THE GRADUATE COURSE ADVISOR: A MULTI-PHASE RULE-BASED EXPERT SYSTEM

Marco G. Valtorta *

Bruce T. Smith **

Donsld W. Loveland *

ABSTRACT

The Graduate Course Advisor (GCA) is a rule-based
expert system that advises graduate students in
Computer Science. It is implemented in Prolog, using an
inference engine modeled after MYCIN's. The advising
task is divided into four phases, each of which may apply
the inference engine to its own rule base .and invoke other
procedures. Some phases are diagnostic (e.g., determining
a student’s needs), whereas others involve planning (eg.,
planning a student’s schedule). The decomposition helps
to manage the complexity of the advising task, it
simplifies the knowledge engineering problem, and it will
enhance the clarity of explanations. However, the
decomposition is tightly bound to basic design decisions;
a major decoupling in the GCA followed from our
assumption that best schedules are almost always chosen
from the top-valued courses.

1. Application Domain and History of the GCA

The Graduate Course Adviser (GCA) is a rule-based
expert system that simulates a faculty adviser in
suggesting the schedule of courses a student should take.
It knows about all courses offered by the Department of
Computer Science at Duke University, as well as courses
frequently taken by Computer Science students but
offered by other departments. It also Knows about
departmental and university —regulations concerning
graduate degree programs. The GCA obtains information
about a student's academic history and interests during
an advising session. (Table 1 shows some questions
usually asked by the GCA.) The GCA was designed to be
easily modified by the Director of Graduate Studies,
without help from the designer or maintainer.

* Department of Computer Science, Duke University, Durham, N.C.
27708. M.G. Valtorta and D.W. Loveland have been supported in
Part by the Air Force Office of Scientific Research, under grants
AFOSR-81-0221 and AFOSR-83-0205.

** Department of Computer Science, University of North Carolina at

_Chapel Hill, Chapel Hill, N.C. 27514. B.T. Smith has been supported
In part by ARO grant number DAAG29-83-K-0090.

CHZ104-8/84/0000/0053$01.00 © 1984 IEEE

Table 1. Typical questions from the GCA's phases.

Have you passed your prelims
yet?

schedule length phase

Do you enjoy full support
through a fellowship or a
scholarship?

Is this your first semester in
the Computer Science
program at Duke?

legal course phase

Please enter the names of the
computer science courses you
have taken, as a list.

Have you ever worked as a
programmer?

course evaluation phase
Which computer language are
you most familiar with?

Do you like computer games?

Do you like courses with an
emphasis on lab work?

Marco Valtorta designed and implemented the
original version of the GCA as his Master’s project, under
the supervision of Prof. Donald Loveland. The GCA uses
a rule interpreter (“inference engine’’) based on one
described by Hammond [Hammond, 1982; Clark and
McGabe, 1980], which is a Prolog implementation of the
MYCIN inference engine [Shortliffe, 1976]. The original
version of the GCA was written in Edinburgh Version 7
Prolog and ran on a PDP-11/70 [Clocksin and Mellish,
1981]. Because of the limitations of Version 7 Prolog and
the PDP-11/70, the GCA was ported to a VAX 11/780 at
the University of North Carolina at Chapel Hill (UNC)
and C-Prolog [Pereira, 1983]. At the same time, the

Froadings of U IEBE orkslay
3 on PQ‘«:F(Q; of 1 wBo e d
Systows, (28, (SBNO315-0567-1



GCA was reorganized into a modular program whose
structure better reflects the application domain. Bruce
Smith has participated in the development of the VAX
version, at UNC. Several Duke students have also
contributed to this project.

The GCA's rule bases now contain nearly 400 rules.
The system is in its testing stage and has advised
students on an experimental basis for two semesters
[Valtorta, 1984].

2. Multi-Phase Architecture

Adpvising a graduate student is a four-phase process:

()
(b)

determine how many courses the student should
take; ‘

determine which courses the student may take,
based on prerequisite requirements and the student’s
academic history;

{e) determine the “best courses” for the student;

(d) generate potential schedules from the best courses
and consider the interactions among the courses to
determine the “best schedule’” of the appropriate

length.

These four phases are implemented in the GCA as four
expert system modules, sharing the same rule interpreter
but using different rule bases. Phases (a) and (b)
determine the needs of the student, and are therefore of a
diagnostic character, while the last two phases plan the
student’s schedule [Stefik et al, 1982].

