
its conclusion.  This is not to be used to reject the conclusion independently of the argument; rather it 
serves to quantify the value of the argument itself.  This restricted applicability is what gives us the 
simplicity of the above table. 

In this context, “incorporation of new information” becomes incorporation of additional arguments for a 
conclusion (where a conclusion might be any node in the original argument tree).  In the scenario, Chris 
had an argument for Alwan being a terrorist that was independent of Anna’s original argument.  
Internally, Anna’s original argument was represented by several more steps than were included in Figure 
1; this was the job of the logic assistant as developed under NIMD and IKRIS.  One of these additional 
nodes asserted that Alwan was a terrorist---this node is marked “A is T” in Figure 6.  Chris’s argument (or 
an argument constructed by the logic assistant from Chris’s information) was a formal proof of this 
particular claim; it is sufficient to represent the conclusion of the argument as a single node, labeled 
“Chris” in Figure 6.  “A is T” is represented differently than the other nodes because it will be justified by 
either of its parents, rather than requiring both parents as the other nodes do.  This is a familiar graphical 
structure from logical reasoning and from AI in general: the search space is an “AND/OR tree”.  A single 
proof is a fragment of this tree that does not include OR nodes, but multiple partial proofs are naturally 
joined by the OR nodes, so that the result of the proof search may be this more informative structure. 
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Figure 6.  An augmented argument tree containing an “OR” node.  The claim “Alwan is a terrorist” is 
true if either Chris’s conclusion or claim 154 are true.  This is in contrast to claim 154, for example, 
which is justified in the argument only if both claims 151 and 152 are true. 

Accommodating this join of two arguments is done simply by creating the appropriate conditional proof 
table for the “A is T” node.  Prob(A is T | Chris, 154) is defined by the following table: 

 Chris True, 

154 True 

Chris True, 

154 False 

Chris False, 

154 True 

Chris False, 

154 False 

A is T True 1 1 1 0 

A is T False 0 0 0 1 

This is the table used in the scenario to compute both the 87.6% and 92% confidence in the conclusion of 
Anna’s argument, depending on the different probabilities assigned to the two suspects being roommates. 

We described above how BNs can produce meaningful inference in the presence of contradictory 
assertions, and this includes contradictory prior and tacit knowledge.  Prior knowledge that is found to be 
inconsistent with the knowledge of other analysts or with data can be highlighted and possibly removed 
from consideration.  One of the central properties of BNs is their ability to quantify uncertainty in light of 
additional information.  The discovery of additional information can easily lead to increased doubt, as in 
the “explaining away” example in section 1.1.3.4 above.  In this example, if we had some doubt about 
Shiela Watson’s guilt originally, we had less doubt when we thought she had falsified a document.  The 
additional information that an honest mistake was made returns us to our original position of doubt. 

A particularly exciting extension of the compositional fragment model arises when we consider each 
analyst to be represented by a set of fragments.  We can then attempt to fit large sets of fragments 
together to begin both a theoretical and empirical investigation into the relationship between the prior and 
tacit knowledge of individuals and that of groups. 

1.1.4.2 Collaboration 
The use of Bayesian network fragments as a representation of prior knowledge supports inference and 
analytical functions, as we have shown in the Magellan system [Cheng et al 2005].  We will use this same 
representation to support collaboration among analysts.  In particular, the use of probabilistic models 
greatly simplifies the construction of more detailed and complete situation models, even when they are 
constructed from fragments obtained from several analysts, and it supports the integration of new 
knowledge (possibly obtained from a collaborator) into an existing model.  Suppose that an analyst using 
a probabilistic situation model obtains from another analyst a more precise model relating some of the 
events of the original model.  By using probability distribution integration techniques, this new model can 
be integrated into the larger model [Kim et al. 2004; Valtorta et al. 2002; Vomlel 1999]. 
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The viewpoints, assumptions, and biases shared (or not) by a pair of potential collaborators can be 
quantified and isolated when they are represented as beliefs in BN fragments.  The degree of agreement or 
disagreement between any two analysts on any set of modeled beliefs can be quantified immediately.  
Given a strong disagreement, it is sensible to ask why the two analysts have come to such different 
conclusions about a given assertions.  Although computationally difficult, it should be feasible in many 
cases to be able to find a key set of background beliefs or key body of evidence which explains the 
difference in beliefs about the conclusion of concern.  This is the type of information that can take a long 
time to elicit through human discussion and may well block much potential collaboration. 

