
A Hybrid Algorithm to Compute Marginal and Joint Beliefs in Bayesian
Networks and Its Complexity

Mark Bloemeke
Artificial Intelligence Laboratory
Computer Science Department
University of South Carolina

bloemeke@cs.sc.edu

Marco Valtorta
Artificial Intelligence Laboratory
Computer Science Department
University of South Carolina

mgv@cs.sc.edu

Abstract

There exist two general forms of exact algo-
rithms for updating probabilities in Bayesian
Networks. The first approach involves using a
structure, usually a clique tree, and performing
local message based calculation to extract the be-
lief in each variable. The second general class of
algorithm involves the use of non-serial dynamic
programming techniques to extract the belief in
some desired group of variables. In this paper
we present a hybrid algorithm based on the lat-
ter approach yet possessing the ability to retrieve
the belief in all single variables. The technique is
advantageous in that it saves a NP-hard computa-
tion step over using one algorithm of each type.
Furthermore, this technique re-enforces a conjec-
ture of Jensen and Jensen [JJ94] in that it still
requires a single NP-hard step to set up the struc-
ture on which inference is performed, as we show
by confirming Li and D’Ambrosio’s [LD94] con-
jectured NP-hardness of OFP.

1 Overview

Bayesian Networks(BN) provide a standard way to repre-
sent a probability distribution on a series of discrete propo-
sitional variables. By taking advantage of independence
information between the variables, BN’s can reduce the
amount of space necessary to specify the distribution, but
they then require special algorithms to recover meaningful
distributions. One such algorithm to recover the marginals
of all the variables is known as the tree of cliques approach
[LS88] [Pea88] [Nea90] [Jen96].

Another approach to the calculation of a marginal proba-
bility distribution on a set of target variables, called Sym-
bolic Probabilistic Inference (SPI) is discussed in [LD94].
It involves solving the Optimal Factoring Problem (OFP
defined in Section 4) for the target set of variables whose

distribution you are interested in. The solution to the OFP
is then used to combine the conditional probability tables
that describe the Bayesian Network and extract the desired
marginal distribution.

Unknown, however, was the time complexity of the OFP. In
[LD94] it was suggested that the OFP was NP-hard, but this
was never shown. In sections 4 to 6 of this paper we will
confirm Li and D’Ambrosio’s conjecture that the OFP is
indeed NP-hard by reduction from the secondary problem
of non-serial dynamic programming.

In section 7 through 10 a new method, based on Li and
D’Ambrosio’s, is given that uses an OFP solution to build
a data structure (called a factor tree, which is similar to the
expression tree of [LD93]) from which not only the target
joint belief can be extracted, but also all the marginal be-
liefs. This is obtained by using a method that is similar
in outline to the tree of cliques approach. This similarity
extends even to the complexity of the algorithm in such a
way as to further confirm Jensen’s hypothesis that all algo-
rithms as efficient as the tree of cliques that recover single
marginals must include an NP-hard step.

2 Symbolic Probabilistic Inference

Assuming that we have a Bayesian Network with
DAG G � �V�E� and conditional probability tables
P �vij��vi��, where ��vi� are the parents of vi in G, we
can, if only very inefficiently, recover the total joint proba-
bility using the chain rule for Bayesian Networks:

P �V � �
Y
vi�V

P �vij��vi�� (1)

and from this we can use marginalization to retrieve our
belief in any subset of variables V � as:

P �V �� �
X
V�V �

P �V �� (2)

The SPI algorithm is based on direct use of equations 1 and
2 to retrieve any desired joint. In order to avoid the expo-



nential size of the resulting tables the fact that multiplica-
tion distributes over addition is employed to push some of
the summations down into the products. This allows some
control to be maintained over the size and time complexity
of the resulting calculation by allowing variable elimina-
tion from the joint at the earliest possible time. The true
cost of this method in fact hinges upon which ordering of
terms is selected for equation 1.