A manager program directs the activity of the
modules. Communication between them is through facts
asserted to the Prolog data base. Each phase consists of
a driver that may set up one or more goals for the rule
interpreter or call some “algorithmic” procedures. In the
current version of the GCA the first, third and fourth
phases depend primarily upon the rule interpreter, while
the second phase uses the rule interpreter only minimally.
{See Figure 1.)

Facts in the data base have a uniform representation
a8 MYCIN-like object-attribute-velue triples. (Table 2
shows three friples as recorded in a GCA session log.
The third element of each triple, labeled “Hypotheses”, is
8 list of walue-CF pairs. The GCA's certainty factors, or
CFs, range in value from -1000 to 1000.) Each phase has
access to the facts asserted by previous phases, and it
adds its conclusions to the data base for use by the
following phases. Communication is simple, because the
phase decomposition mirrors the natural structure of the
problem.

The rules in the four phases’ rule bases have a
common structure. They use the same rule interpreter,
which does not distinguish among rules from different
rule bases. Moreover, the phases share the tools that
make up the user interface. This is possible because the
driver programs and rule bases of the four phases have no
knowledge of the details of the data structures or the user

54

Table 2. Typical assertions to the Prolog
database, as recorded in the session log.

Asserting answer from user
Object student
Attribute employed
Hypotheses [¥(yes,-1000})]

Asserting answer from user
Object student
Attribute reads_JACM
Hypotheses [v(yes,800)]

Asserting deduction
Object student
Attribute is_interested_in_theory
Hypotheses [v(yes,990)]
interface, an example of the “information hiding”

technique advocated by Parnas [Parnas, 1972]. This
allows a common format for storing and accessing facts in
the database, asking questions, recovering from input
errors and keeping a session log. Since all the questions
are in the same format, users do not realize that
questions come from different expert rule bases.

L course | _ | schedule
evaluation evaluation

schedule |
length

-

control Prolog
e |
facts and rules

Figure 1: Interaction among the GCA’s experts.

3. Advantages of a Multi-Phase Architecture

The original GCA contained only two of the four
phases: a course evaluation phase and a schedule
evaluation phase. The first of these phases evaluates
elements, while the second evaluates sets of elements.
This kind of decomposition would be useful in any
domain with a ‘“weak interaction” between the
evaluation of elements and the evaluation sets of



4P T T T i i 5

B —

elements. That is, it is chiefly the values of its elements
that determine a set’s value. The elements' interactions
are only secondary. We emphasize that this decoupling is
directly tied to a model of our problem, i.e:, that best or

‘near-best schedules are subsets of the set of highly-ranked

courses.

We note that our model is not perfect. There are
situations where a student would choose a schedule
contaicing a course of only modest value (by the
student’s own assessment) course simply ‘‘because it is
different” or ‘‘for a change of pace”. Our assumption of
weak interaction among courses in a schedule is clearly
invalid here, but we note that cases where a student goes
quite far down the list of preferred courses are rare. And
in those cases even a human advisor is a poor predictor.
We console ourselves with the view that the GCA is a
“rational advisor”, suggesting courses to take if the
student were not emotional in his selection.

Examples of other domains where this model seems
appropriate include inventory determination and portfolio
analysis. For example, to determine a good inventory for
a sports shop the owner would consider the items which
might be carried, then he would consider how they fit
together. Suppose that soccer balls and golf balls both
had a market. The shop owner might decide to carry
only one kind of soccer ball and one kind of golf ball,
rather than two kinds of soccer ball and no golf balls. He
would be able to choose the most profitable kind for each
by considering soccer balls and golf balls separately, even
if either soccer ball were somewhat more profitable than
the golf balls.

During the development of the GCA, two more
phases were added: the schedule length determination
phase and the legal course determination phase. (A
course is legal if a student may take it. That is, he has
not completed the course previously, and he has
completed all its prerequisites.) Schedule length rules
were extracted from interviews with the Director of
Graduate Studies (DGS). The current DGS has a strict
policy concerning schedule length that involves only a few
factors, such as as type of support. This made the
knowledge engineering process for this phase fairly
simple.

Determination of legal courses currently follows a
literal interpretation of the prerequisites for a course:

e 2 student may take a course if he has completed its
prerequisites, and

e a student who has taken a course has completed its
prerequisites.

Legal course determination was originally implemented
by rules. Under the literal interpretation of ‘llegal
course”’, the phase proved simple enough to be rewritten
as an ‘“‘algorithmic” procedure, along with a few rules to
determine whether a student should take an introductory
data structures course. The more general problem of
legal courses includes determining whether a student has
completed the equivalent of Duke courses elsewhere. We

55

anticipate that this phase, when complete, will be an
expert system as complex as the phase that determines
the best courses. Mr. Tim Harrison is working on this
problem, with Ms. Corinna Van Der Veen and the
authors. The goal is a rule base of course-equivalence
rules.

