
Proceedings of the 9th Conference on Uncertainty in Arti�cial Intelligence , 259{265, 1993: Morgan Kaufmann.An Algorithm for the Construction of Bayesian NetworkStructures from DataMoninder SinghComputer Science DepartmentUniversity of South CarolinaColumbia, SC 29208< msingh@usceast.cs.scarolina.edu > Marco ValtortaComputer Science DepartmentUniversity of South CarolinaColumbia, SC 29208< mgv@usceast.cs.scarolina.edu >AbstractPrevious algorithms for the construction ofBayesian belief network structures from datahave been either highly dependent on con-ditional independence (CI) tests, or have re-quired an ordering on the nodes to be sup-plied by the user. We present an algorithmthat integrates these two approaches - CItests are used to generate an ordering on thenodes from the database which is then usedto recover the underlying Bayesian networkstructure using a non CI based method. Re-sults of preliminary evaluation of the algo-rithm on two networks (ALARM and LED)are presented. We also discuss some algo-rithm performance issues and open problems.1 INTRODUCTIONIn very general terms, di�erent methods of learningprobabilistic network structures from data can be clas-si�ed into three groups. Some of these methods arebased on linearity and normality assumptions ([Gly-mour et. al., 87], [Pearl & Wermuth, 93]); othersare more general but require extensive testing of in-dependence relations ([Fung & Crawford, 90], [Verma& Pearl, 92], [Spirtes & Glymour, 91], [Pearl & Verma,91], [Spirtes, Glymour & Scheines, 90]); others yet takea Bayesian approach ([Herskovits, 91], [Cooper & Her-skovits, 92], [Lauritzen, Thiesson & Spiegelhalter, 93]).In this paper, we do not consider methods of the �rstkind, namely, those that make linearity and normal-ity assumptions. Our work concentrates on CI testbased methods and Bayesian methods. A number ofalgorithms have been designed which are based on CItests. However, there are two major drawbacks ofsuch CI test based algorithms. Firstly, the CI testrequires determining independence relations of ordern � 2, in the worst case. \Such tests may be unreli-able, unless the volume of data is enormous" [Cooper& Herskovits, 92, page 332]. Also, as Verma and Pearl[Verma & Pearl, 92, pages 326-327] have noted, \in

general, the set of all independence statements whichhold for a given domain will grow exponentially as thenumber of variables grow". As such, CI test based ap-proaches become rapidly computationally infeasible asthe number of vertices increases. [Spirtes & Glymour,91, page 62] have presented \an asymptotically correctalgorithm whose complexity for �xed graph connectiv-ity increases polynomially in the number of vertices,and may in practice recover sparse graphs with sev-eral hundred variables"; but for dense graphs with lim-ited data, the algorithm might be unreliable [Cooper& Herskovits, 92].On the other hand, [Cooper & Herskovits, 92] havegiven a Bayesian non-CI test based method, whichthey call the BLN (Bayesian learning of belief net-works) method. Given that a set of four assumptionshold ([Cooper & Herskovits, 92, page 338]), namely,(i) The database variables are discrete, (ii) Cases oc-cur independently, given a belief network model, (iii)All variables are instantiated to some value in everycase, and �nally (iv) Before observing the database,we are indi�erent regarding the numerical probabili-ties to place on the belief network structure, Cooperand Herskovits have shown the following result:Theorem 1.[Cooper & Herskovits, 92]. Let Z be a set of n discretevariables, where variable xi in Z has ri possible valueassignments: (vi1; : : : ; viri). Let D be a database ofm cases, where each case contains a value assignmentfor each variable in Z. Let BS denote a belief networkstructure containing just the variables in Z. Each vari-able xi in BS has a set of parents �i. wij denotes thejth unique instantiation of �i relative to D and thereare qi such unique instantiations of �i. Nijk is thenumber of cases in D in which xi has the value vikwhile �i is instantiated to wij. Let Nij =Prik=1 Nijk.Then, P (BS ; D) = P (BS ) nYi=1 g(i; �i) (1)