��
��
A

��
��
B ��

��
C

��
��
D ��

��
E

HHHHj

HHHHj

HHHHj

�����

�����

Figure 1: Simple Example Network.

For example consider the network shown in Figure 1. We
can calculate the joint probability of the variables A and C
directly from equations 1 and 2 using the equation

P �A�C� �
P

B�D�E P �EjC� � P �DjB�C��

P �CjA� � P �BjA� � P �A��
(3)

Assuming that each variable A�B�C�D�E has two states,
this will need a table with �� entries to be calculated that
will requires at least �� � �� � �� � �� multiplications to
construct and 28 additions to marginalize onto A and C.
Thus using just equations 1 and 2 to get P �A�C� will re-
quire a total of 92 significant operations.

However, with a slight re-ordering of the terms combined
by equation 1 followed by the distribution of the summa-
tions from 2, we get

P �A�C� � P �A� � �P �CjA� �
P

E �P �EjC��
�
P

B P �BjA� �
P

D P �DjB�C����
(4)

which requires only 24 multiplications and 12 additions for
a total of 36 significant operations.

Since we can only push the summation of a variable down
as far as its earliest occurrence in the combination order-
ing, the ordering determines the amount of time and space
we can save. An appropriate combinatorial optimization
approach is defined in [LD94] that treats each conditional
probability table as a set of variables and defines a combi-
nation function for two sets and a cost function based on
combination. Then the optimal set combination ordering
with respect to cost function minimality can be derived for

A B f��A�B�

a b 	

a �b 

�a b �

�a �b �

B C f��B�C�

b c �

b �c 

�b c 

�b �c �

A f��A�

a �
�a �

Figure 2: Functional definition tables for NSDP example.

any set of target variables whose joint density is required.
From that ordering the calculation of the joint occurs in ac-
cordance with equations 1 and 2 utilizing the distribution
described above.

3 Non-Serial Dynamic Programming

Non-Serial Dynamic Programming (NSDP) as defined in
[BB72] involves performing a global operation, usually
maximization or minimization, over a series of functions
defined on a common domain of discrete variables. To
solve a NSDP instance one combines the functions, accord-
ing to the combination operator, and then performs the de-
sired operation on the resulting much larger function. This
process is very expensive; in fact it requires a space equiv-
alent to the cross-product of the variables in the domain.

Fortunately, we can take advantage of Bellman’s principle
of optimality to reduce the cost of computing the global
operation. Bellman’s principle states that once all the func-
tions involving a single variable have been combined, we
can reduce the size of the resulting interim function by per-
forming the global operation on the interim function. We
then carry forth just the values of the variable being re-
moved that produce the best results relative the global op-
eration for each combination of the remaining variables in
the function.

For example, suppose that we have a domain of three vari-
ables, V � fA�B�Cg, each of which can take on two
states (e.g. a and �a) and upon which three functions
f� � A� Z�, f� � A�B � Z�, and f� � B�C � Z� are
defined. The functions are defined by the tables in Figure
2, and we will assume that we wish to maximize (global
operation) the sum (combination operator) of these func-
tions. In this particular case the functions are called the
components and their sum is called the objective function
[BB72].

If we start by combining f� and f� then we would get a



function f����A�B� defined by the table in Figure 3 which
can be reduced to f����B� also seen in Figure 3.

A B f����A�B�

a b 

a �b �

�a b 	

�a �b �

A B f����B�
a b 


�a �b �

Figure 3: Result of combining f� and f�.

So when we combine f��� with f� we get only a table
based on two variables, B and C, with only a note about
which value of A maximized f��� carried over. It is easy
to see that for a larger example the order of combination
becomes very important. That is why the secondary prob-
lem of NSDP (2-NSDP), that of computing the combina-
tion elimination ordering, becomes so important.

In fact the process of computing a solution to 2-NSDP
such that the minimum table size is assured is NP-hard
[ACP87], with the following variant being known to be NP-
Complete.