The reader might wonder why the schedule length
phase was not also rewritten as an algorithm, since it is
rather straightforward. There are two reasons. The first is
to anticipate change: different Directors of Graduate
Studies often use different policies in the determination of
schedule length. (Duke is also considering a basie policy
change regarding courses per semester.) The second is
that the rules mirror the guidelines the DGS
communicated during interviews. A failure of this phase
would probably indicate a case the expert had
overlooked, and this facilitates debugging. In general, we
implemented each phase as a rule-based system the first
time.

The four phases correspond to the way our experts
view the advising task. This has simplified the
knowledge engineering process, because the experts can
be queried on each phase separately. We have been able
to debug each rule base independently, greatly reducing
the number of rule interactions. Students who have used
the GCA found its questions ordered into the four natural
areas. (E.g., in the first phase, the GCA asks about
financial support and degree program. In the second, it
asks about academic histories.) The decomposition has
also helped new members of the GCA project understand
the system.

The decomposition into four phases has limited the
size of the individual rule bases, helping to manage the
complexity of the GCA program. For example,
postponing consideration of the interactions among
courses until the last phase allows the GCA to discard
obviously unsuitable courses during the third phase. This
limits the number of schedules to be generated and
evaluated during the final phase.

4. Comparison of the GCA _with Other Expert Systems

MYCIN uses context trees for two purposes. ‘“The
context tree is useful not only because it lends structure
to the clinical problem, but also because during the
consultation it is often necessary to identify relationships
between two or more different contexts” [Narain, 1981].
The phases in the GCA play a role similar to context
trees, but there are differences. First of all, each phase
need not be implemented as a rule-based system. (One
phase is primarily algorithmic, legal course determination,
as explained earlier. Only the schedule length phase sets
up a single top level goal, MYCIN-style.) Secondly,
MYCIN's chains of rules may span several contexts. For
example, rules dealing with an organism can be invoked
to solve a goal set up by rules dealing with a culture. In
the GCA, rules for determining a value for any particular




attribute only occur during a single phase. (A
hypothetical MYCIN-like context tree for determining the
best schedules is shown in Figure 2. It should be
compared with the description of the GCA in Figure 1.)

The fact that the GCA's phases need not be entirely
rule-based helped us avoid a major problem in MYCIN's
limited control structures. As Waterman and Hayes-Roth
point out [Waterman & Hayes-Roth, 1983], the lack of
support for iteration in MYCIN's language makes it
difficult to write simple rules for tree searching. In the
GCA, the corresponding problem is generation of
schedules, as combinations from the list of best courses.
This is done in the schedule evaluation phase by having
the driver first generate combinations of courses, then
calling a top level rule to evaluate each schedule.

The restriction of an inference tree to a single phase
in the GCA has several consequences. This localization
of knowledge simplifies the tasks of debugging and
knowledge engineering. It should also simplify
explanations, when that facility is added to the GCA. It
contributes to the comprehensibility of the GCA, since
one can learn about one phase at a time. A negative
aspect is the lack of contextual information when
evaluating schedules, but the weak interaction between
elements and sets in our domain minimizes this effect.

A certain type of decomposition can be said to occur
in frame-type knowledge-based systems such as
CENTAUR. There, the prototypes represent diagnoses,
which can be viewed as abstractions of clusters of patient
daia points. Hypothesizing a particular prototype allows
one to focus attention temporarily on a small
neighborhood of the problem space and probe ‘‘within
context”’. This temporary localization is a type of
decomposition where context temporarily reduces the
degrees of freedom. (Or, in Al terms, solves temporarily
the frame problem.) Indeed, ‘‘separate sets of expertise
are applied during different stages of processing in
CENTAUR by grouping the production rules according
to their functions and applying them at different points
in the consultation” [Aikins, 1983, p.201]. Both
CENTAUR's prototypes and the GCA’s phases eliminate
many of the shortcomings of ‘“‘monolithic” rule-based
systems described by Aikins. A major difference between
the GCA and CENTAUR is in the systems’ control
mechanisms. In the GCA there is a simple, serial flow of
control through the phases, while CENTAUR uses
complex agendas.

The GCA project resembles the CENTAUR project
in another way. CENTAUR 1is a ‘second-generation’
system that performs the same function as an earlier
MYCIN-like system called PUFF. The original GCA was
a more MYCIN-like rule-based system. It has been re-
written to emphasize the division into phases and to
exploit information hiding in the uséer interface and data
representations.