Our research will be guided by concepts provided by the Bayesian and information-theoretic frameworks, 
such as: nearest-consistent theory, model averaging, probabilistic conflict detection, adaptation, soft-
evidential update, and the use of the iterative proportional fitting procedure.  Differences of opinion may 
be due to differences in evidence or in parameter values or in structure.  The alignment matters only on 
variables that are of interest.  The interest comes from some source, such as existing profiles, recently 
read documents, or explicit statements of what an analyst specifies.  Trust and provenance will be 
evaluated by modeling multiple unreliable sources of data or expert judgment as evidence nodes in a data 
fusion problem [Jensen 2001]. 

Multiple Experts Represented Explicitly in Bayesian Networks 

There are several approaches to accommodating the differing opinions of multiple sources of expertise or 
multiple analysts within a Bayesian network framework. Our proposed approach allows analysts to share 
the common scenario fragments on which they agree and to maintain separate fragments on which they 
disagree.  Special model-selection nodes will be introduced into the composed situations that can attach 
the fragments on which the analysts disagree.  When evidence is placed on these nodes, the fragment 
from a particular analyst is emphasized and the model reflects the analyst’s judgment, while enabling the 
differing opinions to be shown and considered.  When evidence is not placed on such nodes, the system 
can reveal which analyst’s judgment is most consistent with the available evidence.  The outcomes 
provided by the system are 

• Consensus views can be computed 

• The range of views is maintained 

• Situations are identified in which certain analyst’s judgments are supported 

• Based on the range of judgments, the system can produce a range of conclusions for the 
hypotheses of interest. 

Because multiple experts, with their unique opinions and conclusions, are represented, the presence of 
group think can be made evident and then mitigated, where appropriate. 

1.1.5 Performance Evaluation 
Initial evaluation of our system will involve work on synthetic problems of the kind described in, e.g., 
[Pearl 1988; Shenoy and Biswas 1990; Bezdek 1992; Halpern 2003].  We want to insure that the system 
does not fail in addressing paradoxical situations that fool some of the naïve systems for reasoning under 
uncertainty, such as compositional systems, and that it has sufficient expressive power. 

A second kind of evaluation will involve examples such as those in [Heuer 2001] and case studies, such 
as Frank Hughes’s well-known “Sign of the Crescent.”  The advantage of the synthetic problems above is 
that they have correct answers.  Case studies such as the “Sign of the Crescent” provide good illustrative 
examples, but do not provide “correct answers” for probability assessments of arguments.  We will need 
to make subjective assessments, but would like to avoid assessing our tools directly.  This will be 
achieved by constructing a variety of arguments based on the suggested examples and attempting to rank 
the relative strengths of the arguments based on natural intuition.  This will be carried out by the principle 
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researchers, by students, and possibly by experienced analysts or other subject matter experts.  We will 
compare the rankings with the rankings produced by our tools as an evaluation of how well the tool 
captures human intuition about what constitutes strong evidence for a conclusion.  

In order to test the ability of our machinery to reason in the presence of inconsistent assertions, we will 
reason over consistent case study examples, and then add inconsistent assumptions and evaluate the 
degree of stability of the system.  Theoretical analyses should also be possible that are able to quantify the 
sensitivity of the reasoning system to “noise” such as false information.  Our research will also be 
presented at peer review conferences and submitted to peer-reviewed journals. 

The initial task we propose is dedicated to surveying work in the field, and we will give special attention 
to evaluation techniques that have been proposed and applied in the past.  We anticipate that part of the 
overall contribution we make to the state of the art will be both in the development of evaluation 
techniques and in the development of some detailed examples for which we obtain ground-truth.  

We propose to exploit the CASE analytic environment to evaluate utility towards intelligence analysis.  
We will collaborate with other contractors to integrate our technologies at appropriate levels into analyst-
facing tools.  Taking advantage of the NIST evaluations and the CASE Challenge Problems, our 
technologies will be evaluated by the changes in analyst productivity metrics similar to those used in 
NIMD, with and without our various technical components enabled.  Sample tasks for testing the 
capabilities of the proposed tools include those in which an analyst is required to evaluate quickly which 
evidence to use when arguing for a conclusion, or when an analyst is faced with explicitly contradictory 
intelligence reports.  We would expect our tools to have access to the same data as the analysts can reach, 
as well as any products that the analysts return to the environment. 

We propose to use logical theories from case studies developed by us, other program participants, 
activities such as IKRIS, and other parties.  We will also use open source data, especially for parameter 
estimation.  We will actively seek out additional data sources, especially those most useful for further 
evaluation and for technology transfer. 