Definition 1 (2-NSDP(d)) Does there exist a combina-
tion – elimination ordering for a set of n function F �
ff�� � � � � fng defined over a domain of discrete variables
V onto the positive integers s.t. no interim table, before
application of Bellman’s Principle of Optimality, is formed
whose domain contains more than d variables?

4 Optimal Factoring Problem

The optimal factoring problem takes on the same role as 2-
NSDP did for NSDP in that it gives us the minimum com-
bination (multiplication) – elimination(marginalization)or-
dering for the extraction of a joint marginal on a set of tar-
get variables, T , from a BN. The machinery of the prob-
lem is very simple. We start by building a set of sets
S � fS�� � � � � Smg, henceforth to be called the factoring,
s.t. each set, Si, is a subset of the variables, V , on which
the BN is defined.

These sets correspond to the variables in the conditional
probability tables for the BN. For example the BN in Figure
1 yields the set representation:

S � ffAg � fA�Bg � fA�Cg � fB�C�Dg � fC�Egg

The combination of two sets Si and Sj into a new set Si�j
is defined as:

Si�j � �Si � Sj� �

�
� �
Sk�S�fSi�Sjg

Sk � T

�
A

with the cost of the combination �Si�j
being:

��Si�j� � ��Si� � ��Sj� � bjSi�Sjj

where b is the maximum number of states any single vari-
able in V may take on and � is zero for any of the original
sets. After creation of the new set Si�j the two original
sets, Si and Sj are removed from S and Si�j is inserted.

In this way the process continues until all the sets have been
combined and we are left with just one set equivalent to T .

Definition 2 (Optimal Factoring Problem) Given a set S
of sets defined over a group of variables V that have no
more than b possible states, calculate the combination or-
dering that for a target set of variables T minimizes the
total cost as defined by �.

Given a solution to the OFP we can clearly solve a decision
problem version:

Definition 3 (OFP(c)) Given a factoring, S, defined over
a group of variables V , a value b to serve as the base of
the cost function �, a target set of variables T , and a total
cost c, does their exist a combination ordering s.t. the cost
of deriving T is less than c?

Theorem 1 (NP-completeness of OFP(c)) OFP(c) is NP-
complete.

Since a solution to the general OFP allows the immediate
solution of the decision problem OFP(c), proof that OFP(c)
is NP-complete shows that the general optimal factoring
problem is NP-hard.

5 Reduction

We reduce 2-NSDP(d) to OFP(c) in the following way:

� Define the variables for OFP(c) as the variables for 2-
NSDP(d).

� For each function fi � F �� � i � n� create one set
Si � S s.t. every variable in the domain of fi is in the
set Si.

� Set b, the base of �, to n.

� Set T � �.

� Set c � bd��

6 Proof of Theorem 1

Definition 4 (Function – Set Correspondence) We say
that a function fi corresponds to a set Si iff the variables
in the domain of fi are equivalent to the members of the set
Si.



Definition 5 (Function Set – Factoring Equivalence) We
say that a function set F is equivalent to a factoring S iff
for all Si � S there exists one and only one corresponding
function fi � F and there are no unmatched functions in
F .

Lemma 1 (Combination Set–Function Equivalence)
Let function set F be equivalent to factoring S. If we
combine two sets Si	Sj in factoring S to get the new fac-
toring S� while combining their corresponding functions
fi 	 fj in F to get a new function set F � then F � and S�

are function set – factoring equivalent.

In order to prove Lemma 1 we simply observe that all the
sets in S are in a one to one correspondence with domains
of all the functions in F . Then if we combine any two sets
in S and combine their corresponding functions in F , be-
fore elimination, they are defined on the same variables.
That is Si � Sj is defined on the same variables as the do-
main of fi 	 fj .