where g(i; �i) is given byg(i; �i) = qiYj=1 (ri � 1)!(Nij + ri � 1)! riYk=1 Nijk! (2)This result can be used to �nd the most probable net-work structure given a database. However, since thenumber of possible structures grow exponentially as afunction of the number of variables, it is computation-ally infeasible to �nd the most probable belief networkstructure, given the data, by exhaustively enumeratingall possible belief network structures.Herskovits and Cooper ( [Cooper & Herskovits, 92],[Herskovits, 91] ) proposed a greedy algorithm, calledthe K2 algorithm, to maximize P (BS ; D) by �ndingthe parent set of each variable that maximizes thefunction g(i; �i). In addition to the four assumptionsstated above, K2 uses two more assumptions, namely,that there is an ordering available on the variables andthat, a priori, all structures are equally likely. The K2algorithm considers each node in the order given to itas input and determines its parents as follows. It �rstassumes that a node has no parents, and then adds in-crementally that node (among the predecessors in theordering) as a parent which increases the probabilityof the resultant structure by the largest amount. Itstops adding parents to the node when the addition ofno additional single parent can increase the probabil-ity.2 MOTIVATIONAs stated at the end of the previous section, the K2algorithm requires an ordering on the nodes to be givento it as an input along with the database of cases. Themain thrust of this research is to combine both CI aswell as non CI test based methods described above tocome up with a computationally tractable algorithmwhich is not overdependent on the CI tests, nor doesit require a node ordering1.In order to achieve this, we use CI tests to generate anordering on the nodes, and then use the K2 algorithmto generate the underlying belief network from thedatabase of cases using this ordering of nodes. Also,since we are interested in recovering the most probableBayesian network structure given the data, we wouldlike to generate an ordering on the nodes that is con-sistent with the partial order speci�ed by the nodes ofthe underlying network. In a domain where very littleexpertise is available, or the number of vertices is fairlylarge, �nding such an ordering may not be feasible. Assuch, we would like to avoid such a requirement. Theremainder of this section elaborates on this point.1Herskovits [Herskovits, 91] suggested the use of themetric (on which K2 is based) with a CI test based methodto do away with the requirement for an order of nodes.

It is possible to �nd a Bayesian network for anygiven ordering of the nodes, since any joint prob-ability distribution P (x1; x2; : : : ; xn) can be rewrit-ten, by successive applications of the chain rule,as P (xi1; xi2; : : : ; xin) = P (xi1 j xi2; : : : ; xin) �P (xi2 j xi3; : : : ; xin) � : : : � P (xin), where< i1; i2; : : : ; in > is an arbitrary permutation of <1; 2; : : : ; n >. However, the sparseness of the Bayesiannetwork structure representing the joint probabil-ity distribution P (x1; x2; : : : ; xn) will vary, sometimesdramatically, with respect to the choice of the orderingof the nodes2. It is desirable to use an ordering of thenodes that allows as many of the conditional indepen-dences true in the probability distribution describingthe domain of interest as possible to be representedgraphically3.It would be too expensive to search blindly among allorderings of nodes, looking for one that leads to a net-work that both �ts the data and is sparse enough tobe useful. In a small setting, grouping variables intogeneric classes, such as symptoms and diseases maybe su�cient to limit the number of orderings to besearched without having to use dramatically greedyheuristics. This was shown to be adequate for a medi-cal application with 10 nodes in [Lauritzen, Thiesson,and Spiegelhalter, 1993], where variables were dividedin \blocks." In some applications, however, it maybe impossible to divide variables into classes, or theclasses may be too large to impose su�cient structureon the space of candidate orderings. We have imple-mented an algorithm, called CB,4 that uses a CI testbased algorithm to propose a total order of the nodesthat is then used by a Bayesian algorithm. We havetested the algorithm on some distributions generatedfrom known Bayesian networks. (The results will beshown after the algorithm is presented.)The Bayesian method used in the CB algorithm is aslightly modi�ed version of Cooper and Herskovits'sK2, implemented in C on a DECstation 5000. Her-skovits proved an important result concerning the cor-rectness of the metric that K2 uses to guide its search.He showed that the metric on which K2 is based isminimized, as the number of cases increases, withoutlimit, on \those [Bayesian] network structures that,for a given node order, most parsimoniously captureall the independencies manifested in the data" [Her-skovits, 1991, chapter 6]. More precisely, he showedthat the K2 metric will always favor, as the number ofcases in the database increase without limit, a minimal2In this paper, no distinction is made between the nodesof a Bayesian network and the variables they represent.3Whereas di�erent types of graphical structures havedi�erent expressive powers, this paper is only concernedwith dags, as used in Bayesian nets. We ignore Markovnets [Pearl, 88, chapter 3], chain graphs [Lauritzen andWermuth, 1989a; 1989b], and other graphical representa-tions (e.g., [Shachter, 1991; Geiger and Heckerman, 1991]).4The name re
ects the initials of the two phases of thealgorithm.