56

course, b+ o course, , course, « . course,

prereq. prereq. prereq. prereq.
for for for for

course, course, course, course,,

Figure 2: A MYCIN-like context tree for the GCA’s domain.

5. Conclusion

The advantages of the multi-phase architecture to
the GCA are summarized as follows:

(a)
(b)
()
(d)

simplified interactions with experts,
effective modularization,
reduction of complexity, and

possibility of substituting algorithmie or “‘mixed”
phases for purely rule-based phases.

A good modularization has many advantages in the
development of large software systems [Parnas, 1972;
Parnas et al, 1984]. Parnas identifies them as ease of
management, product flexibility, and comprehensibility.
We have enjoyed all these benefits in the GCA's
development. We have also enjoyed the benefits of
information hiding, namely changeability (demonstrated
by the rewriting of the prerequisite phase), independent
development (taking place in the work on course
equivalence) and comprehensibility.

Since the GCA is not a mature system, we cannot
draw definite conclusions about ecriteria for decomposition
of expert systems. It is paramount to keep the
knowledge engineering process in mind when dividing
expertise into modules. Specifically, it should be possible
to interview the expert on just one of the phases, without
his worrying about the other phases. The success of the
GCA'’s architecture is largely due to the fact that the
domain expert, the DGS, suggested its subdivision into
phases.

The use of decoupled processes brings with it the
concern that global direction, ie., “focus of attention”,
could be lost. The GCA seems not to suffer from a lack




v

e E—— .

e

of globa! control, and the reason is the obvious one: a
problem decomposes well when a globally good solution is
the product of locally good solutions. For example, the
modules within the GCA have simple and sound
termination criteria, so no module remains in control
when an overseer might have removed control.

We think that multi-phase architectures will prove
equally effective in solving other problems involving the
sequential application of several kinds of expertise.
Somalvico, Colombetti, Guida, and Meltzer have very
recently proposed a similar architecture for an expert
system for personal financial planning {Somalvico, 1984].

BIBLIOGRAPHY

Aikins, J.S. “Prototypical . Knowledge for Expert
Systems,” Artificial Intelligence, 20 (1983), 163-210.

Clark, K.L. and F.G. McGabe. ‘‘Prolog: A Language for
Implementing  Expert  Systems.”  Typescript,
Department of Computing, Imperial College, London,
England, November 1980.

Clocksin, W.F. and C.S. Mellish. Programming in
Prolog. New York: Springer-Verlag, 1981.

Hammond, P. “Logic Programming for Expert Systems."”
Techrical Report: Doc 824 (March 1982).
Department of Computing, Imperial College, London.

Narain, S. “MYCIN: The Expert System and Its
Implementation in LOGLISP.” Technical Report 6-81,
School of Computer and Information Science,
Syracuse University.

Parnas, DL. “On the Criteria to be Used in
Decomposing Systems into Modules.” CACM, 5, 12
{December 1972), 1053-1058.

Parnas, D.L., Clements, P.C. and Weiss, DM. “The
Modular Structure of Complex Systems.” Proceedings
of the Seventh International Conference on Software

Engineering.

Pereira, F. “C-Prolog User’'s Manual, Version 1.2a”,
Department of Architecture, University of Edinburgh,
March 1983.

Shortliffe, E.H. Computer-Based Medical Consultation:
MYCIN. New York: American Elsevier Publishing
Co., 1976.

Somalvico, M. “Nasce al Politecnico di Milano un
Computer con gli Schemi dell'Intelligenza Artificiale.”
Corriere Della Sera, Milan, Italy, May 1, 1984, p. 15
(In Italian).

Stefik, M., J. Aikins, R. Balzer, J. Benoit, L. Birnbaum,

57

F. Hayes-Roth, and E. Sacerdoti. ‘“The Organization
of Expert Systems: A Tutorial.” Artificial Intelligence,
18 (1982), 135-173. (Also in Hayes-Roth, Waterman,
and Lenat, eds. Building Ezpert Systems. Reading,
Ma.ss?chusetts: Addison-Wesley Publishing Company,
1983.

Waterman, D.A. and Hayes-Roth, F. *“An Investigation of
Tools for Building Expert Systems,” in Hayes-Roth,
Waterman and Lenat, eds. Building Ezpert Systems.
Reading, Massachusetts: Addison-Wesley Publishing
Company, 1983.

Valtorta, M. “Knowledge Refinement in Rule Bases for
Expert Systems: An Application-Driven Approach.”
To be presented at the First International Workshop
on Expert Database Systems.