Furthermore, a variable will be eliminated from Si 	 Sj if
and only if it is also eliminated from fi 	 fj. Since Bell-
man’s principle of optimality only allows variable elimina-
tion if the variable exists only in fi 	 fj, the combination
of fi with fj removes the same variables as the removal
portion of the set combination rule for the factoring when
T is empty.

�

Lemma 2 (Number of Combinations) In either represen-
tation there will be exactly n
 � combinations in the solu-
tion of the problem.

Clearly since each combination replaces two sets (func-
tions) with just one there can be no more than n 
 � com-
binations, where n is the number of sets (functions), until
there is only one set (function) left.

�

Lemma 3 (Elimination Equivalence) For any sequence
of factorings S�, S�, � � �, Sn�� formed during the solu-
tion of the OFP and their equivalent, with respect to which
sets (functions) are combined, sequence of function sets
F �, F �, � � �, Fn�� formed during a solution to 2-NSDP,
the size of the interim tables formed at each combination is
equivalent to the exponent in the cost function of OFP for
that combination.

Note that at the start of the problem we have function set
– factoring equivalence, and only corresponding functions
and sets are combined in the transition from F i to F i��

and Si to Si�� for � � i � n
 �. Then, by combination
function set – factoring equivalence F i�� is function set –
factoring equivalent to Si�� after reduction. Furthermore,

the number of variables in the set Si � Sj is equivalent to
the number of variables in the domain of fi	fj, before the
respective reductions. Thus the dimension of the interim
functions is equivalent to the exponent of the cost function.

�

Lemma 4 (Exhaustive Combination Ordering Equiva-
lence) The possible combination orderings for solving the
OFP are in one to one correspondence with the possible
combination orderings for solving 2-NSDP.

This follows from the observation that all possible combi-
nation sequences for the set of functions have an equivalent
factoring elimination ordering and since all elimination se-
quences for factorings have an equivalent set of function
elimination ordering.

�

From Lemma 4 the dimensions of the resulting functions
are equivalent to the exponents of the cost functions for
any given elimination ordering. Now, note that, if an order-
ing of sets exists such that the exponent of the cost func-
tion d�� � � � � dn�� is always below d, then the correspond-
ing OFP cost is:

n��X
i��

bdi � �n
 �� � nd � nd�� 
 nd � nd��

In other words OFP(c) answers yes only if there exists a
solution for 2-NSDP(d).

Conversely if every possible combination ordering for 2-
NSDP(d) involves at least one interim table with a dimen-
sion of at least d��, then by exhaustive combination order-
ing equivalence every possible cost for OFP(c) must exceed
nd�� (i.e. at least one term in the summation is greater than
or equal to nd��). Thus if there exists no yes solution for
2-NSDP(d) then there can exist no yes solution for OFP(c).

This concludes the proof of the reduction portion of Theo-
rem 1. All that remains to establish is that the problem is
NP-complete is to show that it is in NP. This is an obvious
result since we can check to see if a solution requires fewer
that c multiplications in non-deterministic linear time.

We note that the base of the cost function can be reduced
to an arbitrary integer k � � by simply replacing each vari-
able in the set of sets with dlogk ne copies of itself (i.e. A
becomes A�� � � � � Adlogk ne

). Since all these variables will
exist in the same sets, they will be eliminated at the same
time as the variable in the original set representation would
be. Thus we can view the cost at any time for a combina-
tion as kdlogi ne�di which is the same as �kdlogk ne�di that
for the sake of the above proof is equivalent to ndi . It fol-
lows, by setting k � �, that OFP �c� is NP-complete even
when restricted to instances for which every variable has
only two possible values (i.e. b � �).



7 Factor Trees

Building upon SPI [LD94] we now present a two stage
method for deriving not only the desired joint but also all
the single beliefs. The first stage corresponds to the Op-
timal Factor calculation phase of the Li and D’Ambrosio
algorithm and results in the creation of a calculation struc-
ture called a factor tree. The second phase involves running
a two-stage message passing algorithm on the factor tree to
retrieve not only the joint but also all the single beliefs.