I-map consistent with the given ordering (see [Pearl,1988, chapter 3] for the de�nition of minimal I-map).Despite the convergence result, it is still important toprovide K2 with a good node order, since there aretoo many orderings (n! for n nodes) to search blindlyamong them, unless drastically greedy (myopic) searchregimens are used. Moreover, for di�erent orderings,we will get di�erent I-maps of di�ering density. Notethat an I-map only means that all independencies im-plied by it (through d-separation) are also in the un-derlying model. So more sparse networks will give usmore information as compared to relatively denser net-works. In this sense, the ordering given to K2 becomesvery important. Given a random ordering, we mightland up with a very dense dag which is an I-map (pos-sibly minimal) but conveys very little information. So,we would like to use as informed an ordering as possi-ble. For example, assuming that the data was gener-ated using a Bayesian network whose structure is anI-map for the underlying distribution, it would be verydesirable to provide K2 with an ordering of the nodesthat allows the network to be recovered exactly, eventhough K2 may recover a di�erent I-map when givena di�erent ordering, because the generating structureis normally the sparsest one among all I-maps for agiven distribution, or at least one of the sparsest ones.Our algorithm �nds good node orderings by using aCI-based test. Since CB still uses K2 to compute theBayesian network structure from an ordering, it is cor-rect in the same sense that K2 is.3 DISCUSSION OF THEALGORITHM3.1 OVERVIEWThe algorithm basically consists of two phases: PhaseI uses CI tests to generate an undirected graph, andthen orients the edges to get an ordering on the nodes.Phase II takes as input a total ordering consistent withthe DAG generated by phase I, and applies the K2 al-gorithm to construct the network structure using thedatabase of cases. The two phases are executed iter-atively - �rst for 0th order CI relations, then for 1storder CI relations, and so on until the termination cri-teria is met.Steps 1 to 4 of the algorithm are based on the algo-rithms given by ([Verma & Pearl, 92] and [Spirtes &Glymour, 91]). We have allowed edges to be orientedin both directions because at any given stage, sinceCI tests of all orders have not been performed, all CIrelations have not been discovered and there will be anumber of extra edges. In such a case, it is quite possi-ble for edges to be oriented in both directions by step3. Although the bound used in step 2 is not necessary,it may be useful in decreasing the run time of the al-gorithm by not trying to generate the belief networkstructure if the undirected graph recovered from verylow order CI relations (in step 2) is dense.
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321 Figure 1: The ALARM NetworkOnce the edges have been oriented by steps 3 and 4,the algorithm �nds the set of potential parents of eachnode by considering only the directed edges (step 5),and then uses a heuristic to choose an orientation forthe edges which are still undirected, or are bidirected.Although, theoretically, equation 1 can be used to �ndthe probability P ( i ! j j D) (and P ( i  j j D))from the data ([Cooper & Herskovits, 92, page 318])which can then be used to orient an edge i � j (on thebasis of which orientation is more probable), it is com-putationally infeasible do so because of the sheer num-ber of network structures which have that edge. Hencethe use of a heuristic. From equation 1, it should beclear that the orientation of an edge between vertices iand j a�ects only g(i; �i) and g(j; �j), and so to maxi-mize P (BS ; D), we would like to maximize the productg(i; �i)�g(j; �j) where �i and �j are the sets of parentsof nodes i and j respectively. Accordingly, we com-pute the products ival = g(i; �i) � g(j; �j [fig) andjval = g(j; �j) � g(i; �i [ fjg) where �i and �j arethe sets of potential parents recovered by step 5 of thealgorithm. These products give us a way of selectingan orientation for the edge. If ival is larger, we preferthe edge i ! j (unless it causes a directed cycle inwhich case we choose the other orientation). Similarly,we choose j ! i if jval is larger (or the reverse in caseof a directed cycle).At this stage, the algorithm has constructed a DAG. Itthen �nds a total ordering on the nodes consistent withthe DAG and applies the K2 algorithm to �nd the setof parents of each node such that the K2 metric (i.e.g(i; �i)) is maximized for each node i, allowing edgesto be directed from a node only to nodes that are itssuccessors in the ordering.3.2 THE ALGORITHMLet AGab be the set of vertices adjacent to a or b ingraph G not including a and b. Also, let u be a bound