1.1.6 Deliverables 
The project will deliver: 

• Design documents and code for successive versions of the Magellan system for logical and 
Bayesian reasoning about hypotheses and evidence. We plan to deliver a new version of the 
software every six months.  Regular software releases will be packaged with detailed technical 
documentation; user documentation, libraries, sources and executable code, and delivered to the 
CASE-enabled analytic environment. 

• Management reports as required by the program office. We expect to provide monthly and 
quarterly reports in softcopy.  Monthly expenditure and technical status reports will be submitted 
via the JIFFY system or by any means reasonably requested by the Government. 

• Presentations and demonstrations at bi-annual PI meetings and site visits. 

• Successively more robust and sophisticated versions of the BALER reasoning system.  These will 
be made available to other project teams in the CASE program, to evaluators at NIST and PNNL, 
and to analysts. 

1.2 Technical Program Summary 
We propose to develop computationally feasible technology to support optimal management of 
uncertainty, inconsistency and disagreement in collaborative intelligence analysis by importing 
semantically guided proof search techniques in development at HNC into Bayesian network techniques in 
development at USC.  Although they enjoy certain advantages in versatility and computational 
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complexity, logical knowledge bases are ill-suited to represent uncertainty and then reason about it 
correctly, because knowledge representation languages based on classical logic do not provide facilities 
for representing and reasoning about uncertainty expressed in a probabilistic form.  

Although such facilities can be provided by extending the logical framework to support such 
representations as multiple-entity Bayesian networks and probabilistic relational models, the scalability of 
such approaches is problematic [Jaeger 2000].  We propose to overcome this problem by developing 
approximate methods that automatically convert logical proofs into Bayesian networks.  HNC techniques 
will guide and accelerate proof search, while the Bayesian network will then be used to reason about the 
uncertainty of data sources and judgments and conflicting data and judgments.  We will avoid the 
problems of catastrophic failure in classical logic engines due to conflicting data, while also avoiding the 
computational complexity of default and nonmonotonic logic approaches.   

The results of our effort will be a logical and probabilistic reasoning system that (1) can be incorporated 
into other CASE projects, (2) will be used, demonstrated, and validated within USC’s Magellan system 
for generating and evaluating hypotheses, and (3) will enable analyst teams to collaborate on large-scale 
tasks.  We will evaluate the reasoning system on realistic intelligence problems and, uniquely, by using 
large groups of students at USC acting as teams of novice analysts or, equivalently, analysts working in a 
domain that is new to them.  We expect to be able to demonstrate our claim that the amount of 
information that an analyst must process is greatly reduced because the combined reasoner will have 
removed the irrelevant portions, while bringing to the attention of an analyst the most relevant 
information. 

1.2.1 Option 1 (FY’09): Reasoning Extensions and Field Testing 
In the first option year, the goal is to provide support for the field testing of our reasoner. To achieve this 
goal, we will significantly harden the implementation of our prototype in terms of system performance 
and robustness. We will also extend the evaluation tools and methodology, and develop training and 
documentation material for outside administrators and users. One important research and development 
activity is for our system to accommodate the sponsor’s real-world data sets and the target testing 
environment. 

Major research challenges include the definition and implementation of the evaluation tools and 
methodologies as well as the use of real-world data sets. The modular nature of our reasoner supports 
efficient integration with other tools, selective hardening of the software, and easy extension or transition 
to other data sources. 

1.2.2 Option 2 (FY’10): CASE Integration and Technology Insertion 
We devote the final year of the CASE program to technology insertion and transition activities. To 
achieve this goal, our work will focus on system tuning and configuring to maximize performance and 
usability. The development of new software or data is restricted to the implementation of new tools for 
the evaluation of the reasoning prototype and tuning of this software. We will promote it to RDEC and 
any other potential transition partner. We will aggressively advertise its newly developed capabilities in 
the intelligence, defense, and homeland-security communities. Our strategy for marketing the capabilities 
of the logic plus Bayesian reasoner is to raise its attractiveness by lowering its deployment threshold and 
increasing its usability. 

Research challenges include (1) collecting empirical and formal rules and metrics to guide the tuning and 
deployment of the reasoning prototype, and (2) exploring new application areas for our technology. 

1.3 Risk Analysis and Alternatives 
The argumentation DAGs corresponding to the proofs generated by the HNC logic summarization engine 
might not exhibit the independence properties needed for belief update, efficient assessment of 
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probabilities, sensitivity analysis, and value-of-information computations, as needed by the Bayesian 
reasoner.  A secondary risk is that the concepts identified within the HNC proofs might not match events 
in the probability space of the analytical task under consideration.  These risks are reduced by the use of 
Bayesian network fragments with a rich vocabulary of attributes and the redundancy afforded by the 
availability of multiple overlapping fragments. 
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