The following algorithm constructs a factor tree in four
phases.

1. Start by calculating the optimal factoring order for the
network given the target set of variables whose joint is
desired.

2. From this ordering construct a binary tree showing the
combination ordering of the initial probability tables
and the conformal tables. A conformal table is de-
fined as any table formed by the combination of two
probability tables or the combination of a conformal
table with a probability table.

3. Label edges between tables along which variables are
marginalized with the variables(s) marginalized be-
fore the combination.

4. Add an additional head that has an empty label above
the current root, a conformal table labeled with the
target set of variables, that has no variables. The edge
between the old root and the new is then labeled with
the variables in the old root.

Utilizing the above algorithm on the graph shown in Figure
1 factored according to the order seen in equation 4, a factor
tree is built that looks like the one in Figure 4.

8 Propagation Phase

Once the labeled factor tree described in section 2 is con-
structed, the algorithm takes on a propagation framework
similar to Pearl’s method [Pea88] for singly connected net-
works. We begin at the leaf nodes and propagate up the
edges along the direction marked. Messages are tables that
are combined using pointwise multiplication [Jen96, Sec-
tion 4.1].

Once the top of the factor tree is reached we send a new
message down the edges in the reverse direction. For the
sake of notational similarity we will call the messages that
travel up the graph � messages and those that travel down
the graph � messages. This similarity in naming does not
strictly correspond to a similarity in purpose, as we shall
soon see.

P �BjA� P �DjB�C� P �CjA� P �EjC�

C�A�B�C� C�A�C�

C�A�C�P �A�

C�A�C�

P ���

�
�
�
���

JJ

JJ�

D

�
�
�
���

JJ

E
JJ�

�
��

�
���

Z
Z

Z
Z

Z
Z�

B

�
�
�
���

J
J
J
JJ

A�C

	

Figure 4: The factor tree for the simple example network.

The following are the procedures performed by each node
when it receives a message (either � or �).

Leaf Nodes

� messages – are not received by the leaf nodes by
definition.

� messages – are ignored by the leaf nodes.

Root Node

� message – Set the � message for this node to 1 and
send it to its child.

Internal Nodes

� messages –

1. Store each � message as it arrives.

2. Once both � messages have arrived combine
them to create the conformal table for this node.

3. Send the conformal table to the parent as this
node’s � message.

� messages –

1. marginalize away any variables not in the table
stored at this node.

2. Combine the � message with the � message sent
by the left child.

3. Send that as the � message to the right child.



4. Combine the � message with the � message sent
by the right child.

5. Send that as the � messages to the left child.

The following is the procedure performed by a labeled edge
whenever a message is sent along it.

Labeled Edge

� message – Store the lambda message in the edge.

� message – Combine the � message with the stored �
message; then marginalize the result onto the variable
for which the edge is labeled, obtaining the probability
distribution for that variable. In the case of the edge
entering into the root it will contain the desired joint.

In the case where variables have been instantiated,
marginalization simply passes through the values from the
interim table that correspond to the instantiation. In this
case P ��� will be zero whenever an impossible combina-
tion of instantiated variables is given, otherwise it will be
the joint marginal probability of the instantiated variables,
which is customarily called the probability of the evidence
[Jen96, Section 4.2].

9 Correctness

Without loss of generality we will prove that the belief in
one variable v contained at the edge labeled with v is valid.
This edge connects vi to vj and we start our proof by re-
moving it from the graph. We then add a new node labeled
v� in its place. Two new edges are then added: one from vi
to v� and the other from vj to v�. We then re-orient all other
edges in the graph so that v� becomes the root of a new
factor tree. Above this node we place a new P �v� node,
and we add an edge from v� to the new node P �v� labeled
with all the variables contained in v� except v. Clearly this
is a legal factor tree and represents a legal combination or-
dering with respect to equations 1 and 2 with respect to
distribution.