on the degree of the undirected graph generated bystep 2. ord is the order of CI relations being tested.Let �i be the set of parents of node i; 1 � i � n.1. Start with the complete graph G1 on the setof vertices Z.ord  0.old �i  f g 8i; 1 � i � n, and old Prob 0.2. [Spirtes & Glymour, 91]Modify G1 as follows :For each pair of vertices a; b that are adja-cent in G1, if AG1ab has a cardinality greaterthan or equal to ord, and I(a; Sab; b) 5 whereSab � AG1ab of cardinality ord, remove theedge a � b, and store Sab.If for all pairs of adjacent vertices a; b in G1,AG1ab has cardinality < ord, goto step 10.If degree of G1 > u, thenord  ord + 1Goto beginning of step 23. Let G be a copy of G1.For each pair of non adjacent variables a; bin G, if there is a node c that is not in Saband is adjacent to both a and b, then orientthe edges from a ! c and b ! c ([Verma& Pearl, 92], [Spirtes & Glymour, 91]) unlesssuch an orientation leads to the introductionof a directed cycle in the graph.If an edge has already been oriented in thereverse direction, make that edge bidirected.4. Try to assign directions to the yet undirectededges in G by applying the following fourrules [Verma & Pearl, 92], if this can bedone without introducing directed cycles inthe graph:Rule 1: If a ! b and b � c and a and care not adjacent, then direct b ! c.Rule 2: If a ! b, b ! c and a � c,then direct a ! c.Rule 3: If a � b; b � c; b � d; a ! d;and c ! d, then direct b ! d.Rule 4: If a � b; b � c; a � c; c � d; andd ! a, then direct a ! b and c ! b.Moreover, if a ! b; b ! c and a $ c, thendirect a! c.5. Let �i  f g 8i; 1 � i � n.For each node i, add to �i the set of verticesj such that for each such j, there is an edgej ! i in the pdag G.6. For each undirected or bidirected edge in thepdag G choose an orientation as describedbelow5We use the notation I(S1; S2; S3) to represent the factthat S1 and S3 are independent conditional on S2
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: extra edge

: incorrect orientation

M : missing edge

M

M2

1433

12

30

987

2928

2110

19 20 31

22

15 23

13

24

16

37363534321127456

17

261825

321 Figure 3: Constructed ALARM (Partial)of a database generated by Herskovits ( [Herskovits,91], [Cooper & Herskovits, 92] ). We used the �2 testfor the CI tests with a �xed � level of 0.1, and a boundof 15 on the maximumdegree of the undirected graphgenerated in step 2. The algorithm recovered the net-work shown in Figure 2 using CI tests up to only order2. Due to the bound, it did not generate a network forCI relations of order 0. Out of 46 edges, it recovered45 edges (Figure 2).The only missing edge was the edge 12 ! 32 (an edgewhich is not strongly supported by the data [Cooper& Herskovits, 92]). Two of the edges recovered wereincorrectly oriented. However, the algorithm also re-covered 14 extra edges. This is probably due to theincorrectly oriented edges, and to some extent, due tothe greedy nature of K2. One of the incorrectly ori-ented edge was between the variables 34 and 33. Ascan be observed from Figure 2, 7 of the extra edgeswere between 33 and some other node. Moreover, ananalysis of the order in which K2 selected the parentsof node 37 showed that the 3 other extra edges incidenton node 37 were recovered due to the greedy natureof K2 which, after picking node 16 as a parent of 37,picked up 33 because of the incorrect orientation, andthen recovered the 3 edges of node 37 with 24, 23 and22 once again due to its greedy search regimen. Simi-larly, the three extra edges involving node 2, 17 and 18were recovered due to the fact that the edge between 2and 25 was incorrectly oriented. The remaining extraedge was between nodes 15 and 34 which is recovered,once again, due to the greedy nature of K2. The totaltime taken was under 13 minutes.[Cooper & Herskovits, 92] reported that K2, whengiven a total ordering consistent with the partial or-der of the nodes as speci�ed by ALARM, recoveredthe complete network with the exception of one miss-ing edge (between nodes 12 and 32) and one extraarc (from node 15 to 34). [Spirtes, 93] reported sim-ilar results with the PC algorithm. They applied the
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DFigure 4: The LED NetworkPC algorithm [Spirtes & Glymour, 91] to the ALARMdatabase split into two parts of 10000 cases each. Thealgorithm did not make any linearity assumption. Inone case, the recovered network had no extra edge buthad two missing edges while in the other case, the net-work had one extra edge and two missing edges.To reduce the computational time, and to try to pre-vent the recovery of extra edges, we modi�ed the al-gorithm by deleting step 7 of the algorithm. Insteadof using a total order, K2 used a partial order de�nedon the nodes by the DAG constructed by step 6. Thesets �i; 1 � i � n, constructed by step 6 weregiven as input to K2 with the constraint that eachnode i could have parents only from the set �i. Thenetwork recovered by the algorithm after having usedCI relations of up to only order 2 is shown in Figure3. It recovered 44 edges (the extra missing edge be-ing 21 ! 31); there were 2 extra edges (between 2and 17, and between 34 and 15) while 2 edges wereincorrectly oriented. However, the metric used by K2ranked the earlier network structure (Figure 2) to bemore probable. The time taken was reduced to under7 minutes.We also used the algorithm to reconstruct the faultyLED network (Figure 4) using a database of 199 cases( [Fung & Crawford, 90] ). With an � value of 0.1,CB reconstructed the network (Figure 5) with 3 edgesincorrectly oriented and one extra edge in less than1 second using CI tests up to order 1. A subsequentanalysis of the independence statements computed byCB found that the three incorrectly oriented edgeswere due to perceived independence of the pairs (3; 5),(3; 6), and (4; 5). While the underlying model did notsupport these independence statements, the data did.Step 3 oriented the edges according to the perceivedindependence. When we ran the modi�ed version ofCB using the partial order, the same network was re-covered, except for the fact that there was no extraedge (Figure 5).
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DFigure 5: The Constructed LED Networks5 SUMMARY AND OPENPROBLEMSIn this paper, we have presented a method of recov-ering the structure of Bayesian belief networks from adatabase of cases by integrating CI test based methodsand Bayesian methods.Although these results are preliminary, they are quiteencouraging because they show that the CB algorithmcan recover a reasonably complex Bayesian networkstructure from data using substantially low orderCI relations. Moreover, since it generates an order-ing on the nodes from the database of cases only, with-out any outside information, it eliminates the re-quirement for the user to provide an orderingon the variables.In the worst case, the CB algorithm is exponential inthe number of variables, as explained below. Steps 1(initialization) and 10 (output) of the algorithm areexecuted only once. The number of times that steps 2through 9 of the CB algorithm are executed is boundby the sum of the largest two degrees in the undirectedgraph constructed at the end of step 2, by an argu-ment almost identical to that of [Spirtes & Glymour,91, page 68]. Each of steps 3 through 9 have only poly-nomial complexity in the number of variables, by ar-guments that are either simple or described in [Verma& Pearl, 92], [Cooper & Herskovits, 92]. In step 2, thenumber of independence tests carried out is exponen-tial in the size of the order of the independence rela-tions to be tested, which is bounded by the maximumof jAGabj. Note that the CB algorithm is polynomialfor graphs for which jAGabj is constant as the numberof vertices increases, i.e. sparse graphs. Our resultsindicate that the CB algorithm recovers Bayesian net-work structures in polynomial time in the number ofdomain variables, because the highest order of inde-pendence relations to be tested is very low.