For example consider the task of retrieving P �B� from the
factor tree in Figure 4. Using the above method we modify
the tree so that we arrive at the tree shown in Figure 5 which
does indeed correspond to the following legal combination
ordering

P �B� �
P

A�C ��P �BjA� �
P

D P �DjB�C���

��P ��� � P �A�� � �P �CjA� �
P

E P �EjC���� �
(5)

In general, consider any labeled edge in the original graph,
G, and apply a similar transformation to it, obtaining a new
graph G�. Clearly, the � message sent down the edge in
the original graph, G, is equivalent to one of the � message

sent to the node n� in the new graph, G�, while the other �
message received by v� is the same in both graphs. Thus
the edge labeled with v has access to the same messages
in the original graph that the node v� has access to in the
new graph. Therefore the labeled edge in G can compute
the same legal belief in v that G� calculates in the node v�.
In other words the two messages combined in the labeled
edge in the original graph are in actuality the two � mes-
sages it would receive in the modified graph, and the belief
calculated at the labeled edge is the same as that computed
by a factor tree built for the variable in the label.

10 Time Complexity

Define:

n – the number of variables in the network.

b – the number of states of the largest variable in the
network.

k – the number of variables in the largest table in the
factor tree.

multiplications:

1. Each internal node (of which there are n
�) combines
3 tables using no more than bk multiplications.

(a) Combines left and right child’s � messages into
its � message.

(b) Combines its left child’s � message with its par-
ent’s � message.

(c) Combines its right child’s �message with its par-
ent’s � message.

2. Each labeled edge (of which there are n) combines a
� message with a � message using no more that bk

multiplications.

additions:

1. Each labeled edge marginalizes twice.

(a) Once whenever a � message passes it using no
more than bk additions.

(b) Once to remove the final distribution from its
stored combination of � and � messages using
no more than bk additions.

2. Each internal table where a � message is received may
need to marginalize the message onto its local label
using no more than bk additions.

This means that the factor tree method to recover the prob-
ability of all the variables requires at most 
nbk multiplica-
tions and at most 	nbk additions giving the algorithm a to-
tal complexity of at most �nbk significant operations. This



P ��� P �A� P �CjA� P �EjC�

C�A� C�A�C� P �BjA� P �DjB�C�

C�A�C� C�A�B�C�

v��A�B�C�

P �B�

�
�
�
���

J
J
J
JJ�

�
�
�
���

JJ

E
JJ�

�
�
�
�
�
��

Z
Z

Z
Z

Z
Z�

�
�
�
���

JJ

D
JJ�

��
��

��
��

�


HH
HH

HH
HH

HY

A�C

	

Figure 5: The factor tree for extracting P �B�.

time complexity is comparable with the complexity of the
tree of cliques approach which runs in at most �mbl where
m is the number of cliques, b is the same, and l is the num-
ber of variables in the largest clique [Nea90]. In fact, since
the merging of variables into cliques reduces a linear fac-
tor, n, at the possible expense of an exponential factor, bk,
it seems likely that graphs exist for which this algorithm is
more efficient (although none have yet been found).

Two further improvements can be made to this approach.
First, in the case where one wishes to calculate the joint and
single beliefs multiple times, one can merge all sub-trees
that don’t contain a labeled edges into a single node. This
merged node then takes the place of the conformal node
that was at the root of the merged sub-tree in the factor
tree and will save one the amount of calculation that was
necessary to build the conformal node that the merged node
replaces.

Second, it is interesting to note that the optimal factoring
problem can be run with no target set of variables. In this
case the set reached just before finishing, or the node just
below the root of the factor tree, will contain the most effi-
ciently calculable probability, joint or single, for the net-
work. This fact can be easily established by contradic-
tion: since summing away has no cost for OFP, the joint
or marginal immediately beneath the root must be the most
efficiently calculable or else a new factoring yielding the
more efficiently calculable distribution would yield an OFP
solution of less cost.

This would violate the definition of OFP and therefore it is
certain that the solution with zero factor set is the most effi-

cient calculation possible. This leads to the interesting ob-
servation that the algorithm is calculating the beliefs in all
of the single variables in multiplicative constant (approxi-
mately 4) time with respect to the most efficient calculation
possible for a given network.

11 Conclusions

We proved that OFP is NP-hard, confirming Li and
D’Ambrosio’s [LD94] conjecture. We extended SPI to
compute all single-variable marginal beliefs as well as an
arbitrary joint belief. The new algorithm contains one
NP-hard step, namely the solution of an instance of OFP,
thereby reinforcing Jensen and Jensen’s [JJ94] conjecture
that any scheme for belief updating has an NP-hard opti-
mality step or is less efficient than the junction tree scheme.
Three situations are possible:

1. In some cases, the junction tree method is more effi-
cient than the factor tree method described in this pa-
per, and in some cases the factor tree method is more
efficient;

2. one method strictly dominates the other;

3. the two methods are of the same complexity.

Determining which of the three conditions hold is a prob-
lem for further work. It seems clear, however, that the
new algorithm allows for more efficient use of Bayesian
networks in systems that require both the joint probabil-
ity table for some set of variables as well as for all single



variables. This is true, because the new approach saves
an NP-hard step over using an algorithm from both classes
(junction tree and SPI) simultaneously, which is the only
other way to derive a target joint as well as the belief in
all the single variables without an unpredictable increase in
computational cost as required by the variable propagation
approach [Jen96, p. 99].

12 Acknowledgments

This work was partially supported by the Office of Naval
Research project “Dynamic Decision Support for Com-
mand, Control, and Communication in the Context of Tac-
tical Defense” (BA97-006). An earlier version of the factor
tree method appeared in [Blo98]. Thanks also to Bruce
D’Ambrosio for his review and suggestions on an early
draft of this paper.

References

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej
Proskurowski. Complexity of finding embed-
dings in a k
 tree. SIAM Journal of Algorithms
and Discrete Methods, 8(2):277–284, 1987.

[BB72] Umberto Bertelè and Francesco Brioschi. Nonse-
rial Dynamic Programming, volume 91 of Math-
ematics in Science and Engineering. Academic
Press, New York and London, 1972.

[Blo98] Mark Bloemeke. An algorithm for the recov-
ery of both target joint beliefs and full belief
from bayesian networks. In Proceedings 36th
Annual Southeast ACM Conference, New York,
NY, April 1998. The Association for Computing
Machinery, Inc.

[Jen96] Finn V. Jensen. An Introduction to Bayesian Net-
works. Springer, 1996.

[JJ94] Finn V. Jensen and Frank Jensen. Optimal junc-
tion trees. In Uncertainty in Artificial Intelli-
gance: Proceedings of the Tenth Conference,
pages 360–366, San Mateo, CA, July 1994. Mor-
gan Kaufman.

[LD93] Zhaoyu Li and Bruce D’Ambrosio. An efficient
approach for finding the MPE in belief networks.
In Uncertainty in Artificial Intelligence: Pro-
ceedings of the Ninth Conference, pages 342–
349, San Mateo, CA, July 1993. Morgan Kauf-
man.

[LD94] Zhaoyu Li and Bruce D’Ambrosio. Efficient In-
ference in Bayes Networks as a Combinatorial
Optimization Problem. International Journal of
Approximate Reasoning, 11:55–81, 1994.

[LS88] S.L. Lauritzen and D.J. Spiegelhalter. Local
computation with probabilites in graphical struc-
tures and their applications to expert systems.
Journal of the Royal Statistical Society B, 50(2),
1988.

[Nea90] Richard E. Neapolitan. Probabilistic Reasoning
in Expert Systems: Theory and Algorithms. John
Wiley and Sons, New York, NY, 1990.

[Pea88] Judea Pearl. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference.
Morgan Kaufman, San Mateo, CA, 1988.