Although CB works well on the ALARM and LEDnetworks and appears to be quite promising, a numberof issues that could improve the performance of thealgorithm need to be looked in further. We are alreadyworking on some of these issues.Firstly, the CB algorithm has not yet been tested onlarge unknown databases. We are currently testing theCB algorithm on a number of databases that we haveprocured from the University of California (Irvine),Repository of Machine Learning databases. We alsointend to test the algorithm on a large 147 variablemedical database (cf. [Mechling & Valtorta, 93]), andsee whether the recovered network is found plausibleby medical experts.Secondly, we have used a �xed � level for the �2 test.This will almost certainly introduce dependencies thatare purely the result of chance. It is possible to use thetechnique of Cross Validation for tuning this parame-ter. [Fung & Crawford, 90] discusses the tuning of thealpha level in performing belief-network learning.Thirdly, the CB algorithm uses a greedy search mecha-nism (K2) to search for the set of parents of each node.This greedy search strategy does not ensure optimalityeven though the metric used by K2 is exact. Therefore,there is a need to explore other (less myopic) searchmethods like simulated annealing etc.Also, since the quality of the recovered network struc-ture is very sensitive to the ordering determined byphase I of the CB algorithm, e�orts need to be madeto �nd better and more e�cient heuristics than the onepresented in this paper that enable the selection of oneorientation of an undirected edge over the other, sincein general there will be a number of such undirectededges after steps 3 and 4 of the algorithm.Moreover, most of the steps of the CB algorithm areinherently parallel. Hence, a huge reduction in thetime required to recover the network structure can bepossibly obtained by parallelizing the CB algorithm.Finally, the CB algorithm uses a greedy strategy as astopping criteria. It uses the probability of the entirenetwork, as measured by the K2 metric, to decide whento stop; the algorithm stops when the value of themetric for the entire network is less than the valuewhich had been computed for the network structurerecovered in the previous iteration (i.e for a lower orderof the CI tests). There is a need to look into alternativemethods of terminating the algorithm.AcknowledgementsWe are thankful to Prof. G. Cooper for providing theALARM network database and to Dr. R. Fung forproviding the LED network database. We are alsograteful to the anonymous referees for their helpfulcomments and suggestions for improving the paper.
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